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Dexterous magnetic manipulation of 
conductive non-magnetic objects
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Dexterous magnetic manipulation of ferromagnetic objects is well established, with 
three to six degrees of freedom possible depending on object geometry1. There are 
objects for which non-contact dexterous manipulation is desirable that do not 
contain an appreciable amount of ferromagnetic material but do contain electrically 
conductive material. Time-varying magnetic fields generate eddy currents in 
conductive materials2–4, with resulting forces and torques due to the interaction of the 
eddy currents with the magnetic field. This phenomenon has previously been used to 
induce drag to reduce the motion of objects as they pass through a static field5–8, or to 
apply force on an object in a single direction using a dynamic field9–11, but has not been 
used to perform the type of dexterous manipulation of conductive objects that has 
been demonstrated with ferromagnetic objects. Here we show that manipulation, 
with six degrees of freedom, of conductive objects is possible by using multiple 
rotating magnetic dipole fields. Using dimensional analysis12, combined with 
multiphysics numerical simulations and experimental verification, we characterize 
the forces and torques generated on a conductive sphere in a rotating magnetic 
dipole field. With the resulting model, we perform dexterous manipulation in 
simulations and physical experiments.

Magnetic manipulation has the benefit of being contactless, which 
is particularly attractive when there is a risk of destructive collision 
between the manipulator and target. Such is the case with space 
debris13,14, a considerable problem facing humanity owing to the Kes-
sler syndrome15. Most artificial space objects are fabricated primarily 
from aluminium16, a non-magnetic but conductive material on which 
forces and torques can be generated by inducing eddy currents. The 
most commonly proposed application of this phenomenon is detum-
bling satellites by applying a static magnetic field to a rotating target. 
There exist numerical solutions for induced forces and/or torques on 
spinning solid and thin-walled spheres in uniform and non-uniform 
magnetic fields5–7. An alternative method of detumbling satellites uses 
rotating Halbach arrays near the target10. Rotating Halbach arrays have 
also been proposed as a means of traversing the exterior of the Inter-
national Space Station (modelled as an infinite flat plate) using forces 
induced by eddy currents9. This technique is similar to that used in 
eddy-current separation of non-magnetic materials11. Methods based 
on eddy currents are distinct from those based on diamagnetism17 or 
ferrofluid environments18, neither of which are applicable to manipula-
tion of objects at a distance.

Here we show that dexterous manipulation of conductive objects 
is achievable using multiple static (in position) magnetic dipole-field 
sources capable of continuous dipole rotation about arbitrary axes. We 
demonstrate manipulation with six degrees of freedom (6-DOF manip-
ulation) in numerical microgravity simulations and 3-DOF manipula-
tion in experimental microgravity simulations. This manipulation does 

not rely on dynamic motion of the conductive object itself; rather, the 
manipulation can be performed quasistatically. Both electromag-
net and permanent-magnet devices have been developed to serve 
as field sources capable of generating continuously rotating mag-
netic dipole fields about arbitrary axes19,20. Rotating magnetic dipole 
fields have been used previously to remotely actuate ferromagnetic 
devices that transduce the resulting magnetic torque into some form 
of rotational motion, such as micromachines and magnetic capsule  
endoscopes1.

To make our problem tractable, we explicitly consider conductive 
spheres, which can serve as first-order approximations for other 
geometries. Furthermore, we characterize those spheres in three 
canonical positions relative to a rotating magnetic dipole, as depicted 
in Fig. 1. Using cylindrical coordinates, the z-axis aligns with the 
angular-velocity vector ω of the rotating dipole, with the dipole always 
orthogonal to that vector. We consider positions in the ±z axial direc-
tions and the radial direction ρ. When using a magnetic dipole-field 
source capable of dipole rotation about arbitrary axes, any given 
position can be transformed into each of these canonical positions 
through the choice of the dipole rotation axis. The magnetic dipole 
can be abstracted as a point dipole m (units A m2) at position Pm, which 
generates a magnetic field vector b (units T) at each position bP  in 
space:
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where = −P Pd b m is the relative displacement vector (units m), I is the 
identity matrix, μ0 = 4π × 10−7 N A−2 is the permeability of free space, 
and all vectors are expressed in a common frame of reference1.

We begin by characterizing the steady-state time-averaged forces 
and torques, in each of the canonical positions, as a function of the 
six independent variables enumerated in Table 1. These quantities 
collectively comprise four dimensions: N, m, s and A. The Buckingham 
Π theorem tells us that the underlying physics describing each of the 
two dependent variables, force and torque, can be characterized using 
just three dimensionless Π groups12, with Π0 expressed as a function 
of Π1 and Π2 (see Table 1 and Supplementary Information 1). The Buck-
ingham Π theorem does not tell us anything about the form of these 
equations; that requires empirical characterization.

To derive functions that characterize eddy-current-induced forces 
and torques at ±z and ρ, we conducted electromagnetic finite-element-
analysis (FEA) simulations using Ansys Maxwell software across a  
range of parameters (see Fig. 2a and Supplementary Information 2). 
It is from this FEA that we determined the non-negligible force and 
torque components shown in Fig. 1. We confirmed the expected  
symmetry of the ±z configurations, in which the force acts to push  
the sphere away from the rotating dipole, and the torque acts to rotate 
the sphere in the same direction as ω. At the ρ configuration, one  
component of the force pushes the sphere away from the rotating 
dipole, another component of the force pushes the sphere in the 
i i iˆ = ˆ × ˆ

ϕ z ρ direction, and the torque acts to rotate the sphere opposite 
to ω.

When visualizing the resulting non-dimensional Π groups (see 
Fig. 2b and Supplementary Information 3), we observed that at rela-
tively far distances (Π2 > 1.5, approximately), the relationship between 
log10(Π0) and log10(Π2), for a given Π1, is accurately described by a linear 
model, with a slope of −6 for torques and −7 for forces (these values 
are analogous to what is expected from magnetic torques and forces 
imparted by a magnetic dipole on a soft-magnetic object), and with 
an intercept that is a function of Π1. The final unified model is of the  
form

Π
c Π

Π
=

( ) 10
(2)

c Π c

c0
0 1

2

c
1 1 2 3

4

The model coefficients c1 to c4, determined through least-squares 
regression, are provided for ‘FEA’ in Supplementary Table  2 

of Supplementary Information 3. This model, although empirically 
determined, is well behaved in the sense that Π0 → 0 (that is, f → 0 or 
τ → 0) as Π1 → 0 (for example, as ω → 0 or σ → 0) or as Π2 → ∞ (for example, 
as d → ∞), as expected from first principles. At relatively close distances, 
this model underpredicts the data, making the model conservative.

Next, we experimentally verified the model described above with 
an experimental set-up comprising a cubic NdFeB permanent magnet 
rotated by a direct-current (d.c.) motor, a solid copper sphere mounted 
on a 6-DOF force-torque sensor, and a 3D-printed pegboard that enables 
the copper sphere to be placed in the three configurations of interest 
(see Fig. 2c and Supplementary Information 4). A sample of the resulting 
data with regression models is presented in Fig. 2d. Using the complete 
experimental data set, we fit the model of equation 2, with the resulting 
coefficients provided under ‘Experiments’ in Supplementary Table 2 
of Supplementary Information 3.

As we compare the experimental and FEA results across configura-
tions and force-torque components, we find good agreement in the 
overall trends. The FEA-based model tends to overpredict the experi-
mental values of Π0 by a factor of 1.5–5.5. This discrepancy could be due 
to impurities in the copper sphere or from using a cubic permanent 
magnet. However, field distortions from a cubic magnet relative to a 
point-dipole model are typically less than 5% in our region of implemen-
tation21. It has also been previously noted that Ansys Maxwell tends to 
overpredict experimental results in similar situations10. Considering 
these factors, we suggest using the experiment-based model as a lower 
bound and the FEA-based model as an upper bound for Π0. Extrapolat-
ing the model beyond the values of Π1 and Π2 considered should be 
done with caution.

We now describe a framework for using the force-torque model 
developed above to perform dexterous manipulation with 
magnetic-dipole sources surrounding the conductive object of inter-
est. This can take the form of stationary or mobile permanent magnets 
or electromagnets. Here, we focus exclusively on the case of stationary 
electromagnets, in which both m and ω can be controlled, but with 
their respective maximum values coupled due to the low-pass-filtering 
effect of induction. We treat m and the direction of ω as the control 
variables and simply use a constant angular-velocity magnitude ω. We 
assume n electromagnetic dipole-field sources, with the ith source 
located at position ieP  and having an orientation described by a rotation 
matrix wRei with respect to some world frame22. We assume a single 
conductive object located at position cP  and having an orientation 
described by wRc and a displacement vector d P P= −i ic e  with respect to 
each source.

To use the model in equation 2, we recast forces and torques in 
the forms f = Π0r−4μ0m2 and τ = Π0r−3μ0m2, respectively. Each source 
is given a model frame, described by a relative rotation matrix eiRmi, 
defined such that its z-axis is parallel to di. In the ±z configurations, 
ω is parallel or antiparallel to the model-frame z-axis, and in the 
ρ configuration ω is any vector orthogonal to the z-axis, with the 
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Fig. 1 | Induced forces and torques on a conductive sphere in three 
canonical positions relative to a rotating magnetic dipole. The dipole is 
spinning with angular velocity ω. Force and torque arrows are shown for all 
non-negligible components, with arrowheads depicting the actual directions 
corresponding to the ω shown.

Table 1 | Induced force and torque, and the six independent 
parameters that affect them

Parameter Units Π group

Force induced on sphere f N Π0 = fr4μ−1m−2

Torque induced on sphere τ N m Π0 = τr3μ−1m−2

Sphere electrical conductivity σ N−1 m−2 s A2 Π1 = σμωr2

Distance from dipole to sphere d m Π2 = dr−1

Sphere radius r m

Dipole strength m A m2

Frequency of dipole rotation ω s−1 (Hz)

Environment magnetic permeability μ N A−2
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ambiguity expressed as a rotation about the z-axis by some γ using a 
rotation matrix Rotz(γ). Each source then has three discrete actions 
(a ∈ {1, 2, 3}, respectively) that can be performed on the conductive 
object, where each action is a specific force-torque wrench with a 
controllable magnitude:
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where wRmi = wRei
eiRmi and the tilde operator (~) indicates the respective 

force-torque value when m = 1.
With n sources, there are 3n possible actions, with m and γ as the 

control variables in general. Analogous to magnetic manipulation 
of soft-magnetic objects, superposition does not apply here, so we 
implement these actions one at a time, for a brief duration of time. To 
get as close as possible to the desired wrench, we solve the following 
constrained optimization problem:
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where the Q-norm enables relative weighting between force and torque 
(that is, relative penalties on position error versus orientation error). 
We efficiently find the optimal inputs using a parallelized, gradient-
based solver.

We first validated our manipulation framework in a numerical  
simulation of microgravity in which six dipole-field sources surround 
and dexterously manipulate a copper sphere (see Supplementary 

Information 6). We performed 3-DOF position control, with and with-
out 3-DOF orientation control (see Fig. 3a–d). Experimental valida-
tion was then performed using Omnimagnets19, which are designed 
to serve as approximate dipole-field sources, each comprising three 
co-located and mutually orthogonal electromagnets. A copper sphere 
floated in a raft in a container of water above four Omnimagnets (see 
Fig. 3e and Supplementary Information 7), serving as an Earth-based 
microgravity simulator with 3-DOF mobility in a horizontal plane. We 
performed 2-DOF position control, with and without 1-DOF orientation 
control (see Fig. 3f, g).

With our proposed method, 6-DOF manipulation of conductive 
non-magnetic spheres is achievable. In contrast, 6-DOF manipula-
tion of ferromagnetic objects is only possible for complex geom-
etries23, with 5-DOF typical of most simple geometries and only 
3-DOF achievable for soft-magnetic spheres1. The forces and tor-
ques generated using the proposed method are likely to be orders 
of magnitude smaller than those generated using ferromagnetism 
with comparable parameters, as indicated by the relatively slow 
manipulation demonstrations of Fig. 3, but they enable manipulation 
of objects that ferromagnetic methods do not (further discussion 
in Supplementary Information 8).

Manipulation with six DOF of ferromagnetic objects can be accom-
plished using eight static electromagnets24,25, or eight permanent 
magnets at fixed positions with each having the ability to rotate 
about an axis orthogonal to its dipole axis26. Our numerical simula-
tions showed that six rotating-dipole sources is sufficient for 6-DOF 
manipulation of conductive spheres; however, this number should 
not be assumed to be necessary. Since all wrenches have a repulsive 
force component, when manipulating an unconstrained object, the 
sources must surround the object to some degree. Analysing the 
manipulability of different numbers and arrangements of sources is 
left as an open problem.

In terms of modelling, thus far we have only considered solid 
spheres. A natural next step would be to consider hollow spheres and 
other simple geometric objects (such as cuboids or cylinders), which 
is likely to require more complicated models. It is unclear whether 
the best approach will be to explicitly model these objects or whether 
the sphere model can be used in conjunction with learning-based 
approaches for control. Although we have shown that a simplified 
approach using canonical positions and actuating one dipole-field 
source at a time is sufficient to perform dexterous manipulation, 
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it is probably suboptimal. A general wrench model for arbitrary 
sphere positions relative to the rotating dipole, and understand-
ing the nonlinear nature of superposition, are both left as open  
problems.

Online content
Any methods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-021-03966-6.

1. Abbott, J. J., Diller, E. & Petruska, A. J. Magnetic methods in robotics. Annu. Rev. Control 
Robot. Auton. Syst. 3, 57–90 (2020).

2. Hertz, H. Miscellaneous Papers Chapter 2 [transl. Jones, D. E. & Schott, G. A.] (Macmillan, 
1896).

3. Griffiths, D. J. Introduction to Electrodynamics 4th edition (Cambridge Univ. Press, 
2017).

4. Nagel, J. R. Induced eddy currents in simple conductive geometries: mathematical 
formalism describes the excitation of electrical eddy currents in a time-varying magnetic 
field. IEEE Antennas Propag. Mag. 3, 81–88 (2018).

5. Youngquist, R. C., Nurge, M. A., Starr, S. O., Leve, F. A. & Peck, M. A. A slowly rotating 
hollow sphere in a magnetic field: first steps to de-spin a space object. Am. J. Phys. 84, 
181–191 (2016).

6. Nurge, M. A., Youngquist, R. C. & Starr, S. O. A thick-walled sphere rotating in a uniform 
magnetic field: the next step to de-spin a space object. Am. J. Phys. 85, 596–610 
(2017).

7. Nurge, M. A., Youngquist, R. C. & Starr, S. O. Drag and lift forces between a rotating 
conductive sphere and a cylinderical magnet. Am. J. Phys. 86, 443–452 (2018).

8. Sharma, K. K. et al. Space debris reduction using eddy currents. In 2018 Atmospheric 
Flight Mechanics Conf., 3161 (American Institute of Aeronautics and Astronautics, 2018).

9. Reinhardt, B. Z. & Peck, M. A. New electromagnetic actuator for on-orbit inspection.  
J. Spacecraft Rockets 53, 241–248 (2016).

10. Liu, X., Lu, Y., Zhou, Y. & Yin, Y. Prospects of using a permanent mangetic end effector 
to despin and detumble an uncooperative target. Adv. Space Res. 61, 2147–2158 
(2018).

11. Smith, Y. R., Nagel, J. R. & Rajamani, R. K. Eddy current seperation for recovery of 
non-ferrous metallic particles: a comprehensive review. Miner. Eng. 133, 149–159 
(2019).

12. Buckingham, E. On physically similar systems; illustrations of the use of dimensional 
equations. Phys. Rev. 4, 345 (1914).

13. Shan, M., Guo, J. & Gill, E. Review and comparison of active space debris capturing and 
removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016).

14. Mark, C. P. & Kamath, S. Review of active space debris removal methods. Space Policy 47, 
194–206 (2019).

15. Kessler, D. J., Johnson, N. L., Liou J. C. & Matney, M. The Kessler syndrome: implications to 
future space operations. Adv. Astronaut. Sci. 137, AAS 10-016 (2010).

16. Opiela, J. N. A study of the material density distribution of space debris. Adv. Space Res. 
43, 1058–1064 (2009).

17. Pelrine, R. et al. Diamagnetically levitated robots: an approach to massively parallel 
robotic systems with unusual motion properties. IEEE Int. Conf. Robotics and Automation, 
739–744 (2012).

18. Mirica, K. A., Ilievski, F., Ellerbee, A. K., Shevkoplyas, S. S. & Whitesides, G. M. Using 
magnetic levitation for three dimensional self-assembly. Adv. Mater. 23, 4134–4140 
(2011).

0 min 4 min 8 min 20 min

4 min 12 min 40 min0 min

Omnimagnets

Raft with 
sphere inside

Tank of 
water

Fiducial
marker

O
rientation (rad

)

P
os

iti
on

 (m
)

O
rientation (rad

)

15 min 30 min 45 min

x y z z
Position Orientation

x y

Time (min)

Time (min)

0

15 min 30 min 45 min

–0.05

0

0.05

0

–0.05

0

0.05

0

–

–

c

e f

g

P
os

iti
on

 (m
)

a b

d

40302010

0 40302010

Fig. 3 | Dexterous manipulation of a copper sphere in simulated 
microgravity. See Supplementary Videos 1–4. a, b, Numerical simulation with 
3-DOF position control along the edges of a cube (the black line is the path 
taken) and uncontrolled orientation using six dipole field sources (brown 
cubes, with the highlighted cube indicating the active source at the given 
instant; a), with the resulting 6-DOF pose (b). c, d, Numerical simulation with 

6-DOF position and constant-orientation control (c), with the resulting 6-DOF 
pose (d). e, Experimental set-up with a copper sphere in a raft on water over 
four Omnimagnets. f, Experiments with 2-DOF position control along the edges 
of a square and uncontrolled orientation (the yellow line is the path taken, and 
red arrows depict the orientation). g, Experiments with 2-DOF position control 
and 1-DOF orientation control, with sharp turns at the corners.

https://doi.org/10.1038/s41586-021-03966-6


Nature | Vol 598 | 21 October 2021 | 443

19. Petruska, A. J. & Abbott, J. J. Omnimagnet: an omnidirectional electromagnet  
for controlled dipole-field generation. IEEE Trans. Magn. 50, 8400410  
(2014).

20. Wright, S. E., Mahoney, A. W., Popek, K. M. & Abbott, J. J. The spherical-actuator-magnet 
manipulator: a permanent-magnet robotic end-effector. IEEE Trans. Robot. 33, 1013–2924 
(2017).

21. Petruska, A. J. & Abbott, J. J. Optimal permanent-magnet geometries for dipole field 
approximation. IEEE Trans. Magn. 49, 811–819 (2013).

22. Lynch, K. M. & Park, F. C. Modern Robotics: Mechanics, Planning, and Control (Cambridge 
Univ. Press, 2017).

23. Diller, E., Giltinan, J., Lum, G. Z., Ye, Z. & Sitti, M. Six-degree-of-freedom magnetic 
actuation for wireless microrobotics. Int. J. Robot. Res. 35, 114–128 (2016).

24. Kummer, M. P. et al. OctoMag: an electromagnetic system for 5-DOF wireless 
micromanipulation. IEEE Trans. Robot. 26, 1006–1017 (2010).

25. Petruska, A. J. & Nelson, B. J. Minimum bounds on the number of electromagnets 
required for remote magnetic manipulation. IEEE Trans. Robot. 31, 714–722 (2015).

26. Ryan, P. & Diller, E. Magnetic actuation for full dexterity microrobotic control using 
rotating permanent magnets. IEEE Trans. Robot. 33, 1398–1409 (2017).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021



Article

Data availability
All data generated and scripts for analyses during this study are 
included in the published article and can be found using the follow-
ing link: https://osf.io/uk3rx/.

Acknowledgements This work was supported by the National Science Foundation under 
grants 1841845 and 1846341.

Author contributions J.J.A. and T.H. proposed the research. All authors participated in the 
planning of the article. L.N.P. and J.J.A. performed the dimensional analysis and designed the 
experiments to characterize force-torque. L.N.P. and J.L.B.A. performed the numerical 
simulations to characterize force-torque. G.F.T. and T.H. designed the numerical microgravity 
manipulation simulator and control scheme, and integrated the controller into the 

experimental manipulation system. L.N.P., G.F.T. and A.P. designed and performed the 
manipulation experiments. L.N.P., G.F.T. and J.J.A drafted the manuscript. All other authors 
performed a critical revision.

Competing interests J.J.A. has patents and patents pending on electromagnet and 
permanent-magnet devices designed to generate rotating magnetic dipole fields. The other 
authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-021-03966-6.
Correspondence and requests for materials should be addressed to Jake J. Abbott.
Peer review information Nature thanks Eric Diller and the other, anonymous, reviewer(s) for 
their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://osf.io/uk3rx/
https://doi.org/10.1038/s41586-021-03966-6
http://www.nature.com/reprints


Dexterous Magnetic Manipulation of Conductive1

Non-magnetic Objects: Supplementary Information2

Lan N. Pham∗, Griffin F. Tabor†, Ashkan Pourkand†, Jacob L. B. Aman‡,

Tucker Hermans†, and Jake J. Abbott∗

3

Contents4

1 Dimensional Analysis 25

2 Numerical Characterization of Force and Torque 46

3 Model Derivation 97

4 Experimental Verification of Force and Torque 138

5 Comparison of Numerical and Experimental Results 189

6 Manipulation Numerical Simulations 2010

7 Manipulation Experiments 2411

8 Discussion 3012

9 References 3413

∗Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA
†School of Computing, University of Utah, Salt Lake City, UT 84112, USA
‡Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

1



1 Dimensional Analysis14

When using the Buckingham Π theorem to characterize induced force f (units N) in a given canonical15

position, we first enumerate the independent variables that may affect force: the radius of the conductive16

sphere r (units m); the magnitude of the dipole m = ‖m‖ (units A·m2); the magnitude of the angular17

velocity of the dipole ω = ‖ω‖/(2π) (which we chose to represent in units Hz rather than units rad/s typical18

of ω); the permeability of the environment µ (units N·A−2); the distance from the dipole to the center of the19

conductive sphere d = ‖d‖ (units m), and the conductivity of the sphere σ (units S·m−1 = N−1· m−2·s·A2).20

Thus, there are seven parameters describing the problem (one dependent and six independent). These21

quantities collectively comprise four dimensions (m, N, s, A), as described in Table 1. The Buckingham Π22

theorem tells us that the number of parameters, 7, minus the number of dimensions, 4, equals the number of23

dimensionless Π groups, 3, that can be used to characterize the underlying physics of the system. Our choice24

of Π groups is provided in Table 1. These Π groups are not unique, but we can check that our proposed25

Π groups are valid by constructing two matrices. The first is a matrix A where each row corresponds to a26

dimension, each column corresponds to a parameter, and each element contains the power of the dimensions27

in the respective parameters. The second is a matrixB where the rows correspond to the parameters (ordered28

as in A), each column corresponds to a Π group, and each element contains the power of the parameters in29

the respective Π groups. A valid set of Π groups is one in which B has full column rank and AB is a zero30

matrix:31

A =

f r m ω µ d σ

m

N

s

A



0 1 2 0 0 1 −2

1 0 0 0 1 0 −1

0 0 0 −1 0 0 1

0 0 1 0 −2 0 2


, B =

Π0 Π1 Π2

f

r

m

ω

µ

d

σ



1 0 0

4 2 −1

−2 0 0

0 1 0

−1 1 0

0 0 1

0 1 0



(S1)

The process used for induced force is repeated for induced torque τ (units N·m), with changes only to32

2



column 1 of A and column 1 of B:33

A =

τ r m ω µ d σ

m

N

s

A



1 1 2 0 0 1 −2

1 0 0 0 1 0 −1

0 0 0 −1 0 0 1

0 0 1 0 −2 0 2


, B =

Π0 Π1 Π2

τ

r

m

ω

µ

d

σ



1 0 0

3 2 −1

−2 0 0

0 1 0

−1 1 0

0 0 1

0 1 0



(S2)

In the case of a permanent magnet, the dipole strength will be a product of the volume of the magnet34

and the average magnetization of the material. In the case of an electromagnet, the dipole strength will be35

a function of applied electrical current, and can often be modeled as linear with respect to current [1]. In36

both cases, the distance d is measured from the center of the magnet to the center of the conductive sphere.37

Although the magnetic permeability of the environment, µ, is an independent variable in general, in38

practice it will always be the permeability of free space, µ = µ0. If we were to consider special cases in39

which the interstitial space is filled with a magnetic material such as a ferrofluid [2], forces imparted by the40

environment would likely dominate the eddy-current-induced forces of interest here.41

The Buckingham Π theorem tells us that the maximum number of dimensionless terms that will be42

required to characterize the physics of our problem, but it does not necessarily tell us the minimum number.43

In some cases, dimensionless Π groups can be further combined to form new dimensionless groups. We44

hypothesized that it may be possible to express the dimensionless quantity Π0/Π1 as a function of a single45

dimensionless independent variable Π2.46

This hypothesis was derived from the hypothesis that both f and τ would be linear with respect to ω.47

However, during the numerical studies described in Supplementary Information 2, we determined that this48

hypothesis was not correct.49
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2 Numerical Characterization of Force and Torque50

In this section we describe how to setup the finite-element-analysis (FEA) program Ansys Electronics51

Desktop 2019 R2 Maxwell, in order to simulate the eddy-current-induced forces and torques on conductive52

copper and aluminum spheres due to a rotating magnetic dipole. The order described below is in the same53

order as they would appear in the “Project Manager”. Once the setup is performed for each configuration,54

force-torque data can be obtained by performing “Analysis All”. A total of 642 FEA simulations were55

performed for all parameters outlined in Table S1. Using these FEA simulations we determined the non-56

negligible force and torque components shown in Fig. 1.57

Solution Type: In order to perform transient analysis with a rotating dipole source, one has to go to58

“Maxwell 3D”, select “Solution Type” and choose “Transient”.59

3D Components: Using Coordinate System = Global, we modeled the magnetic dipole source as a spheri-60

cal NdFeB grade-N48 rare-earth magnet. When building the spherical magnet, it has the following model61

properties: Command = Create Sphere, Coordinate System = Global, Center Position = [0, 0, 0] (all model62

coordinates are provided in units of millimeters). The center of the sphere should be located at the center63

of the Global coordinate system. The material property for the spherical magnetic dipole has the following64

material properties: Relative Permeability µm/µ0 = 1.04, Bulk Conductivity σ = 714286 S/m, Magnetic65

Coercivity Hcm = 1055931 A/m (in Ansys this is entered as a negative value), Core Loss = None, Com-66

position = Solid, Mass Density = 7550 kg/m3, Young’s Modulus = Undefined, Poisson’s ratio = Undefined,67

and Thermal Modifier = None. The radius of the magnet was determined to achieve the desired dipole68

strength m, which is equal to the product of the remanent magnetization Mr and the volume of the sphere.69

The magnetization model used is depicted in Fig. S1. From this model, we see that we can compute70

Mr = Hcmµm/µ0. Also note that the default magnetization in Ansys is in the x direction.71

To enable the dipole-source rotation, a regular polyhedron was created surrounding the magnet with the72

following model properties: Coordinate = Global, Center Position = [0, -45, 0], Start Position [0, 0, 0], Axis73

= Y, Height = 90, and Number of Segments = 100.74

To model the conductive sphere, a new coordinate system was created, which enables all relative75

sphere components to move together and enables output force-torque values to be referenced relative to76

the conductive-sphere frame. The model for the conductive sphere has the following properties: Command77
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Copper: σ = 5.8× 107 S/m Aluminum: σ = 3.8× 107 S/m
m r ω d Π1 Π2 m r ω d Π1 Π2

(A·m2) (mm) (Hz) (mm) — — (A·m2) (mm) (Hz) (mm) — —
104 25 1 80 0.0456 3.20 208 40 1 100 0.0794 2.50

2.5 100 0.114 4.00 2 125 0.153 3.12
5 125 0.228 5.00 4 160 0.306 4.00

10 160 0.456 6.40 6 200 0.458 5.00
20 200 0.911 8.00 8 250 0.611 6.25
30 250 1.37 10.0 10 315 0.764 7.88
40 315 1.82 12.6 12 400 0.917 10.0
50 2.28 14 500 1.07 12.5
60 2.73 16 1.23
70 3.19 18 1.38
80 3.64 20 1.52
90 4.10
100 4.56

312 150 1 200 1.64 1.33 208 100 1 150 0.478 1.50
2 230 3.28 1.53 2 200 0.955 2.00
3 300 4.92 2.00 4 250 1.91 2.50
4 375 6.56 2.50 6 300 2.87 3.00
5 475 8.20 3.17 8 400 3.82 4.00
6 600 9.94 4.00 10 500 4.77 5.00
7 750 11.5 5.00 12 630 5.73 6.30
8 950 13.1 6.33 14 800 6.69 8.00
9 1200 14.8 8.00 16 1000 7.64 10.0

10 1500 16.4 18 1250 8.60 12.5
20 9.55

104 200 1 250 2.92 1.25 312 350 1 400 5.85 1.14
1.5 315 4.37 1.57 1.25 440 7.31 1.25
2 400 5.83 2.00 1.5 550 8.77 1.57

2.5 500 7.29 2.50 1.75 700 10.2 2.00
3 630 8.75 3.15 2 880 11.7 2.51

3.5 800 10.2 4.00 2.25 1100 13.2 3.14
4 1000 11.7 5.00 2.5 1400 14.6 4.00

4.5 1250 13.1 6.25 2.75 1750 16.1 5.00
5 1600 14.6 8.00 3 2200 17.5 6.29

5.5 2000 16.0 10.0 3.25 2780 19.0 7.94
6 2500 17.5 12.50 3.5 3500 20.5 10.00

4400 12.6

Table S1: Summary of FEA parameters for force and torque characterization. For each combination
of σ, m, and r, a set of ω were tested, and at each ω a set of d were tested. This resulted in a variety of
Π1 values, and at each Π1 value a variety of Π2 values. These same values were used for both the z and ρ
configurations.
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M

Hin

Mr

-Mr

-Hci

Brm=µ0Mr

-Hcm Hin

µm

Hci

B

-Hci

Hci

Figure S1: Magnetization model for permanent magnets used in Ansys Maxwell. Hin is the internal
field in the material (units A·m−1),Hci is the coersive internal field in the material (units A·m−1),Hcm is the
magnetic coersivity (units A·m−1),M is the magnetization (units A·m−1),Mr is the remanent magnetization
(units A·m−1), B is the flux density (units T), Br is the remanent flux density (units T), and µ0 is the
permeability of free space (units N·A−2 = T·m·A−1).
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= Create Sphere, Coordinate System = Sphere, Center Position = [0, 0, 0], and the desired radius. A con-78

ductive aluminum sphere has the following material properties: Relative Permeability = 1.000021, Bulk79

Conductivity = 38000000 S/m, Magnetic Coercivity = 0, Core Loss = None, Composition = Solid, Mass80

Density = 2689 kg/m3, Young Modulus = 69000000000, Poisson’s Ratio = 0.31, and Thermal Modifier =81

None. A conductive copper sphere has the following material properties: Relative Permeability = 1, Bulk82

Conductivity = 58000000 S/m, Magnetic Coercivity = 0, Core Loss = 0, Composition = Solid, Mass Density83

= 8933 kg/m3, Young’s Modulus = 120000000000, Poisson’s Ratio = 0.38, Thermal Modifier = None.84

A cubic box was created to surround the conductive sphere for refined meshing. The model has the85

following model properties: Command = Create Box, Coordinate System = Sphere, with position and86

dimension of the box set such that the box was centered on the conductive sphere and had a side length that87

is 1% larger than the diameter of the sphere. It has material property = air.88

Model: Dipole rotation is implemented by right selecting the polyhedron model and assigning a Band.89

This generates a “MotionSetup” option under Model, which one can use to configure the following motion90

parameters: Motion Type = Rotation, Coordinate System = Global, Axis = Y, Direction = Positive, Inital91

Position = 0 deg, Has Rotation Limit = unchecked, and Non Cylindrical = unchecked. Under the “Me-92

chanical” tab one can update the angular velocity to the desired frequency of rotation. This automatically93

generates a CylindericalGap mesh and the axis of the rotation vector must be along the same axis as the94

length of the polyhedron.95

Parameters: Output parameters are produced by right selecting the conductive sphere and creating param-96

eters for force, torque in x, torque in y, and torque in z, with respect to the conductive sphere coordinate97

system. A single force parameter will automatically produce outputs for all x, y, z directions. Depending on98

the relative placement of the conductive sphere to the dipole rotation axis, one can transform the Cartesian99

coordinates to our proposed cylindrical coordinate system.100

Mesh operations: When assigning Mesh parameters, one must first right select the object and then select101

“Assign Mesh Operation”. All mesh configurations have the following mesh properties: Type = Length102

Based, Region = Inside Selection, Enable = checked, Restrict Length = checked, and Restricted Max Elems103

= checked. Max Length and Max Elems are different for each object.104

The mesh for the spherical permanent magnet is the mesh for the polyhedron. The polyhedron has Max105

Length = 5 mm and Max Elements = 5000.106
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For the conductive sphere and its cubic box, the Max Length and Max Elems are scaled proportionally107

to the smallest sphere radius of 25 mm for consistent mesh properties across all conductive spheres. For108

the conductive sphere the Max Length = r/5 mm (where r is in units mm) and Max Elems = 4000r. The109

mesh for the cubic box of air is an additional mesh operation for the conductive sphere and has Max length110

= r/5 mm and Max Elems = 50000r.111

Analysis setup: The Analysis setup consists of Stop Time and Time Step for each FEA and are listed here112

with respect to ω = 1 Hz and Time Step = 1 ms. For conductive spheres with radii 25 mm and 40 mm the113

Stop Time = 2.5 s, for radii 100 mm and 150 mm the Stop Time = 4 s, and for radii 200 mm and 350 mm the114

Stop Time = 5 s. Larger spheres had longer Stop Time in order to allow the FEA to reach steady state. For115

all other values of ω, the Analysis Setup parameters were scaled proportional to each frequency in order to116

maintain the same number of data points and number of dipole rotations. For examples, for a conductive117

sphere with 25 mm radius, at ω = 2 Hz, values would be updated to Stop Time = 1.5 s and Time Step =118

0.5 ms.119

Results: Under “Results”, create two transients reports of rectangular plots for force and torque output on120

the conductive sphere. Data is saved for each time step of the FEA.121

Eddy-current configuration: To include the effects of eddy current on the conductive sphere, go to Maxwell122

3D, select Excitations, select Set Eddy Effects, and check the box for the conductive sphere.123

Model Parameters for Analysis: Once the setup is complete, one can perform “Analysis All” in order to124

start the FEA. While iterating through all parameters outlined in Table S1, FEAs were automated through125

the use of a Python script using ANSYS Maxwell “Automation”. The steady-state data was obtained by126

averaging the last dipole rotation.127
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3 Model Derivation128

When visualizing the resulting non-dimensional Π groups for the FEA data (see column 1 of Figs. S2129

and S3), we observed that at relatively far distances (Π2 > 1.5, approximately), the relationship between130

log10 (Π0) and log10 (Π2), for a given Π1, can be accurately described by a linear model of the form131

log10(Π0) = ξlog10(Π2) + ψ (S3)

where ξ is a slope and ψ is an intercept term in the log-log scale. We performed least-squares regression,132

using MATLAB’s 2020a Curve Fitting Toolbox, on each of the data sets corresponding to a specific value133

of Π1, including all data with Π2 > 1.5. We observed that the resulting slopes were very close to ξ = −6134

for both torques, and ξ = −7 for all three forces. Since these values are analogous to what is expected from135

magnetic torque and force imparted by a magnetic dipole on a soft-magnetic object—due to field strength136

and thus magnetization decaying as ∝ d−3, torque being the product of magnetization and field strength137

(i.e., ∝ d−3d−3 = d−6), and force being the product of magnetization and the spatial derivative of the field138

(i.e., ∝ d−3d−4 = d−7) [1]—we fixed those values and then redid the least-squares regression, using the139

following settings: “StartPoint” set to [−1] and “Upper” bound set to [0].140

We then determined that the intercept term could be described as a function of Π1 with four free param-141

eters, c0–c3 (see column 2 of Figs. S2 and S3):142

ψ = log10(c0Π1)c1Π1
c2 + c3 (S4)

This regression used “StartPoint” set to [0.5, 1, − 1, − 1] and “Lower” bound set to [0, 0, − inf, − inf].143

We let ξ = c4 to create a consistent naming convention. Finally, after substituting Eq. S4 into Eq. S3144

and taking the inverse logarithm of both sides of Eq. S3 we obtained the unified model given as Eq. 2.145

From this modeling, the coefficients for the FEA-based unified model derived from each of the non-zero146

forces and torques are provided under “Finite-element-analysis (FEA)” in Table S2. When calculating the147

error between the FEA-based model and the FEA data points, across all configurations and force-torque148

components, the median error is +0.04% and the interquartile range is [−3%, + 2%].149
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m = 312 A·m2, r = 350 mm, aluminum, 

m = 104 A·m2, r = 200 mm, copper,

m = 312 A·m2, r = 150 mm, copper,

m = 208 A·m2, r = 100 mm, aluminum,

m = 208 A·m2, r = 40 mm, aluminum,

m = 104 A·m2, r = 25 mm, copper,

= 5.841

= 2.921

= 1.641

= 0.4781

= 0.07941

= 0.04561

Unified modelIndividual linear models
log-log scale

Intercept of linear models
fit by log10(c0    )c1 c2 +c3

Figure S2: Far-field model fitting for FEA results in the ρ configuration. (Left) Linear models are fit
to log10(Π0) vs. log10(Π2) for individual Π1 values, with a slope of -7 for forces and -6 for torques, using
only results log10(Π2) > 0.2. For clarity, only the lowest ω value from each set of m, r, and σ are shown.
(Center) The resulting intercept values are fit with the model log10(c0Π1)c1Π1

c2 + c3, using the complete
set of Π1 values. (Right) The final unified far-field model projected on the original data.
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Figure S3: Far-field model fitting for FEA results in the z configuration. (Left) Linear models are fit
to log10(Π0) vs. log10(Π2) for individual Π1 values, with a slope of -7 for forces and -6 for torques, using
only results log10(Π2) > 0.2. For clarity, only the lowest ω value from each set of m, r, and σ are shown.
(Center) The resulting intercept values are fit with the model log10(c0Π1)c1Π1

c2 + c3, using the complete
set of Π1 values. (Right) The final unified far-field model projected on the original data.
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Finite-element-analysis (FEA)

f , τ
Coefficients

Adj. R2

c0 c1 c2 c3 c4
fzz 430 2.95 −0.101 −9.26 7 0.969
τzz 6840 3.00 −0.0986 −13.2 6 0.974

fρρ 266 2.60 −0.101 −7.65 7 0.981
fρφ 6040 3.45 −0.102 −14.3 7 0.963
τρz 8100 3.60 −0.0985 −15.7 6 0.928

Experimental

f , τ
Coefficients

Adj. R2

c0 c1 c2 c3 c4
fzz 467 2.81 −0.0969 −9.75 7 0.996
τzz 6900 3.35 −0.0990 −14.9 6 0.999

fρρ 282 3.20 −0.0980 −9.41 7 0.919
fρφ 5870 3.49 −0.0973 −14.6 7 0.997
τρz 8000 3.40 −0.0928 −15.0 6 0.999

Table S2: Model coefficients derived from FEA and experiments. Note, c4 was fixed based on pilot
studies. Only data with Π2 > 1.5 were used to derive the model and to compute the adjusted R2 values.

For all FEA simulations, the magnetic permeability of the environment, µ, was constant and equal to150

the permeability of free space, µ0 = 4π × 10−7 N·A−2. In theory, if Π1 and Π2 were kept constant while151

µ was varied, then the dimensional analysis would expect the same values for Π0. The results, however,152

are more complex because increasing µ effectively turns the environment from free space into a kind of153

ferrofluid. That ferrofluid environment would experience magnetic forces that would be imparted on the154

conductive sphere, and the resulting forces of the FEA simulation would be the summation of those forces155

and the eddy-current-induced forces of interest here. Consequently, we do not recommend attempting to156

apply our model to environments other than those with µ ≈ µ0.157
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4 Experimental Verification of Force and Torque158

Experimental verification was performed using the setup shown in Fig. 2c. It comprised a DC motor with a159

1200 count incremental optical encoder (#4751, Pololu) and a 19:1 gear reduction rotating a 51 mm cubic160

NdFeB grade-N42 permanent magnet (BY0Y0Y0, K&J Magnetics) with dipole strength of 138 A·m2, and161

a solid 25-mm-radius copper sphere mounted on top of a nonmagnetic 6-DOF force-torque sensor (Nano17162

Titanium, ATI Industrial Automation). The copper sphere and force-torque sensor were placed on a non-163

magnetic and nonconductive 3D-printed peg board with 10 mm spaced holes, which enabled the sphere to164

be placed along the desired z or ρ axes consistently. The pegboard was placed on a separate table from the165

motor to mitigate vibrations from the motor being picked up by the force-torque sensor. The center of the166

sphere and the center of the magnet were in the same horizontal plane.167

The force-torque sensor was calibrated for SI-8-0.05, in which Fx and Fy have a ±8 N range with168

1.466 mN resolution, Fz has a±14.1 N range with 8.241 mN resolution, and Tx, Ty, and Tz have a±50 N·mm169

range with 6.868 mN·mm resolution. Data was recorded using the sensor’s ATIDAQFT.net program with170

the sampling rate set to 1000 Hz.171

In the motor-magnet system, the magnet was fitted inside a 3D-printed housing, which was rigidly172

connected to a long aluminum shaft (supported by two pillow-block bearings), which was connected to the173

motor via a flexible shaft coupling. The closest face of the motor was 268 mm away from the center of174

the magnet, which mitigated interaction between the magnet and the motor and also mitigated influence of175

the motor’s magnetic field on the copper sphere. Both the copper sphere and motor systems were raised176

170 mm above the surface of each respective table to mitigate interactions between any ferrous or conductive177

material within the tables. The motor system was tightly clamped to the table to help minimize shaking due178

to the magnet rotating at high speeds.179

For the ρ configuration, the copper sphere was placed at distances (between the center of the sphere and180

the center of the magnet) in the range 90–150 mm, whereas the z configuration considered distances in the181

range 70–150 mm (see Tables S3 and S4).182

For each configuration (i.e., position and frequency), force-torque sensor data were collected, each183

comprising 25 s of data. Approximately the first 8 s of data was with the magnet static; this was used184

to remove any DC bias from the sensor. Next, the magnet was rotated at the desired frequency for the185
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remaining time period. The force-torque sensor experienced the effect of magnet rotation as an application186

of force and torque on the mounted copper sphere. In post-processing, a discrete-time implementation of a187

unit-DC-gain first-order low-pass filter with a time constant of 2 s was applied to the data. After the filter’s188

output had reached steady-state (i.e., after at least 10 s), the average force and torque values across 1 s were189

used to represent that data run. The methodology described above formed a single block of data. Such a190

block was repeated four more times, giving a total of five runs at each configuration.191

The largest forces and torques were produced when the dipole source was rotating at 8 Hz and when192

the copper sphere was at the shortest distance. In the ±z configuration the shortest distance is 70 mm with193

the largest force equaling 0.0773 N in the z direction and the largest torque equaling 0.0141 N·m in the z194

direction. In the ρ configuration the shortest distance is at 90 mm with the largest force equaling 0.1419 N195

in the φ direction and the largest torque equaling -0.0063 N·m in the z direction.196

All experimental data points are shown in Figs. S4 and S5. Note that at the largest distances (i.e.,197

largest Π2 values) and smallest rotation frequencies (i.e., smallest Π1 values) the forces measured are near198

the sensing resolution of the sensor, leading to a poor signal-to-noise ratio. Using the same procedure199

outlined in Supplementary Information 3, all experimental data points were used to derive the experimental-200

based model and corresponding adjusted R2 values provided under “Experimental” in Table S2. Using201

MATLAB’s Curve Fitting Toolbox, the regression used “StartPoint” set to the FEA-based coefficients,202

“Lower” bound set to [0, 0, -inf, -inf], and “Upper” bound set to [inf, inf, 0, inf]. When calculating the203

error between the experimental-based model and the experimental points, across all configurations and204

force-torque components, the median error is +0.03% and the interquartile range is [−1%, + 2%].205
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σ m r ω d Π1 Π2

(S/m) (A·m2) (m) (Hz) (mm) — —
Copper 138 25 4 70 0.182 2.8
5.8×107 5 80 0.228 3.2

6 90 0.273 3.6
7 100 0.319 4.0
8 110 0.365 4.4

120 4.8
130 5.2
140 5.6
150 6.0

Table S3: Summary of experimental parameters for force and torque characterization in the z con-
figuration. Keeping σ, m, and r fixed, a set of ω were tested, and at each ω a set of d were tested. This
resulted in five Π1 values, and at each Π1 value nine Π2 values.

σ m r ω d Π1 Π2

(S/m) (A·m2) (m) (Hz) (mm) — —
Copper 138 25 4 90 0.182 3.6
5.8×107 5 100 0.228 4.0

6 110 0.273 4.4
7 120 0.319 4.8
8 130 0.365 5.2

140 5.6
150 6.0

Table S4: Summary of experimental parameters for force and torque characterization for the ρ con-
figuration. Keeping σ, m, and r fixed, a set of ω were tested, and at each ω a set of d were tested. This
resulted in five Π1 values, and at each Π1 value seven Π2 values.

15



In
te

rc
ep

t v
al

ue
s

0.5 0.6 0.7
-7.5

-7

-6.5

-6

-5.5

-5

0.2 0.25 0.3 0.35
-2.65
-2.6

-2.55
-2.5

-2.45
-2.4

-2.35

0.5 0.6 0.7
-7.5

-7

-6.5

-6

-5.5

In
te

rc
ep

t v
al

ue
s

0.5 0.6 0.7

-9

-8

-7

-6

0.2 0.25 0.3 0.35

-3.3
-3.2
-3.1

-3
-2.9
-2.8

0.5 0.6 0.7

-9

-8

-7

-6fzz

zzτ

m = 138 A·m2, r = 25 mm, copper, 

m = 138 A·m2, r = 25 mm, copper,

m = 138 A·m2, r = 25 mm, copper,

m = 138 A·m2, r = 25 mm, copper,

m = 138 A·m2, r = 25 mm, copper, 
= 0.1821

= 0.2281

= 0.2731

= 0.3191

= 0.3651

Unified modelIndividual linear models
log-log scale

Intercept of linear models
fit by log10(c0    )c1 c2 +c3

Figure S4: Far-field model fitting for experimental results in the z configuration. (Left) Linear models
are fit to log10(Π0) vs. log10(Π2) for individual Π1 values, with a slope of -7 for forces and -6 for torques.
For clarity, only the lowest ω value from each set of m, r, and σ are shown. (Center) The resulting intercept
values are fit with the model log10(c0Π1)c1Π1

c2 + c3, using the complete set of Π1 values. (Right) The final
unified far-field model projected on the original data.
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Figure S5: Far-field model fitting for experimental results in the ρ configuration. (Left) Linear models
are fit to log10(Π0) vs. log10(Π2) for individual Π1 values, with a slope of -7 for forces and -6 for torques.
For clarity, only the lowest ω value from each set of m, r, and σ are shown. (Center) The resulting intercept
values are fit with the model log10(c0Π1)c1Π1

c2 + c3, using the complete set of Π1 values. (Right) The final
unified far-field model projected on the original data.
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5 Comparison of Numerical and Experimental Results206

Figure S6 shows a comparison of four items: (1) the experimental data, as described in Supplementary207

Information 4; (2) the model fit to the experimental data, as described in Supplementary Information 4;208

(3) the model fit to the FEA data set from Supplementary Information 2, as described in Supplementary209

Information 3; and (4) new FEA data at the same Π1 and Π2 values of the experimental data, which were210

not part of the model’s training set, although they still fall within the range of Π1 and Π2 values used to211

fit the model. The experimental data points and experimental-based model are in good agreement with212

each other. The FEA-based model shows agreement with the new FEA data for the ρ configuration, and213

overpredicts the new FEA data for the z-axis configurations. Such variances between individual data and214

the model is not unexpected, given the wide range of Π1 and Π2 values used for model fitting, as well as215

the variance in Π0 observed in Figs. S2 and S3. This variance will result in the FEA-based model over-216

and under-predicting FEA data for different system configurations. When comparing the FEA-based model217

and experiment-based models across all configurations and force-torque components, we see that the FEA-218

based model tends to over predict the experimental values of Π0 by a factor of 1.5–5.5. We also see that the219

FEA data tends to overpredict the experimental data in this experimental range, but by a lesser extent in the220

z-axis configurations.221
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Figure S6: Experimental results for all force and torque characterization with subset of experimental
data, experiment-based models, FEA-based models, and new FEA data not included in the training
set. For clarity only a subset of experimental data is shown (minimum and maximum frequencies tested,
corresponding to Π1 = 0.182 and Π1 = 0.364, respectively). a, z-axis configuration, fzz. b, z-axis
configuration, τzz. c, ρ configuration, fρρ. d, ρ configuration, fρφ. e, ρ configuration, τρz.
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6 Manipulation Numerical Simulations222

We constructed a computer-simulated environment to run 3D-pose (i.e., 6-DOF) object-manipulation exper-223

iments. This simulator enabled us to simulate an environment without gravity and gives the added benefit224

of letting us observe the state directly. We chose a somewhat-arbitrary sampling rate of 1 Hz based on the225

system’s relatively slow velocities and accelerations, so we can assume the object is relatively stationary226

with respect to the magnets over this time interval. Recall that our force-torque model was developed with227

stationary objects. We use standard rigid-body object dynamics to simulate the motion of the conductive228

object at 500 Hz (representing continuous-time, approximately) [3, 4]. We define cV and cω as the ve-229

locity and angular velocity, respectively, of the object with respect to the world frame, expressed in the230

conductive-object frame. We denote the skew-symmetric cross-product matrix derived from vector v as231

v× (such that for two vectors v1 and v2, v×1 v2 = v1 × v2). We denote the combined moment of inertia232

and mass matrix as I; in our case of a spherical object this reduces to a diagonal matrix, but the equations233

below and our approach hold for the general case.234

We now develop the continuous-time dynamic equations. The conductive object’s 6-DOF pose is rep-235

resented by the transformation matrix wTc. The time derivative of the object’s pose is described by236

wṪc = wTc

cω× cV

0 0

 (S5)

The continuous-time dynamics are governed by237

cω̇

cV̇

 = I−1

−cω× −cV ×

0 −cω×

I

cω

cV

 + I−1

cτ
cf

 (S6)

This can be interpreted as the object’s acceleration due to the gyroscopic and Coriolis forces summed with238

the object’s acceleration due to external forces and torques acting on the object (i.e., our magnetic control239

input).240

In order to numerically integrate these continuous-time dynamics, we must approximate them with the241

associated discrete-time equations for a small time-step dt. In the following equations we use cV [t] to index242
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V at time t written with respect to the conductive-object frame.243

wTc[t+ dt] = wTc[t] + wṪc[t]dt (S7)

244 cω

cV

 [t+ dt] =

cω

cV

 [t] +

cω̇

cV̇

 [t]dt (S8)

where the input accelerations are computed from Eq. S6.245

We constructed our trajectories by specifying a series of waypoint poses and associated target times to246

reach each waypoint. These points were then used to build time-parameterized cubic polynomials between247

the waypoints as a target trajectory. The waypoint poses were given as positions and Euler angles so we248

can construct six independent polynomials. The desired positions and Euler angles were then converted to249

a desired transformation matrix for use in our controller. Formally, the cubic polynomials are defined as250

x
ẋ

 [t] =

p3t3 + p2t
2 + p1t+ p0

3p3t
2 + 2p2t+ p1

 (S9)

where p3, p2, p1, and p0 are column vectors of length six representing the 3D pose of the conductive object.251

The constructed trajectory contains desired transformation matrices and velocity targets for each timestep.252

We tuned a proportional-derivative (PD) controller to produce the error-based forces and torques to track253

the desired trajectory in the simulation. Orientation errors were computed as the minimum rotation between254

current and desired orientations using the axis-angle representation. The PD controller produced the desired255

forces and torques to feed into our optimization from Eq. 4equation.0.4. We tuned the control gains to256

operate well in both the numerical simulations and the physical experiments described in Supplemental257

Information 7. The proportional gains were 5 × 10−3 N/m and 1 × 10−5 N·m/rad for position and angle,258

respectively, and the derivative gains were 5× 10−3 N·s/m and 1× 10−5 N·m·s/rad for velocity and angular259

velocity, respectively.260

Given a desired force-torque wrench, we leveraged our eddy-current-induced force-torque model and261

attempted to match the desired wrench as closely as possible, which we formalize in Eq. 4equation.0.4.262

We rotated the magnetic dipole at ω = 15 Hz in all simulations. Our force-torque model supports a single263

electromagnet dipole source actuating in one of three discrete actions. Thus, to solve this optimization,264
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we instantiated a separate continuous optimization problem for each discrete electromagnet-action combi-265

nation. For each such combination, we used the Adam optimizer [5] (although other solvers would also266

work) to find the best combination of continuous decision variables to minimize the weighted squared error267

between desired and achievable force-torque.268

Given our decision to use an unconstrained optimizer, we created box constraints on each bounded269

control variable α using the continuously differentiable sigmoid function270

α(β) =
αmax − αmin

1 + e−β
+ αmin (S10)

where β can take on any real number. For α = m, we use αmin = 0 and αmax = mmax = 40 A·m2. For271

α = θ, we use αmin = −π rad and αmax = π rad.272

To select the best discrete choice, we take the argument that minimizes the results over all of the inde-273

pendent continuous optimizations associated with the 3n possible electromagnet-action combinations.274

The weighting, encoded byQ, between different degrees of freedom in our cost function can be used to275

tune the optimization to prioritize specific dimensions. This weighting captures the units’ various scaling,276

the inertia in various axes resisting motion, the difference in scale between different waypoint dimensions,277

and the aggressiveness of the controller in different dimensions. We found that a weight of 1 in all force278

dimensions and a weight of 200 in all torque dimensions (with all off-diagonal elements set to 0) resulted279

in a reasonable (although somewhat arbitrary) balance between position and orientation error.280

The results of a typical 6-DOF manipulation simulation is shown in Figs. 3a–3d, as well as Supplemen-281

tal Videos 1 and 2. In this simulation, the initial position of the conductive sphere is aligned with the origin,282

and is commanded to move first to one corner of a cube and then along the edges of that cube, displaying283

controlled motion in each direction. The target time to reach each waypoint was set to 5 minutes of sim-284

ulated time, which we found to provide a reasonable trade-off between completion time and performance,285

although we make no claims of optimality. Over many trials, we found that the performance was fairly286

insensitive to the start and goal poses, provided they were sufficiently surrounded by the magnetic-dipole287

sources and given an adequate amount of time. Simulations were conducted first with 3-DOF position con-288

trol in which orientation was uncontrolled (with object tumbling resulting), and then with full 6-DOF pose289

control with orientation controlled to maintain a fixed orientation. The exact waypoints for the simulations290
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are provided in Table S5.291

Time (s) x (mm) y (mm) z (mm)
300 75 −75 −75
600 −75 −75 −75
900 −75 75 −75

1200 75 75 −75
1500 75 75 75
1800 −75 75 75
2100 −75 −75 75
2400 75 −75 75
2700 75 −75 −75

Table S5: Waypoints from manipulation simulations. The waypoints are used with Eq. S9 to construct
trajectories used for manipulation simulations.
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7 Manipulation Experiments292

Accurate Earth-based microgravity simulation is challenging. The characteristics of a true microgravity293

simulation are that it enable 6-DOF motion, that it be gravity-free or gravity-compensated, and that it294

be drag-free. A variety of Earth-based test environments are commonly used [6, 7]: the KC-135 “vomit295

comet” reduced-gravity aircraft; an air-bearing test facility; passive and active manipulator and gimbal296

combinations to counter gravity; and neutral buoyancy (e.g., a water tank). Each of these techniques has297

drawbacks. KC-135 provides a true microgravity simulation, but its cost and availability make its use298

prohibitive for academic research, and its short duration (20–30 s) make it of limited use for experiments299

with long time scales. Air-bearing test facilities only enable 3-DOF mobility in a horizontal plane (i.e.,300

2-DOF position, 1-DOF orientation). Both passive and active gravity compensation implicitly assume that301

the forces and torques being intentionally generated on the object are large compared to any unmodeled302

forces and torques and/or force-torque sensor noise. Neutral buoyancy in water adds significant drag that303

would not be present in space.304

For our manipulation experiments, we chose to use a raft floating on the surface of water (see Fig. 3e).305

This solution is effectively a hybrid of the air-bearing technique and the neutral-buoyancy technique, and in-306

herits the limitations of both. The tank of water was suspended above four identical omnidirectional electro-307

magnets referred to as Omnimagnets, which have been previously described [8], as the dipole sources. Each308

Omnimagnet comprises three mutually orthogonal nested coils with a spherical ferromagnetic core in the309

center, and was designed such that its field could be accurately modeled by the point-dipole equation even at310

relatively close distances. The coils were connected to individual current-drive amplifiers (AMC16A8, Ad-311

vanced Motion Control), with current and voltage limits of 8 A and 80 V, respectively. All of the amplifiers312

were connected in a parallel configuration to one power supply (PS16L80, Advanced Motion Control) with313

current and voltage limits of 10 A and 80 V, respectively. This limits the maximum dipole strength that can314

be achieved in every direction to 40 A·m2. The dipole’s strength and rotation frequency both have a direct315

relation to the induced force and torque. The dipole strength is linearly related to the current in the coils.316

Each coil’s inductance limits how rapidly the current can be changed, and therefore limits the maximum317

frequency of the dipole rotation for a given dipole strength. We found this maximum frequency empirically318

by mounting a 25-mm-radius copper sphere on an ATI Nano17 Titanium force-torque sensor and collecting319
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data at two representative locations near an Omnimagnet. Using the maximum dipole strength of 40 A·m2,320

frequencies between 1 Hz and 20 Hz were tested, with the peak force and torque observed at 15 Hz. Thus,321

we use a constant magnetic dipole rotation of ω = 15 Hz in all manipulation experiments.322

To calculate the necessary current to generate the required dipole, we used the linear approximation [9]:323

m = αI (S11)

where m is the dipole moment (units A·m2), I is the column vector of the corresponding coil currents324

(units A), and α = 7.00 m2 is a coefficient that was found via calibration by recording magnetic-field325

measurements well beyond the minimum bounding sphere of the Omnimagnet and fitting the data to the326

point-dipole model of Eq. 1equation.0.1.327

The centers of the Omnimagnets were placed on the corners of a 200 mm square in a horizontal plane,328

fixed using a 3D-printed jig. A camera (Grasshopper3, FLIR) operating at 20 Hz was rigidly mounted329

centered above the tank. A 20-mm-radius copper sphere was placed in the center of a 3D-printed cylindrical330

flat-bottom raft, which floated on the surface of the water, such that the center of the copper sphere was331

150 mm above the plane of the Omnimagnets. An ArUco marker used for camera-based tracking was332

placed on top of the raft [10], which enabled pose estimates at 20 Hz. A univariate spline in each DOF333

was fit to the 1000 most recent pose detections (i.e., the past 50 s) [11], and these splines were used to get334

smoothed velocity estimates.335

Five trials were performed for each of the two distinct experiments. In both experiments, the raft (i.e.,336

the copper sphere) was commanded to move along a 150 mm square with 2-DOF position control. In one337

experiment, the orientation was not controlled, with the raft being allowed to freely rotate about the vertical338

axis. In the other experiment, the rotation about the vertical axis was also controlled, for a total of 3-DOF339

control over the raft’s pose. The surface of the water resisted motion in the remaining 3-DOF. The PD340

controller gains used were the same as those used in the numerical manipulation simulations of Supple-341

mentary Information 6. The exact waypoints for the physical experiments are provided in Table S6. The342

method to convert the waypoints to a full trajectory is the same as described in Supplementary Information343

6. The Q matrix used in the optimization was the same used in the numerical simulations of Supple-344

mentary Information 6, but we also set uncontrolled dimensions to zero. For 2-DOF position control,345
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Time (s) x (mm) y (mm) angle (rad)
2-DOF Position Control

240 75 75 NA
480 −75 75 NA
720 −75 −75 NA
960 75 −75 NA

1200 75 75 NA
3-DOF Pose Control

240 75 75 π
4

480 75 75 π
720 −75 75 π
960 −75 75 3π

2

1200 −75 −75 3π
2

1440 −75 −75 2π
1680 75 −75 2π
1920 75 −75 5π

2

2160 75 75 5π
2

2400 75 75 3π

Table S6: Waypoints from manipulation experiments. The waypoints are used with Eq. S9 to construct
trajectories for manipulation experiments.

Q = diag(1, 1, 0, 0, 0, 0), and for 3-DOF pose control, Q = diag(1, 1, 0, 0, 0, 200), where diag(i, j, ...)346

is the square diagonal matrix with i, j, ... as its ordered diagonal elements. Figure S7 shows the complete347

trajectory results for these experiments. One representative trial from each experiment was presented in348

Figs. 3f and 3g; in Fig. S8 we provide the complete position and orientation results as a function of time for349

these trials.350

The trajectory-following accuracy and precision across the five trials in each experiment are quantita-351

tively summarized in Fig. S9. To quantify the accuracy at each time t, we compute the position and velocity352

errors using the 2-norm, and we compute the magnitudes of the orientation and angular-velocity errors.353

These combined results across time can be seen in Fig. S9. To quantify the precision (i.e., repeatability354

across trials) of each experiment, we first take the covariance of the x–y position across all trials at each355

time t. These covariances can be seen in Fig. S7 where we draw a 95% confidence ellipse at each time t,356

computed using the principal components of each covariance matrix. In addition, we take the determinant357

of these covariance matrices to get the generalized positional variance at each time t; to get this generalized358

positional variance back to the original measurement unit of interest, we take the square root. These values359

can then be treated as a scalar measure of precision over time. We similarly compute the square root of360
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Figure S7: Position trajectories across five trials of each manipulation experiment. The blue square is
the desired trajectory and black curves show the actual trajectories for individual trials. The yellow shaded
region depicts 95% confidence ellipse.

generalized velocity variance. Because orientation and angular velocity are both 1-DOF variables in our361

experiment, we can directly utilize the standard deviations of orientation and angular velocity at each time362

t. These combined results across time can be seen in Fig. S9.363

In the future, neutral buoyancy seems to be the most promising technique to transition manipulation364

experiments to full 6-DOF.365

It would require that we create a neutrally-buoyant object fully enclosing a conductive object at its cen-366

ter. This would be challenging, but not impossible. Any imperfection in the neutral buoyancy would need367

to be significantly less than the magnitude of the eddy-current-induced forces generated on the conductive368

object. If we imagine an air-filled bubble-like structure with a copper sphere of radius r at its center, the369

bubble-like structure would need to have a radius of approximately 2.1r. For an aluminum sphere, this value370

would need to be approximately 1.4r. The dipole-field sources themselves would not need to be submerged371

in water. Object tracking would similarly become more challenging requiring multiple markers/cameras to372

account for occlusions.373
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8 Discussion374

It is worth noting that the force components that tend to push the conductive sphere away from the rotating375

dipole increase asymptotically (i.e., with diminishing return) with an increase in Π1 (e.g., an increase in ω),376

at least over the range of Π1 values considered here; see column 2 of Figs. S2 and S3. This would suggest an377

actuation policy that is to spin the magnetic dipole as fast as possible. However, the other force component378

and both torque components increase to a maximum value at relatively low value of Π1, and then decrease379

with further increases in Π1. This would suggest that distinct optimal dipole rotation frequencies exist to380

generate each of those components.381

However, it may also be possible to find a dipole rotation frequency that is near optimal for all force-382

torque components. Considering all five force-torque components holistically, it would seem that designing383

a system to achieve 1 ≤ Π1 ≤ 5 (i.e., Π1 ≈ 3, with results insensitive to small changes in Π1 around384

this value) may be close to optimal. If we consider the form of Π1, it would suggest a near-optimal dipole385

rotation frequency for a given piece of conductive material of the form386

ω ≈ 3

σµ0r2
Hz (S12)

It is interesting to note that this value depends on the conductivity and size of the object, but not on the387

distance or strength of the dipole-field source.388

In the manipulation experiments of Fig. 3, we manipulated a copper sphere (σ = 5.8 × 107 S/m) with389

a radius r = 0.020 m. This would suggest a near-optimal rotation frequency would have been 103 Hz.390

This value does not account for the practical amplifier and power-supply limitations of our field-generation391

system (since the magnitude of the dipole strength, m, appears in Π0). In our manipulation experiments,392

we used a value of ω = 15 Hz, which corresponds to Π1 = 0.44.393

There are estimated to be 34,000 objects in orbit greater than 10 cm, 900,000 objects less than 10 cm394

and greater than 1 cm, and 128 million objects less than 1 cm and greater than 1 mm [12]. Let us consider395

pieces of aluminum (approximated as spheres, with σ = 3.8 × 107 S/m), since aluminum is the most396

common material found in space debris [13]. Equation S12 enables us to determine the near-optimal dipole397

rotation frequency as a function of the size of the object, which is depicted in Fig. S10 for the range398

of sizes that are prevalent in space debris. For reference, brushless DC motors with speeds as high as399
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Figure S10: Near-optimal frequency of magnetic-dipole rotation vs. aluminum-sphere radius.

120,000 rpm (2,000 Hz) can be purchased from Maxon, although there would be practical challenges in400

spinning a magnet so rapidly.401

Using these optimal values, we can approximate the forces and the resulting accelerations that can be402

imparted on aluminum pieces of various sizes by calculating the ratio of the eddy-current-induced forces403

to the mass of the object (using a density of 2,710 kg/m3). Let us consider the same cubic NdFeB perma-404

nent magnet used in our experiments, which has a side length of 51 mm and magnetic dipole strength of405

m = 138 A·m2, as our dipole-field source. Such a magnet could be positioned and rotated by a robotic ma-406

nipulator. Of course, it is easy to conceive of larger/stronger dipole-field sources, but since m effects force407

quadratically and m is linear with respect to the magnet’s volume, it will be easy to extrapolate these results408

to a magnet of a different size via a magnet volume ratio. When the cubic magnet rotates rapidly about409

arbitrary axes, it will conservatively sweep out a volume equal to its minimum bounding sphere, which has410

a radius of
√

0.75(51)2 = 44 mm. For a given piece of aluminum, we are only interested in permanent-411

magnet positions in which the magnet’s minimum bounding sphere does not collide with the aluminum412

object. If this includes position for which Π2 < 1.5, we should expect the results to be conservative (i.e.,413

underpredict the actual forces). In Fig. S11, we show the expected Π0 values, forces, and accelerations for414

each of the non-zero force components for three different sizes (i.e., diameters) of aluminum sphere (called415

out in [12] and discussed above) as a function of the distance between the surface of the aluminum sphere416
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Figure S11: Near-optimal forcing in each canonical direction—provided as Π0, force, and
acceleration—as a function of the surface-to-surface distance between the aluminum sphere and the
minimum bounding sphere of the rotating cubic permanent magnet, for three different aluminum
spheres. Portions of the curves with dashed lines are extrapolations beyond the Π2 values used to develop
our model.
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and the surface of the cubic magnet’s minimum bounding sphere (i.e., d− r− 0.044 m), using the ω values417

from Fig. S10.418
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