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INTRODUCTION

Magnetic-screw microrobots capable of traversing
soft tissue are one of the longest-studied microrobots [1].
They comprise a screw and an attached/embedded per-
manent magnet with magnetic dipole 𝒎 (units A·m2)
with its magnetization orthogonal to the screw axis
[Fig. 1(a)]. They are simultaneously propelled and steered
by a magnetic field 𝒃 (units T) that is rotated about, and
orthogonal to, some axis 𝝎, resulting in an instantaneous
applied torque 𝝉 = 𝒎 × 𝒃 (units N·m). They are similar
to magnetic helical microrobots that swim through fluid,
which have received more attention. However, the differ-
ences between soft tissue and fluid makes the dynamics
of these microrobots distinct. It has traditionally been
assumed that 𝝎 represents the desired steering direction,
with the goal of causing the screw’s axis 𝒂 to align with 𝝎
over time. This alignment often happens, but not always,
and even when it does happen the screw often does not
take the shortest path (i.e., by 𝒂 moving through the plane
spanned by 𝒂 and𝝎). Prior modeling of these microrobots
in soft tissue has assumed this steering model, and the
resulting models have had limited predictive power [2],
requiring further characterization of the deviations from
what would be expected [3].

Our group is moving away from the notion that the
goal in steering is to align 𝒂 with 𝝎, and instead simply
modeling the microrobot motion that results due to a
given rotating magnetic field; this model can then be used
subsequently by a controller or motion planner. Steering
a magnetic screw in soft tissue is accomplished by the
screw pitching/yawing with respect to the world frame,
stressing the soft tissue in the process, and then advancing
within the stressed tissue. We are interested in the effective
rotational stiffness of the soft tissue for a given microrobot.
That is, for a given applied torque 𝝉 orthogonal to 𝒂, what
is the angular deflection of 𝒂 with respect to the world
frame? In general, we expect the angular deflection 𝜃

(units rad, effectively dimensionless) to be a function of
five independent variables: the length 𝐿 (units m) and
diameter 𝐷 (units m) of the magnetic screw, the modulus
of elasticity 𝐸 (units Pa = N·m−2) and Poisson’s ratio 𝜈
(dimensionless) of the soft tissue, and the applied torque
𝜏 = ∥𝝉∥ (units N·m) orthogonal to 𝒂. Given these six
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Fig. 1 (a) Schematic of a magnetic-screw microrobot
with definition of dimensions, (b) fabricated magnetic-
screws microrobots in this study, and side-view images of
a magnetic-screw microrobot embedded in a soft-tissue
phantom (c) before and (d) after applied magnetic field 𝒃
causes rotation 𝜃 due to torque 𝝉 = 𝒎 × 𝒃.

variables and two dimensions {m, N}, the Buckingham
Π theorem [4] tells us that the physics can be described
by just 6 − 2 = 4 dimensionless variables, leading to a
function of the form:

𝜃 = 𝑓

(
𝐿

𝐷
,
𝜏

𝐸𝐷3 , 𝜈

)
. (1)

In addition, because all soft tissues have a Poisson’s ratio
of 𝜈 ≈ 0.5 [5], the number of independent inputs is
effectively reduced by one. In this paper, we describe
an empirical study in which we characterize this function,
which generalizes across scale and tissue type.

MATERIALS AND METHODS

Microrobots were fabricated from # 2 (for 𝐿/𝐷 ≈
{3, 4}) and # 3 (for 𝐿/𝐷 ≈ {5, 6}) brass wood screws. The
back of each screw was cut, ground, and filed down, and a
1 mm3 N50-grade NdFeB permanent magnet was affixed
to it, using cyanoacrylate, oriented such that its dipole
was diametrically aligned. The fabricated microrobots are
shown in Fig. 1(b). We measured the final dimensions
[see Fig. 1(a)] as 𝐿 = {6.6, 9.1, 10.2, 12.5} mm and 𝐷 =

{2.2, 2.3, 2.0, 2.0} mm, respectively, resulting in 𝐿/𝐷 =

{3.0, 4.0, 5.1, 6.3}. The magnets were measured to have
side lengths of {1.02, 1.03, 0.95, 0.98} mm, respectively,
which were used to approximate each magnet’s volume.
The volumes were then multiplied by the N-50-grade
magnetization of 1.14 × 106 A/m to calculate ∥𝒎∥.
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Fig. 2 Experimental results of 𝜃 vs. 𝜏/(𝐸𝐷3) for (a) 𝐿/𝐷 = 3.0, (b) 𝐿/𝐷 = 4.0, (c) 𝐿/𝐷 = 5.1, and (d) 𝐿/𝐷 = 6.3; insets
show the microrobots used. The coefficients 𝐶1 and 𝐶2 of the least-squares model are shown in (e) and (f), respectively.

For a soft-tissue phantom, we made blocks of agar
gel. We used an agar concentration of 0.325 wt%, for
which 𝐸 = 1.9 × 103 Pa [6]. Agar blocks were cut and
inserted into 15.6 mm × 44.7 mm × 38.4 mm (𝐿 ×𝑊 ×𝐻,
internal dimensions) acrylic test chambers. A microrobot
was then inserted into the test chamber via an access port
on the side of the chamber. The test chambers were then
inserted into the central workspace of tri-axial Helmholtz
coils (see [2], [3] for details of the coils used).

For each trial, the screw was driven into a block of
gel such that the screw axis was approximately horizontal
and parallel with the axis of the inner Helmholtz coil, and
such that the magnetic dipole was approximately vertical
[Fig. 1(c)]. Then the field of the inner coil was commanded
to values of ∥𝒃∥ ∈ [1, 8] mT in increments of 1 mT,
causing a rotation of the microrobot axis 𝒂 by an angle
𝜃 [Fig. 1(d)]. This process was repeated in four blocks
of agar, at three locations per block, for each microrobot.
In postprocessing, the applied torque was calculated as
𝜏 = ∥𝒎∥∥𝒃∥ cos 𝜙, where 𝜙 was the observed angle of 𝒂
with respect to horizontal.

RESULTS
In Figs. 2(a)–2(d), we show the results for angular

rotation 𝜃 as a function of 𝜏/(𝐸𝐷3) for each of our 𝐿/𝐷
ratios. We observed that empirical functions of the form

𝜃 = 𝐶1

( 𝜏

𝐸𝐷3

)
+ 𝐶2

( 𝜏

𝐸𝐷3

)2
(2)

fit using least-squares regression capture the mean trend
of the data, with no clear trend remaining in the residuals.
We provide the values for 𝐶1 and 𝐶2 in Figs. 2(e)–2(f),

respectively; these can be interpolated to approximate the
coefficients for any 𝐿/𝐷 value in the range considered.

The model naturally leads to a Hooke’s law rotational
stiffness 𝐾 (units N·m/rad), valid for small deflections:

1
𝐾

=
𝜕𝜃

𝜕𝜏

�����
𝜏→0

⇒ 𝐾 =
𝐸𝐷3

𝐶1
(3)

DISCUSSION
The results of this study are generally applicable

to rod-shaped microrobots. They are also somewhat
applicable to a new class of screw-tip soft magnetically
steerable needles [6]; however, because of the continuum
structure of these devices, we would expect the angular
deflection to be less than predicted by the model herein.
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