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Abstract
This article extends recent work in magnetic manipulation of conductive, nonmagnetic objects using rotating magnetic
dipole fields. Eddy-current-based manipulation provides a contact-free way to manipulate metallic objects. We are
particularly motivated by the large amount of aluminum in space debris. We previously demonstrated dexterous ma-
nipulation of solid spheres with all object parameters known a priori. This work expands the previous model, which
contained three discrete modes, to a continuous model that covers all possible relative positions of the manipulated
spherical object with respect to the magnetic field source. We further leverage this new model to examine manipulation of
spherical objects with unknown physical parameters by applying techniques from the online-optimization and adaptive-
control literature. Our experimental results validate our new dynamics model, showing that we get improved performance
compared to the previously proposed model, while also solving a simpler optimization problem for control. We further
demonstrate the first physical magnetic manipulation of aluminum spheres, as previous controllers were only physically
validated on copper spheres. We show that our adaptive control framework can quickly acquire useful object parameters
when weakly initialized. Finally, we demonstrate that the spherical-object model can be used as an approximate model for
adaptive control of nonspherical objects by performing magnetic manipulation of a variety of objects for which a spherical
model is not an obvious approximation.
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1. Introduction

There have been significant advances on the topic of
magnetic manipulation over the past two decades, the vast
majority coming from the robotics community (Abbott
et al., 2020). Researchers have developed methods to use
sets of stationary electromagnets, or robot-controlled per-
manent magnets, to dexterously manipulate both tethered
and untethered devices without any direct physical contact.
However, the objects being manipulated have typically been
primarily composed of ferromagnetic material (soft- or
permanent-magnet). Traditional magnetic methods are se-
verely limited in what they can manipulate, as they rely on
the object’s ferromagnetic properties, which are only
present in a limited set of materials.

Many engineering materials, although not ferromagnetic,
are electrically conductive, including aluminum, titanium,
copper, and some stainless steels. It has long been known
that when conductive objects are exposed to time-varying

magnetic fields (as opposed to static magnetic fields), a flow
of electrons known as eddy currents is induced in the
material (Hertz et al., 1896). These eddy currents then in-
teract with the applied magnetic field, inducing forces and
torques on the conductive object. A common commercial
application of this phenomenon is material separation in
metal recycling plants (Smith et al., 2019).
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The use of eddy-current-induced forces and/or torques for
applications in space is a particularly promising and active area
of research, as it enables contactless manipulation of objects.
Traditional magnetic manipulationmethods fall short because a
large quantity of objects currently in space are composed of
aluminum (Opiela, 2009), which is conductive but not ferro-
magnetic. Eddy-current-induced forces have been proposed as
a method of traversing the exterior of the International Space
Station (Reinhardt and Peck, 2016; Wilson et al., 2023; Wilson
and Peck, 2020, 2021). We are particularly interested in
contributing solutions to the problem of space debris (Liou and
Johnson, 2016; Ma et al., 2023; Mark and Kamath, 2019;
National Aeronautics and Space Administration, 2021;
Papadopoulos et al., 2021; Shan et al., 2016). A study found
that “even if no future launches occurred, collisions between
existing satellites would increase the 10-cm and larger debris
population faster than atmospheric dragwould remove objects”
(National Aeronautics and Space Administration, 2021). This
will eventually lead to a phenomenon known as the Kessler
Syndrome (Kessler et al., 2010), inwhich Earth’s orbit becomes
clogged with debris due to cascading collisions between ob-
jects, making it unusable. As such, there is a dire need for
remediation strategies to remove or repair resident space objects
in order to protect the fast-growing number of satellites that the
world’s population has grown to rely on (National Aeronautics
and Space Administration, 2021). The majority of prior efforts
using eddy currents have focused on detumbling satellites using
static magnetic fields, both uniform and dipole (Liu et al., 2019;
Nurge et al., 2018; Ortiz Gómez andWalker, 2015; Sugai et al.,
2013). Eddy-current-based approaches do not have the risk of
potentially destructive collision that is inherent to all other
robotic approaches to detumbling, such as serial-link manip-
ulators (Aghili, 2020; Vijayan et al., 2022), bio-inspired soft
robots (Carambia et al., 2023; Frazelle et al., 2021), and
tethered nets (Boonrath and Botta, 2024; Zeng et al., 2024).
However, prior eddy-current-based efforts are not able to
maintain the relative position of the object as it is detumbled,
since torques and forces are not controlled independently, and
objects tend to get pushed away as they are detumbled.

We recently showed that full six-degree-of-freedom (6-
DOF) dexterous manipulation of conductive, nonmagnetic
objects (specifically spheres) utilizing eddy currents is, in
fact, possible (Pham et al., 2021). The method assumes that
the object is surrounded (to some degree) by multiple static
electromagnet field sources capable of generating contin-
uously rotating magnetic dipole fields about arbitrary axes.
It is noteworthy that we were able to achieve full 6-DOF
manipulation of spherical objects, as 6-DOF manipulation
of ferromagnetic objects has been shown to only be possible
for complex geometries (Diller et al., 2016), with 5-DOF
typical of most simple geometries, and only 3-DOF
achievable for soft-magnetic spheres (Abbott et al.,
2020). We have also shown that it is possible to create a
tractor-beam-like effect to pull an object into a central
manipulation workspace (Dalton et al., 2022).

The forces and torques induced on conductive, nonmag-
netic spheres are small compared to those due to

ferromagnetism, but they have the potential to be useful for
applications in the microgravity environment of space, in
which manipulation over relatively long time scales is feasible.
We are particularly interested in application of detumbling a
resident space object by inducing torque antiparallel with the
object’s angular velocity while maintaining its relative position
via closed-loop position control, such that it can be subse-
quently manipulated by more traditional robotic means for
maintenance or de-orbiting.We recently showed that a rotating
dipole field is substantially more effective at braking a tum-
bling object than is a static dipole field (Allen et al., 2024).
Surrounding the manipulated object with field sources could
be achieved by a single robotic spacecraft with multiple arms,
each equipped with a field source as its end-effector (Sugai
et al., 2013). Alternatively, it could be achieved by multiple
simple spacecraft that each contains a single field source; the
field sources could even be used simultaneously to maintain
the relative positions of the spacecraft as they perform the
manipulation operation, to reduce the reliance on consumables
(Abbott et al., 2017). The initial rendezvous with a resident
space object is a solved problem (e.g., Volpe and Circi, 2019).

In this paper, which serves as an extension of our recent
conference paper Tabor et al. (2022), we improve manipu-
lation performance and vastly expand the class of objects that
we can manipulate (Figure 1). We make five contributions

Figure 1. Example trajectory—the University of Utah “block
U”—produced using the proposed adaptive controller
(specifically, our inverse-dynamics controller with a prior/
regularization term during system identification). The red line
represents position over time (72 min) traced by the center of a
copper cuboid, while holding a fixed orientation. In this planar
simulation of microgravity, the conductive nonmagnetic object is
placed in a plastic raft that floats with 3-DOF mobility on the
surface of water, with four magnetic-dipole field sources placed
beneath the water tank. The pose of the raft is tracked with a
camera using a fiducial marker. The positions of the cube-shaped
electromagnetic field sources are rendered in the image at true
scale and with perspective; they are obstructed in the actual video.
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relative to our earlier work Pham et al. (2021), and two
contributions relative to Tabor et al. (2022), all motivated by
manipulation of space debris:

1. In Pham et al. (2021), we modeled eddy-current-
induced force–torque at three distinct canonical posi-
tions of a nonmagnetic, conductive sphere with respect
to a rotating magnetic dipole: along the rotation axis of
the rotating dipole (parallel and antiparallel) and or-
thogonal to the axis of rotation. We then used the
canonical-position model in a manipulation framework,
which forced the conductive sphere to be cast into one
of the three canonical positions during actuation. Al-
though this method was sufficient to enable 6-DOF
manipulation (provided there were enough dipole-field
sources), it unnecessarily constrained the dipole rotation
axes that could be used, making the results suboptimal.
Here, we provide a single, continuous model of force–
torque across all positions of the conductive sphere
relative to the rotating dipole. We then modify the
manipulation framework to use the new continuous-
position model, and show improved tracking perfor-
mance to that of Pham et al. (2021), while solving a
simpler optimization problem.

2. In Pham et al. (2021), we used a controller based on
desired force–torque wrenches. Here, we additionally
propose an inverse-dynamics controller that accounts
for object mass to achieve desired acceleration, which
results in improved performance.

3. In Pham et al. (2021), we assumed that object dy-
namics models were known. As a step toward ma-
nipulation of unknown space debris, we propose an
approach to manipulate spheres with unknown phys-
ical parameters (i.e., radius and conductivity) through
the use of adaptive control. We leverage the recently
proposed view of adaptive control as online optimi-
zation (Ratliff et al., 2016). This enables us to more
closely tie adaptive control to classical system iden-
tification (Atkeson et al., 1986), while also making use
of exciting advances in online optimization (Hazan,
2016) such as solvers that are robust to noise while also
handling constraints and injecting prior knowledge of
system parameters.

4. In Pham et al. (2021), we only physically manipulated
copper spheres. Here, we use the adaptive controller to
enable the manipulation of aluminum spheres; alumi-
num is the most commonly used material in engineered
space objects, but it is less electrically conductive than
copper, and consequently has smaller induced forces
and torques.

5. In Pham et al. (2021), we developed a model for in-
duced force–torque on nonmagnetic, conductive
spheres; this model was hypothesized to be a useful
approximation for other geometries, but the model was
only used to manipulate spheres. Here, we demonstrate
that our adaptive controller can be used to manipulate
nonspherical, nonmagnetic, conductive objects by

locally approximating the dynamics using the model for
spheres. We provide extensive testing and analysis to
demonstrate our adaptive controller’s ability to gener-
alize to a variety of unknown objects.

6. In Tabor et al. (2022), we only explicitly considered
compact solid objects such as cylinders and cuboids, for
which a solid-sphere model is obviously a valid first-
order approximation. Here, we consider a variety of
additional interesting objects that are likely more rep-
resentative of space debris, including: thin-walled ob-
jects; composite objects with elements that are either
electrically connected or electrically isolated from each
other; and objects containing small amounts of ferro-
magnetic material.

7. In Tabor et al. (2022), we only explicitly considered
four field sources in the particular arrangement of our
experimental testbed. Here, we consider how the
number of field sources surrounding a workspace af-
fects manipulability, and find that as few as two field
sources enables full 6-DOF manipulation of objects in
the central workspace. This result is particularly
promising for the deployment of our method in space
applications, in which fewer field sources are more
practical.

In addition, Tabor et al. (2022) had some software bugs:
the adaptive-control parameter optimization compared
measured and expected accelerations in different frames,
and the desired rotational velocity in the controller was
always set to 0. These software bugs heavily reduced the
performance of our controller, so the results in this article
are markedly better.

The paper structure continues as follows. We review the
existing state-of-the-art force–torque wrench model in
Section 2.1, and we then describe our proposed continuous-
in-position wrench model in Section 2.2. We discuss our
manipulation framework in Section 3. We then detail our
approach to object parameter optimization, both as system
identification and adaptive control, in Section 4. We de-
scribe our experimental design and results in Section 5. We
discuss remaining open problems in Section 6, before
concluding in Section 7.

2. Model of induced force–torque wrench on a
solid sphere

2.1. Review of prior model

In this section, we summarize the wrench (i.e., force and
torque) model of Pham et al. (2021). However, we recast the
model into spherical coordinates, which we have found
enables an elegant way to extend the existing model to new,
previously unmodeled locations.

The magnetic field source can be abstracted as a point
dipolem (units A�m2, with direction pointing from the south
pole to the north pole) at its center of mass.
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The center of the nonmagnetic conductive sphere is then
described by a relative displacement vector ρ, with both
vectors expressed in a common frame of reference. Figure 2
shows the new spherical coordinate system, where any
given position can be described by three coordinates with
respect to the rotating magnetic dipole: a distance ρ = kρk, a
polar angle θ measured from the dipole’s rotation vector ω,
and an azimuthal angle fmeasuring a right-handed rotation
about ω. In this coordinate system, the three canonical
positions from Pham et al. (2021) are described by θ = 0°,
θ = 90°, and θ = 180°.

The eddy-current-induced force f and torque τ was
empirically modeled, using both finite-element analysis
(FEA) and experiments, at the three canonical positions as a
function of the magnetic dipole strengthm = kmk, the dipole
rotation frequencyω = kωk (units Hz), the radius r (units m)
of the conductive sphere, the distance ρ, and the electrical
conductivity σ (units S/m) of the conductive sphere:

f , τ ¼ c0σμ0ωr
2ð Þc1 σμ0ωr

2ð Þc2 10c3 μ0m
2ð Þ

ρ
r

� �c4rc5 (1)

where μ0 = 4π × 10�7 N�A�2 is the permeability of free
space. The coefficients for the θ = 0° and θ = 90° positions
(which is all that we will need going forward, due to the

symmetry of θ = 0° and θ = 180°) are provided in Table 1.
Pham et al. (2021) recommended using both the experi-
mentally derived coefficients and FEA-derived coefficients
to bound the estimates on the resulting force and torque. The
force–torque model is quasistatic, as it was empirically
derived using a static conductive sphere.

The model in Eq. (1) is accurate in a “far-field” regime
in which the center of the nonmagnetic sphere is ap-
proximately 1.5 sphere radii or farther away from the
center of the magnetic field source (ρ > 1.5r). This is not a
particularly restrictive assumption, considering that the
theoretical lower limit on ρ is ρ = r (for a point dipole) and
any actual magnetic field source has its own finite di-
mensions. In the “near-field” regime (ρ ≤ 1.5r), the model
Eq. (1) underpredicts the force–torque magnitude. In
practice, the near-field regime applies to scenarios in which
the physical magnetic field source is close to a much larger
nonmagnetic, conductive object.

2.2. New continuous-in-position model

We conducted new simulations of magnetically induced
force and torque using Ansys multiphysics FEA, following
the specifications provided in Pham et al. (2021). We placed
the conductive sphere relative to the rotating dipole source
from θ = 0° to θ = 180° at 15° increments, as shown in
Figure 3(a) and (c). Our simulation had a dipole strengthm =
200 A�m2, a dipole rotation frequency ω = 10 Hz, a
conductive-sphere radius r = 50mm, a distance ρ = 500mm,
and conductive-sphere electrical conductivity of σ = 5.8 ×
107 S/m for copper.

The complete results of the FEA are shown in Figure 3,
with the exception that components in the bif direction are
not depicted in Figure 3(a) and (c). From these results, it
became evident that all six force and torque components can
be expressed by simple trigonometric functions that provide
a smooth transition between the modeled forces and torques

Figure 2. Eddy-current-induced forces and torques shown in a
spherical coordinate system to describe arbitrary positions
relative to a rotating dipole source. Note that the orthonormal
basis for the coordinate system is defined such that îf ¼ îρ × îθ. The
three canonical positions in Pham et al. (2021), and their
respective forces and torques, are recast in the spherical
coordinate system. The arrowhead on τρ at θ = 180° depicts the
positive sign convention, which is opposite to the actual torque
direction for the ω shown. All other force/torque arrowheads
depict both the positive sign convention and the actual force/torque
direction for the ω shown. In this image, ff points into the page.
The model makes no estimate of force/torque at other values of θ,
such as those denoted by f ? and τ?.

Table 1. Coefficients from Pham et al. (2021) for model in Eq. (1)
for canonical positions, recast in spherical coordinates, obtained
using both FEA simulations and experiments.

θ f, τ

Coefficients

c0 c1 c2 c3 c4 c5

FEA simulations
0° fρ 430 2.95 �0.101 �9.26 7 4
0° τρ 6840 3.00 �0.0986 �13.2 6 3
90° fρ 266 2.60 �0.101 �7.65 7 4
90° ff 6040 3.45 �0.102 �14.3 7 4
90° τθ 8100 3.60 �0.0985 �15.7 6 3
Experiments
0° fρ 467 2.81 �0.0969 �9.75 7 4
0° τρ 6900 3.35 �0.0990 �14.9 6 3
90° fρ 282 3.20 �0.0980 �9.41 7 4
90° ff 5870 3.49 �0.0973 �14.6 7 4
90° τθ 8000 3.40 �0.0928 �15.0 6 3
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at the three canonical positions to arbitrary values of θ, and
that also embody the symmetries that we would expect. The
equations that describe the force and torque components in
spherical coordinates—at arbitrary values of ρ and θ, and
not requiring f due to symmetry—which call the canonical-
position model of Eq. (1), are as follows:

fρðρ, θÞ ¼ � fρðρ, 90°Þ � fρðρ, 0°Þ
2

� �
cosð2θÞ

þ fρðρ, 90°Þ þ fρðρ, 0°Þ
2

� � (2)

fθðρ, θÞ ≈ 0 (3)

ffðρ, θÞ ¼ ffðρ, 90°Þ sinðθÞ (4)

τρðρ, θÞ ¼ τρðρ, 0°Þ cosðθÞ (5)

τθðρ, θÞ ¼ τθðρ, 90°Þ sinðθÞ (6)

τfðρ, θÞ ¼ 0 (7)

Our decision to model τf = 0 comes from the observation
that the simulation results appear to simply be numerical
noise with no discernible pattern. The data produce none of
the symmetry we would expect from a magnetic model and
exhibit magnitudes three orders of magnitude smaller than
the other torque components.

Our decision to model fθ ≈ 0, even though Figure 3(b)
suggests that fθ is also described by a trigonometric func-
tion, is based on two considerations. First, it is evident from

Figure 3(a) that forces in the îρ-îθ plane are almost entirely in
the îρ direction, such that ignoring the force component in

the îθ direction will likely have a negligible impact on our
ability to perform manipulation. Second, whereas the other
five wrench components could be modeled as an interpo-
lation between the values at the canonical positions, in the
case of fθ the value at the canonical positions is zero.
Consequently, finding the value of fθ at θ = 45° would
require additional modeling, analogous to the efforts of
Pham et al. (2021) that led to the model in Eq. (1). Since the
negligibility of fθ may be system/configuration dependent,
modeling of fθ may be justified in future work. For now, we
will proceed with the assumption that closed-loop control
will correct for any modeling deficiencies.

3. Manipulation framework

We now propose a control framework to perform dexterous
manipulation with multiple dipole-field sources (at least
partially) surrounding the conductive object.

3.1. Controller parameterization

We assume that each source is an electromagnet capable of
dipole rotation about any axis (e.g., an Omnimagnet
(Petruska and Abbott, 2014)). Both m and ω can be con-
trolled, but their maximum achievable magnitudes are
coupled due to the low-pass-filtering effect of induction in
the electromagnets; that is, an increase in ω results in a
decrease in the maximum value of m that can be achieved
before the amplifiers’ voltage limits are reached. As in Pham

Figure 3. Complete results of FEA. (a) Force vectors in the îρ-îθ plane for each conductive-sphere position, normalized by the value of fρ
at θ = 90° (i.e., the maximum value). A îρ unit vector is shown in yellow for reference. (b) Three components of force vector as a
function of θ, with trigonometric models (dashed lines) given by Eqs. (2)–(4), respectively. (c) Torque vectors in the îρ-îθ plane for each
conductive-sphere position, normalized by the value of τθ at θ = 90° (i.e., the maximum value). A îρ unit vector is shown in yellow for
reference. (d) Three components of torque vector as a function of θ, with trigonometric models (dashed lines) given by Eqs. (5)–(7),
respectively.
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et al. (2021), we have chosen to treat m and the direction of
ω (i.e., the unit vector ω̂) as the control variables, and to use
a constant rotation frequency ω, which simplifies our
control problem but somewhat limits the peak tracking
performance of the controller. We assume n electromagnets,
with the ith electromagnet located at position Pi. We as-
sume a single conductive object at pose, x comprising a
position Pc and orientation Rc (Lynch and Park, 2017). We
can describe the conductive object by a displacement vector
ρi¼ Pc�Pi with respect to each dipole source, where ρi =
kρik.

For each electromagnet, we parameterize the control
variable ω̂with respect to the world frame (i.e., a common
frame of reference) using spherical coordinates, with a polar
angle ψ measured from the z-axis, and an azimuthal angle ξ
measured about the z-axis and from the x-axis (see Figure 4).
Given a pair (ψ, ξ), we can reconstruct

ω̂¼
sinðψÞcosðξÞ
sinðψÞsinðξÞ

cosðψÞ

2
4

3
5 (8)

The angle θ can then be found using knowledge of ω̂ and
the ρ value for the electromagnet under consideration:

θ ¼ atan2 kω̂× ρk, ω̂ � ρð Þ (9)

Let us first consider the special cases when θ = 0° or θ =
180°, where only the radial force and torque components are
non-zero. We construct a unit vector

îρ ¼ ρ
ρ

(10)

and then use Eq. (1) to solve for the induced force and torque
on the conductive sphere:

f ¼ fρðρ, θÞîρ (11)

τ ¼ τρðρ, θÞîρ (12)

For all other values of θ, we can construct unit basis
vectors that are compatible with the model of Section 2.2:

îf ¼ ω̂× ρ
kω̂× ρk (13)

îθ ¼ îf × îρ (14)

where îρ is calculated as in Eq. (10). The induced force and
torque on the conductive sphere is then:

f ¼ fρðρ, θÞîρ þ fθðρ, θÞîθ þ ffðρ, θÞîf (15)

τ ¼ τρðρ, θÞîρ þ τθðρ, θÞîθ (16)

For ease of notation, we refer to this as our wrench model
f, τ = w (x, λ, η), where λ denotes a set of object parameters
(e.g., sphere radius and conductivity) and η = {i, m, ψ, ξ}
denotes the control parameters.

No closed-form inverse exists for the wrench model.
Instead, for some instantaneous object pose and given set of
object parameters, we solve a constrained optimization
problem to effectively invert the model.

3.2. Wrench control policy

Given a desired wrench from some feedback controller, we
select the dipole field source and associated dipole strength
and axis of rotation that produces a wrench as close as
possible. This is similar to the control algorithm used in
Pham et al. (2021).

argmin
i,m,ψ, ξ

f des
τdes

� �
� f

τ

� �����
����
2

Q

(17)

s:t: i2f1,…, ng, m2 ½0,mmax�,
ψ 2 ½0, π�, ξ 2 ½�π, π�,

f , τ ¼ wðx, λ, fi,m,ψ, ξgÞ
where the Q-norm enables relative weighting between
force and torque (which have different units), and for our
system we set mmax = 40 A�m2. Note that reformatting ω̂as
the pair (ψ, ξ) lets us construct the optimization without
needing nonlinear constraints enforcing ω̂ to be a unit
vector.

We can efficiently find the optimal inputs using a par-
allelized (two initializations for each of the n electromag-
nets) Newton-method solver. We handle bound constraints
through projection and use a backtracking line-search
(Nocedal and Wright, 2006) to select step lengths.

3.3. Inverse-dynamics control policy

We additionally propose an inverse-dynamics controller.
This controller uses the inverse of the object’s mass matrix
to solve for control actions given desired accelerations from
some feedback controller, but otherwise using the same
constraints and numerical techniques as before:

Figure 4. Spherical coordinate systems describing the dipole
rotation vector ω with respect to the world frame, and the
conductive sphere with respect to ω (as in Figure 2).
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argmin
i,m,ψ, ξ

ades
αdes

� �
�MðλÞ�1 f

τ

� �����
����
2

Q

(18)

s:t: i2f1,…, ng, m2 ½0,mmax�,
ψ 2 ½0, π�, ξ 2 ½�π, π�,

f , τ ¼ wðx, λ, fi,m,ψ, ξgÞ

3.4. Feedback controller

We assume we are given a time-varying wrench profile in
the case of our forward-dynamics controller, or an accel-
eration profile in the case of our inverse-dynamics con-
troller. Although not fundamental to our method, in this
paper we generate a cubic spline between a series of
waypoints and hand-tune the time allotted to each segment.
We use simple proportional-derivative (PD) controllers to
produce the requisite wrench or acceleration.

4. Adaptive control scheme

The model and control framework that we proposed in the
previous sections expand the space of possible wrenches
that we can induce compared to previous work, but they still
require that the object being manipulated is a sphere of
known properties. We aim to explore to what extent we can
relax this assumption through the use of an adaptive control
framework. Our hope is that, not only will this approach
enable us to identify the parameters of spherical objects, but
it will also enable manipulation of nonspherical objects by
identifying online a spherical approximation that describes
the observed behavior of the object.

We now formalize the system identification and adaptive
control problem, which aims to find the optimal physical
parameters of a sphere, λ*, given a discrete, time-varying
sequence of object poses and input controlsV = (x [0], η [0],
…, x [K], η [K]) with time horizon K. Unlike the empirical
model of wrenches induced in spheres, which was derived
using wrench measurements, we now assume at the time of
deployment that we only observe the object pose. Although
many modalities (e.g., lidar, cameras and fiducial markers,
RGB-D cameras) could be used to determine object pose in
practice, we use visual observations in our experiments. We
use an online smoothing formulation to track the object,
deriving less noisy pose estimates as well as associated
object velocities _x½k� (more details in Section 5). In our
wrench model, the free model parameters λ are the spherical
radius, r, and electrical conductivity, σ, which should both
be constrained to be greater than zero. We can then estimate
the mass matrix, M (λ) as:

MðλÞ ¼
4

3
πr3γI3×3 03×3

03×3
8

15
πr5γI3×3

2
664

3
775 (19)

where we assume a solid sphere with given density γ.
We can connect these observed data with our magnetic

wrench model,w, and thus our control inputs, by imposing a
rigid-body motion model on the object dynamics. Given our
target domain of space debris, our motion model assumes no
friction and a simple linear mapping between the applied
wrench and the resulting acceleration (i.e., Newton’s second
law). To solve for the parameters of our model as an op-
timization problem, we must define an associated loss (i.e.,
error) function over the observed data and dynamic object
parameters. We consider two loss formulations. The first is
the inverse-dynamics or acceleration-based loss formulation

Laðλ, kÞ ¼ _x k þ 1½ � � _x k½ �
δt

�MðλÞ�1wðx k½ �, λ, η k½ �Þ
����

����2

Q

(20)

where δt is the controller’s update period, and where the
mass matrix enters via its inverse. The second is the
forward-dynamics or wrench-based loss formulation,

Lwðλ, kÞ ¼ MðλÞ _x k þ 1½ � � _x k½ �
δt

� �
� wðx k½ �, λ, η k½ �Þ

����
����2

Q

(21)

where the mass matrix enters directly. In both cases, we use
finite differencing to estimate the acceleration from the
observed object velocities. The weights used in the two Q-
norms would be different in general. Using either loss
formulation, we can construct the batch system identifi-
cation problem (Atkeson et al., 1986) as the following
optimization:

λ* ¼ argmin
λ

XK�1

k¼0

Lðλ, kÞ (22)

We investigate this batch formulation as a baseline in our
experiments below. However, our primary interest lies in
identifying the object parameters online. It is not obvious
how to generate a safe set of controls to collect the data for
system identification when the object properties are un-
known. This motivates our adaptive control formulation.

In adaptive control, we leverage our model-based control
to define the control signal, while updating the estimate of λ
online based on our observations. Typically, in performing
adaptive control, we would not fully solve this optimization
at each step, but instead perform a single gradient step to
update the parameters:

λ½k þ 1� ¼ λ½k� � αk=λLðλ½k�, kÞ (23)

with some step length αk (Siciliano et al., 2009; Slotine and
Li, 1991). However, by framing the adaptive controller as an
online optimization problem (Ratliff et al., 2016), we can
use a broad set of tools in deciding on how to solve for the
system parameters. In particular, we wish to explicitly
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model bound constraints on our object parameters and
examine different solvers, including the momentum opti-
mizer that has been shown to improve performance over
gradient descent by smoothing out oscillations (Qian,
1999). We can additionally examine mini-batch formula-
tions of the optimization, where we use the most recent k
timesteps of pose and control data instead of the full batch as
traditionally done in system identification or only a single
step as traditionally done in adaptive control. In our ex-
periments, we select our step length, αk, online using the
same backtracking line search used in our controller, and
handle constraints using the same projection approach
(Nocedal and Wright, 2006). We give further details of the
design choices we examined for solving the adaptive control
problem, including the performance of the different loss
functions, in the following section.

5. Experimental validation

5.1. Microgravity simulators

We preformed physical experiments using the same system
used in Pham et al. (2021) comprising four Omnimagnets
(i.e., omnidirectional electromagnets) placed beneath a
water tank (see Figure 5); the water’s surface serves as a 3-
DOF (2-DOF position + 1-DOF orientation) microgravity
simulator. The Omnimagnets can each produce an

approximate dipole source rotating about an arbitrary axis to
match the fully continuous ω produced by our controller.
Each Omnimagnet comprises three mutually orthogonal
nested coils surrounding a ferromagnetic core. Each coil is
driven by a current-drive amplifier (AMC16A8, Advanced
Motion Control) with current and voltage limits of 8 A and
80 V, respectively. The amplifiers were connected in parallel
to a shared power supply (PS16L80, Advanced Motion
Control) with current and voltage limits of 10 A and 80 V,
respectively. We used the linear approximation from
Petruska and Abbott (2014) with α = 7.00 m2 to map the
desired dipole moment to the coil currents. In Pham et al.
(2021), we found a frequency of 15 Hz and dipole strength
of 40 A�m2 maximized observed wrenches given our
hardware limitations. We used a fixed 15 Hz for ω and set
the maximum dipole strength to 40 A�m2 for all
experiments.

Figure 1 provides a top-down view of the environment.
We placed a camera above the water tank to detect a fiducial
marker rigidly attached to an object of interest. We fit in-
dependent cubic splines (Dierckx, 1995) online to the
measured 2D position and orientation variables (x, y, τ). This
allows us to decrease the influence of noise from the in-
stantaneous marker locations and estimate the object ve-
locity. We tuned the number of knot points for each spline so
that the pose smoothly varied over the slow timescales we
operate at. Buoyant objects can be placed in the water
directly, whereas other objects are placed inside of a plastic
raft that floats on the surface. For experiments with the
object placed inside the plastic raft, we estimated the mass
matrix of the raft as Mr ¼ diag ð0:15, 0:15, 0:15,
3:7 × 10�4, 3:7 × 10�4, 6:7 × 10�4Þ, where the first three
terms have units kg and the last three terms have units
kg�m2. We add the known raft mass matrix with the esti-
mated mass of the object, Mo (λ), in the dynamics model to
remove its effects on control, M (λ) = Mr + Mo (λ). This
additional mass enters into our system-identification
problem and our inverse-dynamics control, but it does
not enter into our wrench-based control.

Recently, in a related work, Dalton et al. (2022) showed
that the drag created by our water-based microgravity
simulator was not negligible, nor was it accurate to assume
that drag is linear with respect to velocity (i.e., low Rey-
nolds number, Stokes flow), even at the relatively slow
velocities at which we are performing manipulation. Thus,
we provide a simple drag model with linear and quadratic
terms to the system identification on the physical
experiments:

f drag
τdrag

� �
¼ � a _x1 : 3 þ ck _x1 : 3k _x1 : 3

b _x4 : 6 þ dk _x4 : 6k _x4 : 6

� �
(24)

Note that, although we construct this drag model as a full 6-
DOF wrench, since we only observe velocities in 3-DOF
(i.e., 2-DOF translational and 1-DOF rotational) we only
have drag in 3-DOF. The four coefficients are a function of
the shape of the raft and the combined mass of the raft and

Figure 5. Physical microgravity simulation system, which uses
four omnimagnets to perform 3-DOF (2-DOF position + 1-DOF
orientation) manipulation experiments.
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object (which affects where the raft sits in the water). For
simplicity, we fit this model using a single object-
manipulation trial and kept it fixed with a = 8.12 ×
10�3 N�s�m�1, b = 1.13 × 10�5 N�m�s�rad�1, c =
2.15 N�s2�m�2, and d = 1.90 × 10�4 N�m�s2�rad�2 for all
experiments and objects.

For all physical experiments, we reproduced the
trajectory-tracking experiments from Pham et al. (2021).
This task requires the system to control the object of interest
to track a 3-DOF planar Cartesian trajectory to draw a
square in a counterclockwise direction, after starting from
the center of the square and moving out to one corner,
reorienting the object to point in the direction of motion
each time it reaches a corner, and maintaining a fixed
heading toward the next corner during motion along the
edges.

We also implemented a numerical simulator, based on
Jiang et al. (2017), to simulate 6-DOF manipulation that
would be impractical in our physical simulation environ-
ment. For consistency, we impose the same limitations on
our magnetic field sources as our physical experiments.
With our numerical simulations, we can perform manipu-
lation without any external wrenches on our system (e.g.,
gravity, drag).

5.2. Quantifying force–torque model
improvements

To quantify the additional control authority offered by our
new continuous-in-position model of Section 2.2 over our
prior model of Section 2.1, we performed manipulation
experiments in numerical simulation using each model.
Each trial was initialized by sampling a 6-DOF pose from
a uniform distribution. The object was then controlled to
align with the workspace frame at the origin. For the new
model, we use the control policy from Eq. (17), which we
compare to the equivalent control policy from Pham et al.
(2021). The underlying position controller producing the
desired force–torque wrenches, and the 1000 random
initial poses, were identical for both models. For both
models, we consider the use of two field sources (the
minimum required for manipulation) and four field
sources in a tetrahedron arrangement (the minimum re-
quired to effectively cage the object, in an arrangement
that optimally surrounds the object), with the sources
equidistant from the center of the workspace. We define
the settling time as the time at which the center of the
object enters a spherical region that has a radius that is 1%
of the initial error, and the orientation error also drops
below 1% of its initial error, and then never respective
errors never again become larger than these threshold
values. The normalized path length is defined as the
distance traveled by the object from the start of the trial to
the settling time, normalized by the shortest possible
distance (i.e., 99% of the initial error). This metric cap-
tures both non-straight paths and overshoot. In Figure 6,
we visualize the normalized path length for both position

and orientation using both control policies. We see the
new model provides a statistically significant improve-
ment (using a standard significance of α = 0.05), taking a
more direct path, which we use as proxy for control
authority.

5.3. Acceleration-based versus wrench-based
loss for system identification

We conducted a numerical simulation to examine optimi-
zation choices for system identification and adaptive con-
trol. Our simulation was in 6-DOF with six magnetic field

Figure 6. Notched-box-whisker plots showing the regularized
path lengths from 1000 random initial poses to the workspace
origin frame. A value of 1 corresponds to a path with the shortest
possible distance. The notches indicate the 95% confidence
interval on the median. Outliers have been omitted for clarity,
but they maintain the same trends shown. (a) Two field sources.
(b) Four field sources.
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sources, with the field sources equidistant from the center of
the workspace and with a maximal-separation distribution
(i.e., a tetrahedron). We used our proposed wrench-based
controller shown in Eq. (17). Our primary objective was to
examine which of our proposed loss functions ((20) or (21))
performed best when estimating the radius r and conduc-
tivity σ of the sphere being manipulated. To this end, we
computed both losses with varying values of sphere radius,
with known conductivity, in the batch system-identification
setting. We visualize the log-loss for both functions in
Figure 7. We see that the acceleration-based loss has a single
minimumwithin the feasible range of radii, which coincides
with the true radius. The wrench-based loss, on the other
hand, has a local minimum at the true radius, but a global
minimum at r = 0 as both the wrench and mass-matrix M
decay to zero. With the wrench-based loss, there is a
substantial region where the gradient points toward the
global minimum at r = 0 instead of the true radius. As such,
we elect to use the acceleration-based loss for all subsequent
experiments to avoid the degenerate solution.

5.4. Robustness of parameter identification

To investigate the robustness of our system identification
optimization with respect to initialization, we ran a square-
trajectory physical manipulation trial with accurate physical
parameters and the wrench-based controller. We randomly
initialized our batch system identification optimization
problem 100 times and optimized each of them until
convergence, using Newton’s method. The true object
parameters were r = 0.02 m and σ = 5.8 × 107 S/m, and the
bound constraints on the object parameters were set to r 2
[0.001, 0.1] m and σ 2 [2 × 106, 8 × 107] S/m (this range of σ
spans common metals). In Figure 8(a), we plot the evolution
of each of the optimizations and see that all 100 particles
reach the global minimum quickly; although it does not
converge perfectly on the true parameters, it converges on
parameters that have equivalent performance.

We note that, in our initial conference publication (Tabor
et al., 2022), the adaptive system-identification problemwas
poorly scaled, so conductivity never meaningfully changed.
Here, we optimized over radius directly while conductivity

was rescaled by 10�9 so the decision variables are the same
order of magnitude.

In Figure 8(b), we consider a mini-batch (i.e., 25
timesteps) of the same data and we find that when using a
small amount of data it is common for there to be local
minima at a bound constraint. The heatmap suggests that
there was not enough data to reject certain parameter regions
(e.g., very low values of r). We observed a degenerate
situation in our controller at the constraints; for example,
with extremely low conductivity there is no gradient in-
formation for the controller optimization.

We can add an L2 regularization term to the system-
identification loss formulation as La þLp to encode a
prior preference for values in the middle of our parameters
space (Murphy, 2021), where

LpðλÞ ¼ λp � λ
�� ��2

(25)

In Figure 8(c), we see the effect of this soft constraint,
with results converging on the region known to have good
performance from the complete data set.

5.5. Adaptive control of unknown spheres

In this section, we run adaptive-control experiments with
unknown spheres using different permutations of our
controller to select the best-performing version. For each
permutation, we ran three trials with each of the copper and
aluminum spheres shown in Figure 9, which each have a
true radius of r = 0.02 m. We declare any trial where the raft
runs into the wall a failure and prematurely halt the trial
when it does so. We compare the resulting errors across the
three controller permutations in Figure 10 for each object;
we also compare to the two fixed-parameter controllers,
which rely on imperfect models, manipulating the copper
sphere. For the halted trials, we only compute the tracking
error up to the time the trial was halted. In each adaptive
trial, we examine optimizing over both the radius and
electrical-conductivity parameters of the model. We ini-
tialized the parameters by setting the radius to r = 0.01 m,
the electrical conductivity to the true value for copper,
which is σ = 5.80 × 107 S/m, and the density to that of
copper, which is γ = 8940 kg/m3. Even the aluminum sphere
was set with the fixed density of copper and initialized with
conductivity of copper. We conduct a single gradient update
step at each iteration of the control loop, selecting the update
step length using a backtracking line search. We elected to
use the momentum strategy (Qian, 1999) given results
reported by Ratliff et al. (2016). We used the same mini-
batch size of 25 timesteps as we did in our offline exper-
iments discussed earlier.

Let us compare our wrench-based controller with and
without the added prior/regularization term. We find that
including the prior/regularization term can improve the
performance of adaptive control, reinforcing the results
from our offline system-identification experiments of

Figure 7. Natural logarithm of the wrench-space loss formulation
Lw versus acceleration-space loss formulations La, with a
known conductivity and a true radius of 0.02 m.
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Section 5.4.We show the adaptive parameters from the trials
with the copper sphere in Figure 11, and we see that without
the prior/regularization term the radius or conductivity were
at the lower-bound constraints in all three trials shortly
before running into a wall.

Note: We observed similar behavior when tuning our
controller in our initial conference publication (Tabor et al.,

2022), which lacked the prior/regularization term; without a
more principled way to address the problem, we elected to
use much tighter bounds on the adaptive parameters. Given
the results described above, combined with the results of
Section 5.4, we elect to include the prior/regularization term
in all future experiments due to its lower errors and failure
rate.

Figure 8. Offline system-identification results for a square-trajectory physical manipulation trial of a known object, after randomly
initializing the problem 100 times and optimizing until convergence. The axes show object parameters and the heat map depicts the log
of the log of the loss function. (a) Identification with data from the full trajectory, using loss functionLa. (b) Identification with a mini-
batch (25 timesteps) of the trajectory, using loss functionLa. (c) Identification with the same mini-batch of data, using the loss function
La þLp that incorporates a prior/regularization term that imposes a cost on parameters far from the center of the parameter space. The
true object parameters are 0.02 m for radius and 5.8 × 107 S/m for conductivity.
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Next, let us compare our wrench-based controller with our
inverse-dynamics controller, both with the prior/regularization
term. In Figure 9, we see that our inverse-dynamics controller
is markedly more repeatable, with lower position error. This
lower position error is reinforced in Figure 10, and we see that
orientation error is also lower. In Figure 11, we see that the
improved control is associated with improved stability of the
adaptive parameters. With the wrench-based controller, al-
though the trials never fail, the control performance suffers to
some degree as the object parameters vary dramatically. With
the inverse-dynamics controller, both the estimated radius and
estimated conductivity tend to vary less. We visualize char-
acteristic trials in Figure 12.

We attribute the differences between the wrench-based
controller and the inverse-dynamics controller to the
inverse-dynamics controller being better aligned with the
inverse-dynamics loss we use to fit the object parameters.
We find the inverse-dynamics controller is more robust to
the parameter fluctuations caused by the existence of
multiple sets of parameters that would result in the same
observations. A good model fit from our system-
identification problem states that the object accelerates
(which we can observe) like an object that had the estimated
set of parameters would, not that the forces (which we
cannot observe) are the same. As such, we elect to use the
inverse-dynamics controller in all future experiments.

Figure 9. Adaptive control of spherical objects being manipulated along a square trajectory. The blue lines show individual trials and the
red shading shows the 95% confidence path computed given three trials per object. We stop computing and visualizing the 95%
confidence path after any of the trials collides with the edge of our water tank and is preemptively ended. (a) Copper sphere. (b)
Aluminum sphere.

Figure 10. Tracking error for experiments manipulating a
sphere. Points show average absolute error per trial, and
bars show the range across all trials. Cu = copper; Al =
aluminum. Results from “Pham et al. (2021),” which used the
discrete wrench model of Section 2.1, and for “Cu known
object wrench,” which uses the continuous wrench model of
Section 2.2, serve as a baseline with known objects.
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5.6. Sensitivity to the number of field sources
All of our physical experiments use four magnetic-dipole
field sources, which are in one particular configuration, to
perform 3-DOF manipulations tasks. We were also inter-
ested in how sensitive our adaptive controller’s performance
is to the number of field sources, and how it works with full

Figure 11. Adaptive parameters from three trials manipulating the
copper sphere with each controller configuration. The black
dashed line shows our estimate for the ground truth of the
parameter. We visualize the first 1500 s from the 2400 s trials. Any
trial that collides with the edge of our water tank is preemptively
ended.

Figure 12. Characteristic trials manipulating a copper sphere along a
square trajectory using (a) our wrench-based controller and (b) our
inverse-dynamics controller, both including a prior/regularization
term. We visualize the radius and conductivity estimate at different
points in the trajectory with periodically placed spheres. The
conductivity-scale values are given at room temperature unless
otherwise stated. The sphere’s true diameter is 40 mm, indicated by
the scale bar. See Supplemental Video for (b).
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Figure 13. 6-DOF adaptive inverse-dynamics control, with a prior/regularization term, with varying number of magnetic-dipole field
sources. The goal is to smoothly move from an arbitrary initial pose to align with a coordinate frame at the origin of the workspace (i.e.,
reject “pose error”). We also show “trajectory error” with respect to a simulated nominal trajectory in which we can directly induce the
acceleration requested by our PD controller. See Supplemental Video.
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6-DOF manipulation tasks. In Figure 13, we visualize the
tracking performance of our adaptive inverse-dynamics
controller with a prior/regularization term for an un-
known copper sphere with a varying number of magnetic-
dipole field sources surrounding the workspace, which we
obtained using our numerical simulation environment. In
each configuration, the field sources are equidistant from the
center of the workspace and have a maximal-separation
distribution. We compare the resulting performance to a
nominal trajectory that was generated assuming that we can
exactly induce the accelerations requested by our controller.
We see that our ability to closely match an arbitrary tra-
jectory increases with the number of field sources, with
negligible error with six field sources. However, we also see
that our controller is able to accomplish a 6-DOF manip-
ulation task with as few as two field sources, with a per-
formance that is ultimately very similar to that with six field
sources, under the assumption that the object is near the
center of the workspace.

5.7. Adaptive control of nonspherical objects

Our most challenging set of experiments test the hypothesis
that the spherical model acts as a good first-order ap-
proximation for control of nonspherical objects. We use our
adaptive inverse-dynamics controller, with a prior/
regularization term, to manipulate nonspherical objects.

We conducted three square-trajectorymanipulation trials on
each of the eight nonspherical objects shown in Figure 14. The
objects include: a solid copper cuboid; a solid aluminum
cylinder with a small hole drilled through its axis; a pile of
copper scrap objects, which are in contact and potentially
electrically conducting; a complex aluminum structure, which
is an Omnimagnet frame without the wire wrapped on it, with
the entire structure electrically conducting; three pieces of
extruded aluminum that are electrically isolated from each
other; a five-sided thin-walled aluminum box that has been
coated such that it is not electrically conducting with the water;
the same aluminum box with a 12 g piece of (ferromagnetic)
iron in the center; and the same aluminum box with a 40 g
piece of iron in the center.We initialize the parameter estimates
as in the previous experiment, with the density set to that of
copper, the conductivity initialized to that of copper, and the
radius initialized to r = 0.01 m. Because the aluminum box is
larger than the plastic raft we used for our other experiments,
the square trajectory was shrunken for all aluminum-box trials
to give an appropriate buffer with the walls of our water tank.

We visualize tracking performance for all trials with
these objects in Figure 14, with tracking error quantified in
Figure 15. We find that tracking performance with the two
simple solid objects is very similar to what we obtained with
spheres, indicating that the spherical model is, in fact, a
good approximation for these objects, as hypothesized.
What is more surprising is that the tracking performance
with the aluminum extrusions is nearly as good, even
though it comprises three isolated conductive objects,
whereas the model assumes a single spherical object in the

center. Trials with the aluminum structure and the aluminum
box are nearly as good after an initial learning period; this
suggests that better initialization of object parameters could
help improve performance, but how to better initialize them is
left as an open problem. It is interesting to note that the addition
of small amounts of ferromagnetic material does not have a
major effect on tracking performance. We attribute this to our
relatively high-frequency rotating magnetic fields generating
net-zero periodic forces and torques on the ferromagnetic
elements. We observed the worst performance with the copper
scrap, and had to stop the trials prematurely when the raft
collided with the wall of the water tank.

Characteristic trials of manipulation of the copper cuboid
and the aluminum extrusions are shown in Figure 16, with the
estimated object parameters visualized at different times across
the trajectory. We see that the controller never settles on a
single estimate of the object parameters, instead adapting the
value continuously based on the locally observed motion.

In summary, even though our wrench model was built
entirely from data derived from spheres, we achieve
comparable tracking performance to that of the spheres
when manipulating objects with significantly nonspherical
geometry.

For a final experiment in this section, in Figure 17 we
visualize the field source (i.e., Omnimagnet) that is used at
each timestep along the trajectory. We can see that the algo-
rithm predominately uses the two field sources that are nearest
to the object, which is not surprising considering how rapidly
induced forces and torques decrease with distance from a field
source. However, occasionally the best choice is the field
source that is farthest from the object, which is an indication
that each field source is limited in its actuation authority,
particularly in terms of directions of achievable wrenches.

5.8. Additional experimental analysis

Our final set of experiments attempt to address the short-
comings we observed in our manipulation experiments in
Section 5.7, specifically, the relatively poor performance
with the copper scrap and aluminum structure as well as the
diminished performance during the beginning of the trials
with the aluminum box.

The copper scrap failed in all three trials by hitting the
edge of our tank. Upon further inspections, we found that
the system was saturated at full power 95% of the time
during the three trials. This is compared to the controller
being saturated just 5% of the time during the three trials for
manipulating the copper sphere in Figure 9. To address this
problem, we performed an additional three trials with the
copper scrap, eliminating the initial segment where the
object is farthest from the field sources and doubling the
length of time allotted for each segment. We obtained vastly
improved performance, as shown in Figure 18. Interest-
ingly, we also see that the adaptive control quickly finds
useful parameters, but over time two of the trials switch to a
different set of useful parameters. This improvement im-
plies that the shortcoming was not in our adaptive
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controllers ability to extend to complex novel objects, but
rather, that the given trajectory was not possible for our
hardware system to achieve. In practice, this could be au-
tomatically accounted for by adjusting the time-
parameterized trajectory online, either by simply slowing
down when saturating or with full motion planning.

Next, we reconsider the aluminum structure. Interest-
ingly, for this object the orientation tracking error is ap-
proximately 10 times higher than the other objects, whereas
the position error is only double. During the three manip-
ulation trials with the aluminum structure, the system was
saturated at full power 75% of the time. Similar to the

Figure 14. Adaptive inverse-dynamics control, with a prior/regularization term, on a variety of nonspherical objects being manipulated
along a square trajectory. Blue lines show individual trials and the red shading shows the 95% confidence path computed given three
trials per object. The copper scrap object failed all three trials by hitting the walls of the tank and was preemptively ended before
completing the square trajectory. (a) Copper cuboid. (b) Aluminum cylinder. (c) Copper scrap. (d) Aluminum structure. (e) Aluminum
extrusions. (f) Aluminum box. (g) Aluminum box + 12 g iron. (h) Aluminum box + 40 g iron.
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experiment described above with the copper scrap, we ran a
trial manipulating the aluminum structure with the modified
(slower) trajectory. In Figure 19—in which we use a dif-
ferent visualization where the object’s orientation is en-
coded by its forward direction, indicated with a yellow
arrow—we see that, much like with the copper scrap, the
position accuracy improves and the orientation accuracy is
now comparable to the other objects.

Finally, the aluminum-box manipulation trials have poor
performance at the beginning of the trial when the object is
in the middle of the workspace. We hypothesized that this is
because our initialization is so poor for the object’s pa-
rameters that the adaptation take a long time to find a good
fit, and not because of control limits or the objects position
in the state space. To test this hypothesis, we ran a trial of a
more complex trajectory in the middle of our workspace
where we initialize the object parameters to the median of
the properties estimated during one of the previous trials.
This trial is shown in Figure 20, and confirms our hy-
pothesis. As expected, the worst tracking performance
occurs when the system is initialized (see the wiggles in the
“Block U”), with much lower error as the trajectory
progresses, with the low-error portion comprising motions
in every direction. If we directly compare with the similar

copper-cuboid manipulation trial shown in Figure 1, we see
quite comparable trajectory tracking.

In Figure 21, we quantitatively compare the tracking
error in the new experiments from this section with the
analogous original results of Section 5.7. We see drastically
improved performance in all cases. In summary, to improve
tracking performance, we should make our best attempt at
initializing the object’s parameters correctly, and we should
slow down.

Figure 15. Tracking error for manipulating nonspherical objects
along a square-trajectory. Points show average absolute error per
trial, and bars show the range across all trials.

Figure 16. Characteristic trials manipulation (a) the copper
cuboid and (b) the aluminum extrusions along a square
trajectory. We visualize the radius and conductivity estimate at
different points in the trajectory with periodically placed spheres.
Note that no ground-truth radius exists for these nonspherical
and anisotropic objects. Instead, the controller continuously
adapts the radius and conductivity in order to provide a locally
correct model of dynamics. See Supplemental Video.
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6. Discussion

There are a number of open problems that would be in-
teresting to explore in future work. In this work, as in all of
our prior works, we only actuated one field source at a time,
since our current models do not allow for superposition (we
know that the induced wrenches from multiple field sources
do not linearly superimpose). We expect that the proper
application of superposition will lead to better-than-linear

performance increases. Such a change in low-level field
generation will not affect the methods described in this
work.

In this work, we exclusively performed 6-DOF closed-
loop pose-control tasks, but our wrench control policy is
agnostic to how the desired force and torque are generated.
One can apply our methodology in a space-debris detum-
bling task in which the desired force is generated by a 3-
DOF closed-loop position regulator, and the desired torque
is chosen to oppose, and thus reduce, the angular velocity of
the object.

In this work, as in all of our prior dexterous-manipulation
works, we only manipulate slowly moving objects, where

Figure 17. Characteristic trajectory manipulating the aluminum
cylinder. At each timestep, we depict a color that matches the
field source that is active at that instant.

Figure 18. Three square-trajectory manipulation trials with the
copper scrap, using the modified (i.e., slower) trajectory. See
Supplemental Video.

Figure 19. Trials manipulating the aluminum structure along a
square trajectory. (a) Original trajectory of Figure 14(d), with
alternative visualization. (b) Modified (i.e., slower) trajectory. See
Supplemental Video.
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our quasistatic force–torque model is obviously applicable.
There are rapidly rotating pieces of space debris where this
might not be a valid assumption. Further research is needed
on the change in induced force and torque due to object
motion. We do know that object rotation will increase the
induced braking torque compared to what is predicted by the
quasistatic model (Allen et al., 2024).

In our targeted domain of space-debris remediation, the
reaction force–torque on our field-generation system could
be nontrivial to compensate for; accounting for these effects
on our system is left as an open problem, but it will pre-
sumably require some combination of station keeping using
the magnetic field sources (Abbott et al., 2017) and addi-
tional use of consumable gas thrusters.

In previous work, we showed that the model consistently
under-predicated force–torque when an object’s center was
less than 1.5 times its radius away from the center of the
dipole source, which we denoted the “near-field region.” In
this work, we build upon that model and never perform
experiments in this near-field region where force–torques
are dramatically higher. Additional modeling focused on
larger objects might be necessary to accurately control in
this region. This is likely worth doing, since it will result in
more control authority once properly understood. Selecting
optimal magnet configurations—whether fixed positions for
a given task, or time-varying as part of the controller—will
likely result in improved control authority as well.

In this work, we used a spherical-object model with a
fixed density, with the result being that a change in the
sphere’s radius resulted in changes in the object’s mass and
moment of inertia that are coupled with the change in the
induced wrench. We could decouple these effects by in-
cluding the spherical-object’s density as a third adaptive
parameter, or by adaptively estimating the object’s mass
matrix directly.

In this work, we found that, for objects that are very
distinct from a sphere, having a strong initialization of the
spherical-object parameters can be very beneficial to ma-
nipulation quality. It may be worth pursing empirical
models for some additional, nonspherical objects to this
end. However, with so many potential geometries to con-
sider, this may not be a good strategy. The modeling
methods described here and in our prior work would be a
reasonable starting point, with additional variables for
relative orientations as other objects would lack as much
symmetry as spheres. In addition to, or instead of, additional
modeling, it may be worthwhile to use images (or other
additional sensing modality) of objects to seed better initial
object parameters and improve initial manipulation capa-
bilities. Training such a system would likely require large
amounts of manipulation data, likely provided by using our
proposed system. Depending on the exact manipulation
task, active learning, making control decisions specifically
to help improve our understanding of the dynamics, might
be helpful. This ties into ideas of persistent excitation.

Finally, in this work, as in our previous works on this
topic, all of our physical manipulation experiments have

Figure 20. Trial manipulating the aluminum box along an
alternative “Block U” trajectory, with strong initialization of
object parameters.

Figure 21. Tracking error for additional experiments, compared
to the earlier results from Figure 15. Note: the copper-scrap
and aluminum-structure trials have similar trajectories to the
original, but the trial of the aluminum box with strong
initialization is over a substantially different (and more
complex) trajectory.
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been conducted using a water-based microgravity simulator
with 3-DOF mobility, with 6-DOF experiments limited to
our numerical microgravity simulator. Demonstrating
physical 6-DOFmanipulation is left as an open problem, but
we have confidence that our force–torque models and
manipulation methods are fundamentally 6-DOF in nature.

7. Conclusions

In this article, we expanded our previous model for the
force–torque wrench induced on a conductive, nonmagnetic
sphere by a rotating magnet dipole, which contained three
discrete modes, to a continuous model that covers all
possible relative positions of the sphere with respect to the
rotating magnetic dipole. We leveraged this new model to
examine manipulation of spherical objects with unknown
physical parameters by applying techniques from the
online-optimization and adaptive-control literature. Our
experimental results validated our new dynamics model,
showing that we get improved performance relative to the
previous model, while also solving a simpler optimization
problem for control. We further demonstrated the first
physical magnetic manipulation of aluminum spheres, as
previous controllers were only physically validated on
copper spheres; aluminum is more relevant for the ma-
nipulation of engineered objects in space. We showed that
our adaptive control framework can quickly acquire useful
object parameters when weakly initialized. Finally, we
demonstrated that the spherical-object model can be used as
an approximate model for adaptive control of nonspherical
objects by performing the first magnetic manipulation of a
variety of nonspherical, nonmagnetic objects. We showed
that multiple conductive objects—either rigidly connected
to, or separated from, each other—can be approximated as a
single sphere. Code, data, and videos associated with the
experiments can be found at https://sites.google.com/
gcloud.utah.edu/unknown-object-eddy-currents.
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