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INTRODUCTION

Deep anterior lamellar keratectomy (DALK) is a
common technique for cornea transplantation that works
well in treating anterior corneal pathology. DALK is
performed using a dissector to penetrate into the space
between the anterior lamella of the cornea and De-
scemet’s membrane (DM). Air is then injected to form
a “big bubble” (BB), causing separation between these
membranes, enabling the pathological tissue to be safely
excised while preserving the living tissue of the host. To
consistently form a BB, the dissector should attempt to
achieve a corneal depth of at least 74.9% [1], which
corresponds to a target window of 137 𝜇m for a typical
human corneal thickness of 545 𝜇m. The surgeon must
deal with patient head motion due to breathing and other
voluntary and involuntary actions, which can be on the
order of several millimeters [2], [3]. DALK failure occurs
up to 39% of the time [4], typically occurring when DM
is perforated by the dissector. This leads to a change
from DALK to penetrating keratoplasty, which negatively
affects the long term recovery of the patient [5].

A number of groups are pursuing robotic assistance
to improve the success rate in DALK [6]–[8]. Although
results are encouraging, all experimental evaluation of
these systems to date has been on stationary benchtop
eyes, which does not account for the complicating factor
of patient head motion (although one may argue that
the system of [8], which directly attaches to the eye, is
inherently accounting for head motion). In our group, we
are pursuing an overarching conjecture that noninvasive
head-mounting [3] of a high-precision teleoperated robot
[9], combined with intraoperative optical coherence to-
mography (OCT), is sufficient to enable the most chal-
lenging eye-surgery procedures, even when contending
with patient head motion. We recently showed that this
paradigm is promising for subretinal injections [10].
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Fig. 1 Experimental setup.

In this study (Fig. 1), we find compelling evidence
that head-mounting a high-precision robot results in the
positioning precision necessary to safely form a BB. We
used the surgical robot from [9], which has a precision
of ∼1 𝜇m. We use the goggles from [11] to mount an
enucleated eye directly in front of the eye of a healthy
human volunteer. The goggles permit the enucleated
eye to rotate in its socket due to applied forces, with
a rotational stiffness matching that of an anesthetized
patient’s eye. This results in a hybrid ex-vivo/in-situ study
in which we are able to capture motion and soft-tissue
effects of a living human head while performing surgical
procedures on a postmortem animal eye.

MATERIALS AND METHODS

Although we are working toward a general-purpose
eye-surgery robot, needle insertion for BB formation in
DALK (the critical step of the procedure) is fundamentally
a one-degree-of-freedom task that does not require a robot
with the complexity of ours (e.g., see [8]). To clarify this
aspect of the study, we mounted our robot using a sloped
block such that only one of the robot’s actuators is used.
The angle of the sloped block, which is also the angle of
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Fig. 2 Example OCT image. Red circles indicate points
manually selected for conversion from pixel location to depth in
𝜇m, using the full-thickness measurement.

approach of the needle into the cornea, is 21◦ relative to
horizontal [12]. Because the gravity-balance mechanism
of our robot was not designed for this configuration, we
used a weight and pulley to compensate for gravity; this is
necessary due to the nature of the robot’s actuators. Needle
insertion was performed on fresh porcine eyes mounted
to the goggles worn by a volunteer (under the approval
of the University of Utah IRB) who was lying supine
on an eye-surgery stretcher. OCT imaging (Bioptigen
Envisu R2200) with a 12-mm telecentric lens was used to
visualize and measure needle placement within the cornea
and relative to DM (Fig. 2).

We began the experiment by pressurizing the eye
with saline to 20 mmHg, as is normal for a human eye.
We then advanced the needle until it penetrated the
cornea to a depth approximating 407 𝜇m (i.e., 74.9%
of a human cornea), with the needle oriented with the
bevel outlet upward to maximize penetration. We then
held the robot stationary and took volumetric OCT scans
at evenly spaced intervals over 90 s (a value determined
in pilot testing to maintain the target intraocular pressure)
to capture any changes in the depth of the needle due to
head motion, soft-tissue effects, etc. This was repeated for
two eyes. Needle depths were then calculated offline.

RESULTS
Figure 3 shows the results of the experiment. We

find that, even with head-mounting, there is still relative
motion of the needle within the cornea (as expected). In
one scan, the needle had advanced 25.6 𝜇m deeper than
the initial depth. The maximum change in depth observed
was a retraction of the needle by 50 𝜇m.

DISCUSSION
Given a window of 137 𝜇m in which we can success-

fully form a BB, these results suggest that head-mounting
provides sufficient positioning precision. For example,
based on our limited data, a good strategy might be to
penetrate to an initial depth of 457 𝜇m (i.e., 83.9% of a
human cornea) to ensure a BB is formed with minimal risk
of perforating DM. Of course, we would want to gather
more data, preferably in human cadaver eyes, to revise
these projections.
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Fig. 3 Experimental results showing depth within the cornea
over time, measured with respect to the initial depth, with the
robot held stationary, in which each data point is calculated from
an OCT scan. The red circles correspond to a trial with an initial
depth of 457𝜇m, and the blue stars correspond to a trial with an
initial depth of 440𝜇m.
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