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Abstract— There is a need for the remediation of space
debris, but many objects must be detumbled before they can be
safely serviced. In this paper, we describe an empirical study
that is the first to evaluate the detumbling performance of a
rotating magnetic dipole (MD) field. We develop a new rotating-
permanent-magnet robotic end-effector capable of generating a
strong MD field that can be rotated at high speeds. We construct
a low-friction experimental apparatus to simulate a tumbling
object. We conduct detumbling experiments using a rotating
MD field with a variety of angular velocities, as well as the
same field held static in two canonical orientations. We provide
an estimate of the expected performance of each method in
the microgravity environment of space by correcting our data
for the friction in our experimental apparatus. We find that a
rotating MD field detumbles an object in finite time, whereas a
static field only detumbles an object asympotically to zero an-
gular velocity. We find that the rotating MD field substantially
outperforms a static MD field in reaching approximately zero
angular velocity, provided the angular velocity of the rotating
MD exceeds a modest minimum value. Finally, we observe a
diminishing return in performance as we continue to increase
the angular velocity of the rotating MD field.

I. INTRODUCTION

The presence of debris in Earth’s orbit poses a significant
risk to human activity in space. By their very nature, debris
are uncontrolled, uncooperative satellites or other resident
space objects (RSOs) tumbling about arbitrary axes. In 1978,
NASA scientist Donald Kessler proposed that a hazardous
population of small debris would grow exponentially as a
result of collisions in low Earth orbit, even if the addition
of new human-made material were to halt [1]. This problem
has since been termed the “Kessler syndrome”, and it has
been shown that for semi-synchronous and geosynchronous
orbit altitudes this threshold has already been passed [2]. To
prevent future disaster, debris will have to be recycled or
removed from Earth’s orbit [3].

In order for an RSO to be safely captured by a servicing
craft, it is desirable that the RSO first be “detumbled”,
meaning decelerated to the point that its angular velocity
with respect to the servicing craft is near zero [4]–[6]. Many
groups have proposed detumbling strategies, which can be
broadly characterized by whether or not the method relies on
physical contact between the servicing craft and the RSO.

Contact-based methods have received much attention, but
their application is limited to RSOs whose tumbling rate
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is below 30 deg·s−1 [5] (i.e., below 0.0833 Hz), and they
inherently carry a higher risk of collision between the RSO
and servicing craft. In some cases, the tumbling rate of an
RSO or the collision risk between the object and the craft
may be too high to be deemed acceptable, which necessitates
the development of contactless detumbling methods.

Perhaps the most promising suite of non-destructive, con-
tactless detumbling methods includes those which rely on
the torques induced in conductive nonmagnetic objects by
externally applied magnetic fields. These methods, herein
referred to as eddy-current detumbling methods, rely on
a servicing craft’s ability to generate magnetic fields that
induce eddy currents in an object that is nonmagnetic but
electrically conductive, which in turn induces a force-torque
wrench on the object as the eddy currents interact with
the magnetic field that generated them [7]–[10]. There exist
two broad categories into which eddy-current detumbling
methods may be grouped: those whose magnetic field is
static in the spacecraft frame, and those whose magnetic
field is dynamic in the spacecraft frame. Yongquist et al. [11]
offer a thorough study of the detumbling ability of several
static magnetic fields. They found that, for a spherical shell
rotating slowly in a uniform magnetic field, the angular
velocity of the sphere decays exponentially with time (as
we might expect from first principles). To validate their
analysis, they suspended a hollow aluminum sphere from
a torsional pendulum and measured the angular velocity of
the sphere over time, given some initial torsion. They tested
the detumbling performance of a uniform magnetic field, the
field of a single-coil electromagnet, and that of a rare-earth
permanent magnet.

Our group recently showed that six-degree-of-freedom (6-
DOF) manipulation of conductive nonmagnetic objects is
possible using multiple magnetic field sources generating
rotating magnetic dipole (MD) fields about controllable
axes [12]. Our previous modeling efforts have described the
force-torque wrench induced on a conductive, nonmagnetic,
solid sphere in a quasistatic sense (i.e., the sphere is approxi-
mately stationary in the world frame) [12]; these physics and
models were later used to create a tractor-beam-like pulling
effect [13], and they were adapted to manipulate nonspherical
objects [14]. The object velocities present in the manipulation
experiments of [12]–[14] have been small enough that the
quasistatic assumption is valid, i.e., the model was sufficient
to form the foundation for successful closed-loop control of
the objects’ 6-DOF pose. However, such a quasistatic model
may be insufficient in describing the force-torque wrench
induced on a tumbling RSO.
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In this paper, we describe an empirical study that is the
first to evaluate the detumbling performance of a rotating MD
field, which we directly compare to the performance of the
same magnetic field held static. We develop a new rotating-
permanent-magnet robotic end-effector capable of generating
a strong magnetic-dipole field that can be rotated at high
speeds. We construct a low-friction apparatus to simulate a
tumbling object in 1-DOF, and implement a Kalman filter to
estimate the angular velocity and angular acceleration of the
object. We conduct a detumbling experiment considering a
rotating MD field with a variety of angular velocities and a
static field at two canonical orientations. Finally, we provide
an estimate of the expected performance of each method in
the microgravity environment of space by correcting our data
for the friction in our experimental apparatus.

II. METHODS

A. Experimental Apparatus

Experiments were conducted with the apparatus shown in
Fig. 1. It comprises a magnetic end-effector mounted to a
6-DOF robot arm (Universal Robots UR5e), which acts on
an aluminum sphere mounted in a 1-DOF tumbling rig.

The magnetic end-effector comprises a grade-42 NdFeB
diametrically magnetized cylindrical permanent magnet with
50.8-mm outer diameter and length, and a 6.35-mm inner
diameter (K&J Magnetics, RY04Y0DIA), mounted on a shaft
that is supported on both ends by rolling element bearings.
The magnet’s dipole moment has a magnitude of ∥m∥ =
102.5 A·m2. The magnet is connected to a brushed DC motor
(Portescap 35GLT2R82-234E.1) with a belt-drive transmis-
sion, such that every rotation of the permanent magnet
corresponds to 1.5 rotations of the motor and its incremental
optical encoder (Portescap E9, 500 lines per revolution). The
field of the magnet is sensed by an array of four Hall-effect
sensors (Texas Instruments DRV5055A3ELPGQ1). The mo-
tor is driven using a servo driver (Advanced Motion Controls
DPRALTE-020B080) and may be operated in velocity and
position control modes. The servo driver is connected to a
variable-voltage power supply (Mean Well UHP-1000-36) set
to 43.0 V.

When viewed from at least 1.5 minimum-bounding-sphere
radii away from its center, a diametrically magnetized cylin-
drical permanent magnet of approximately equal length and
diameter can be accurately approximated as a point dipole
m (units A·m2) at position Pm, which generates a magnetic
field vector b (units T) at each position Pb in space:

b =
µ0

4π∥ρ∥3

(
3ρρT

∥ρ∥2 − I
)
m (1)

where ρ = Pb −Pm is the relative displacement vector
(units m), I is the identity matrix, µ0 = 4π ×10−7 N·A−2 is
the permeability of free space, and all vectors are expressed
in a common frame of reference [15].

The tumbling rig comprises two parts: the simulated RSO
(sRSO) and a support structure. The sRSO comprises a 75.9-
mm-diameter solid sphere of 2011-T3 aluminum mounted in
a plastic housing that is supported between two low-friction

(a) Robot with magnetic end-effector (right) acting on a solid
aluminum sphere held within a tumbling rig (left).

(b) Tumbling rig—comprising a support structure that allows for 1-
DOF rotation with low friction, and an optical encoder to measure
rotation—holding a solid aluminum sphere.

Fig. 1: Experimental apparatus.

plastic-and-glass rolling element bearings. The plastic hous-
ing surrounding the aluminum sphere is held together with
nylon screws. An incremental optical encoder disc with 45
windows is attached to the sRSO. The support structure
suspends the bearings in two Delrin® supports such that
the center of the aluminum sphere is 180 mm away from
any conductive material, excluding the minuscule amount
of conductive material present in the encoder. The sensing
portion of the incremental optical encoder is rigidly mounted
to the support structure, and it contains two photointerruptors
whose signals are routed through LM393 comparators so
that the encoder can be read by a Sensoray s826 DAQ
card operating in QUADX4 mode. One photointerruptor is
mounted on dovetail ways so that the separation between the
two photointerruptors can be finely adjusted to ensure proper
quadrature encoding. In such a configuration there are 180
encoder counts for each revolution of the sRSO. The optical
encoder is used as the input to a Kalman filter to estimate
the angular velocity and angular acceleration, as described
in Appendix I.
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B. Procedure

1) Collecting Experimental Data: To characterize the
effect of rotating and static MD fields on detumbling the
sRSO, the following procedure was implemented. First, the
sRSO was brought to an initial angular velocity of ω = 6 Hz,
using the magnetic end-effector placed in close proximity.
Once the target initial angular velocity was reached, the
end-effector was pulled away. Next, the permanent magnet
was either commanded to rotate with some desired angular
velocity ωm := ∥ωm∥, or to hold stationary with a desired
dipole direction m̂. Then, the magnetic end-effector was
placed in the desired configuration with respect to the sRSO:
at a separation distance between the center of the sRSO and
the center of the permanent magnet of ∥ρ∥= 160 mm, with ρ
orthogonal to, and with ωm parallel with, the rotation axis of
the tumbling rig. The angle of the sRSO was then recorded
by the optical encoder until the sRSO came to rest. Each
such experiment was repeated for a total of five trials for
each set of experimental parameters. We considered six non-
zero values of ωm, as well as two stationary configurations
(i.e., ωm = 0) with unique dipole directions: one in which
the dipole points at the sRSO (m̂∥ρ), and one in which the
dipole is perpendicular to ρ (m̂⊥ ρ).

Additionally, the behavior of the tumbling rig with no
applied magnetic field was recorded in the same manner. A
complete description of the process by which the friction in
the tumbling rig was characterized is given in Appendix II.

In postprocessing, the angular data was used to estimate
the remaining two states of the sRSO according to the pro-
cedure in Appendix I. For each experimental configuration,
the mean and its 95% confidence interval across the five
trials were computed for each of the sRSO’s three states.
To account for transient errors due to initialization of our
Kalman filter, we trimmed all of the data such that ω =
5.57 Hz was viewed as the common initial angular velocity
of all trials, which then defined the start of a trial.

2) Estimation of Behavior in Space: The procedure in
Section II-B.1 accurately captures the behavior of the sRSO
as it is detumbled on Earth while suspended by bearings
in the tumbling rig. However, we wish to understand the
behavior of the sRSO as if it were in the microgravity
environment of space, i.e., as if there were no friction due
to the bearings or drag due to air. To achieve this, we first
assumed that, in the region in which we are operating, the
acceleration due to friction in the tumbling rig, α f , can
be approximated by a nonlinear, velocity-dependent three-
parameter model:

α f (ω) =−γ0sgn(ω)− γ1ω − γ2|ω|ω (2)

The parameters of this model, γi, were identified by the
procedure described in Appendix II. We then subtracted the
portion of the acceleration of the sRSO due to friction from
the total acceleration of the sRSO to reveal the acceleration
that is due purely to the torque induced by the externally
applied magnetic field, αmag:

αmag(ω) = α(ω)−α f (ω) (3)

where α(ω) is the total acceleration of the sRSO in the
tumbling rig. Finally, we numerically integrated αmag(ω)
from an initial condition of 5.57 Hz to yield our best estimate
of the angular velocity of the sRSO as a function of time if
it were detumbled by the same means, but instead in the
microgravity environment of space.

III. RESULTS

1) Experimental Results: The experimental results, as
described in Section II-B.1, are shown in Fig. 2a. Let us
first consider the performance of the static MD fields. We
see that in both magnet orientations, m̂∥ρ and m̂ ⊥ ρ, the
time taken to detumble the sRSO is less than the time taken
to detumble when no magnetic field is present, indicating that
the retarding torque induced by the combination of friction in
the tumbling rig and the static MD fields is greater than that
due to friction alone. We see that the time taken to detumble
the sRSO is shorter for the m̂∥ρ configuration than it is for
the m̂⊥ ρ configuration.

Next, let us consider the results with the rotating MD
fields. For all values of ωm, the combination of the retarding
torque induced by the rotating MD fields and by friction in
the tumbling rig exceeds that due to friction in the tumbling
rig alone, resulting in a shorter time-to-detumble than would
occur without a magnetic field present. When ωm = 0.5 Hz,
the time-to-detumble due to the rotating MD field is shorter
than the time-to-detumble due to the static MD field with
m̂ ⊥ ρ, but longer than the time-to-detumble due to the
static MD field with m̂∥ρ. When ωm = 3.5 Hz, the sRSO
decelerations due to the rotating MD field and the static MD
field with m̂∥ρ are initially approximately equal, but they
gradually diverge as the sRSO’s angular velocity decreases,
with the rotating MD field providing greater decelerations
at low values of ω , resulting in a shorter time-to-detumble.
When ωm > 3.5 Hz, a rotating MD field always outperforms
any static MD field at any value of ω . As ωm becomes
larger, we find that the deceleration becomes more constant,
resulting in ω(t) trajectories that appear more linear. As
the rotating MD field is rotated faster than ωm ≈ 30 Hz,
we find that an increase in ωm is not accompanied by
an appreciable decrease in the time-to-detumble, with the
detumbling behavior due to ωm = 30 Hz and ωm = 60 Hz
being almost indistinguishable from each other.

2) Estimated Results in Space: Finally, let us consider the
estimated detumbling results in the microgravity environment
of space, by correcting for friction in our tumbling rig as
described in Section II-B.2, which are shown in Fig. 2b.
We observe that the time-to-detumble is longer for every
experimental configuration, but not equally so. When there
is no applied magnetic field, the sRSO undergoes no de-
celeration, as we would expect. The times-to-detumble for
the ωm ≥ 30 Hz cases are only marginally longer than they
are in the original experimental data, whereas the times-
to-detumble for the ωm = 0.5 Hz case and both the static
MD field cases are substantially longer than in the original
experimental data. However, the trends noted in the original
experimental data are maintained in this corrected data.
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(a) Original experimental data.
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(b) Experimental data corrected to remove contribution of friction from the tumbling rig.

Fig. 2: Original and corrected experimental data of detumbling. Each curve shows the mean and its 95% confidence interval
calculated from five runs. The numerical values reported are for the specific configuration tested, but the trends will generalize.

IV. DISCUSSION

When the applied magnetic field is static (i.e., ωm = 0), the
only source of change in magnetic flux in each differential
element of the sRSO is the sRSO’s angular velocity, ω . As
ω decreases, so too does the time-rate-of-change in magnetic
flux, the resulting eddy currents, and the resulting sRSO
deceleration. This process results in the asymptotic decay of
the angular velocity of the sRSO, such that ω does not reach
zero in finite time—a result corroborated by the exponential
decay model proposed by Yongquist et al. [11]. Our corrected
results (Fig. 2b) using static MD fields also show these
characteristic exponential decays (with the exception of the
very end of the trials, at which point ω becomes very small
and the friction model for our tumbling rig seems to break
down, with stiction likely becoming dominant).

According to (1), for a given dipole m, at any given

distance, ∥ρ∥, the magnitude of the field, ∥b∥, has a maxi-
mum when ρ∥m, which is twice as large as the minimum
value, which occurs when ρ⊥m. Thus, in consideration of
Faraday’s law of induction, we should expect the currents
induced in the sRSO to be larger in the ρ∥m configuration
than in the ρ⊥m configuration; larger induced currents will
produce stronger induced torques as the currents interact with
the applied magnetic field, and consequently, will result in
greater sRSO deceleration. This is exactly the behavior that
we observe.

Unlike the exponential decay caused by static MD fields,
a rotating MD field causes the sRSO to detumble to zero
angular velocity in finite time. This is because a time-rate-
of-change in magnetic flux is caused by the rotation of
the field in addition to the rotation of the sRSO. Initially,
increasing the value of ωm results in a larger sRSO de-
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celerations. However, there appears to be an upper bound
on the achievable deceleration, as the times-to-detumble for
the ωm = 30 Hz and ωm = 60 Hz cases are nearly identical.
This may indicate that, under our experimental operating
parameters, the power-optimal value of ωm for minimum-
time detumbling lies somewhere near ωm ≈ 30 Hz.

We find that a very slowly rotating MD field (i.e., ωm =
0.5 Hz) outperforms a static MD field in the worst-case
orientation, ρ ⊥ m, but underperforms a static MD field
in a best-case orientation, ρ∥m. This behavior is somewhat
expected, given that the sRSO experiences a time-averaged
field strength that is less than the field experienced when
ρ∥m but more than the field experienced when ρ ⊥ m.
However, we would still expect ωm = 0.5 Hz to result in
detumbling in finite time, so it is unclear why the corrected
data of Fig. 2b appears more like an exponential decay. This
is left as an open question.

For high values of ωm (i.e., ωm > 15 Hz), the contribution
of the angular velocity of the sRSO to its deceleration
appears to be negligible, as the slope of the curves in Fig. 2b
are nearly constant in time. However, for smaller values of
ωm—i.e., those for which ωm and ω are of the same order
of magnitude—we see that the contribution of the angular
velocity of the sRSO to its deceleration is greater when ω is
high, and decreases with decreasing ω , resulting in smaller
sRSO decelerations that are due primarily to the contribution
from the rotating MD field.

Finally, although we expect the trends in this study to
hold generally, the quantitative values reported here should
not be assumed to extrapolate to other configurations (i.e.,
other objects, MD strengths, and distances between the object
and the MD). A complete characterization of detumbling
using a rotating MD field should be recast using dimensional
analysis, such that the underlying physics can be expressed
in a dimensionless fashion; this is left as an open problem.
However, we anticipate that the scaling analysis would be
similar to the dimensionless results from Pham et al. [12],
which characterized induced force and torque on quasistatic
objects due to rotating MD fields. For example, Pham et
al. [12] found that magnetic torque scales with nondimen-
sional distance ∝ (∥ρ∥/r)−6, where r is the radius of the
spherical sRSO; we would expect that induced deceleration
during detumbling would scale similarly.

APPENDIX I
STATE ESTIMATION

We can construct a discrete-time state-space model of the
sRSO, with sampling period T , in which the three states are
the angle θ , angular velocity ω , and angular acceleration α ,
the exogenous input is the angular jerk η generated by the
magnet (as well as by friction in our experimental device)
on the sRSO, which is unknown to us and assumed to be
constant from sample i to sample i+1:θi+1

ωi+1
αi+1

=

1 T T 2/2
0 1 T
0 0 1

θi
ωi
αi

+

T 3/6
T 2/2

T

ηi (4)

Our goal is to estimate the sRSO’s states throughout time,
using data gathered by the incremental optical encoder on the
tumbling rig. To accomplish this, we implement a Kalman
filter. The Kalman filter assumes a discrete-time state-space
model of the form

xi+1 = Adxi +Bdui +w (5)
yi = Cdxi +Ddui +v (6)

where w ∼ N (0,W) and v ∼ N (0,V) are zero-mean
gaussian noise terms on the state updates and sensor updates,
respectively [16]. W and V are positive-definite symmetric
covariance matrices that encode the process model’s and the
observation model’s noise levels, respectively. In our case,
the incremental optical encoder is modeled as

yi =
[
1 0 0

]θi
ωi
αi

+
[
0
]

ηi +v (7)

It is easy to verify that the system is observable given Ad and
Cd [17], so we may proceed with the design of the Kalman
filter. At each discrete-time update, the Kalman filter moves
forward in time to generate estimates of the states:

x̃i+1|i = Adx̃i|i +Bdui (8)

Pi+1|i = AdPi|iAT
d +W (9)

Ki+1 = Pi+1|iCT (CPi+1|iCT +V)−1 (10)

x̃i+1|i+1 = x̃i+1|i +Ki+1(yi+1 −Cx̃i+1|i −Dui+1) (11)

Pi+1|i+1 = Pi+1|i −Ki+1CPi+1|i (12)

Since we have no way to know the input, ηi, we simply
assume η = 0 for all time. This is equivalent to an assump-
tion that α changes relatively slowly, which is likely to be
an accurate assumption except for at the very beginning of
a detumbling run (at which point we expect an approximate
step change in acceleration).

The observation noise was quantified by computing the
residual error between the quantized signal that would be
reported by the encoder and the actual angle of a theoretical
sRSO tumbling at a constant speed that is slow relative to
the encoder’s sampling rate, which was concatenated into a
1×NV array V , from which we compute:

V=
1

NV
VV T (13)

To estimate the process-noise matrix W, the three diagonal
terms were first manually tuned during postprocessing of
data from a pilot study such that the estimated angle of the
sRSO, θ , largely overlapped the encoder-measured angle.
This initial Kalman filter was used to complete the process
described in Appendix II, such that an initial model of the
friction in the tumbling rig could be obtained. This model
was then used in a numerical simulation of an sRSO starting
from an initial condition of 6 Hz and whose only acceleration
was that due to friction to create a time-series of state data,
xsim. Next, state updates from the process model in (8) were
computed at each x̃i|i =xsim,i. This enabled us to compute an
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TABLE I: Nominal System Parameters

Parameter Value
γ0 0.638 rad·s−2

γ1 5.41×10−3 s−1

γ2 1.21×10−5 rad−1

error between the process update, x̃i+1|i−x̃i|i, and the ground
truth state update, xsim,i+1 − xsim,i. There were NW such
computations, which were concatenated into a 3×NW matrix
W such that the process-noise covariance matrix, W, could
be computed in a manner analogous to (13). The resulting
W was used in the Kalman filter used in the experimental
results of Fig. 2, as well as the final friction model of Table I
and Fig. 3.

APPENDIX II
CHARACTERIZATION OF THE TUMBLING RIG

To identify the nominal system parameters γi of (2), five
trials were performed in which the sRSO started with an
initial angular velocity of 6Hz and was allowed to spin freely
until coming to a rest. The system states were estimated
and recorded using the procedure in Appendix I. The state
estimator has transient behavior at initialization that produces
data at the beginning of the trials that is not physically real-
istic. The data corresponding to this behavior were removed
from each trial. The full data from the five trials are shown in
Figs. 3a and 3b. The truncated data are shown in Fig. 3c, as is
the fit of (2) found with the Levenberg-Marquardt algorithm.
The model parameters for (2) are provided in Table I.
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