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A Spherical-magnet End-effector for Robotic Magnetic Manipulation
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Abstract— A variety of magnetic devices can be manipu-
lated remotely using a single permanent ‘‘actuator’” magnet
positioned in space by a robotic manipulator. This paper
presents the spherical-actuator-magnet manipulator (SAMM),
which is designed to replace or augment the singularity-prone
spherical wrist used by prior permanent-magnet manipulation
systems. The SAMM uses three omniwheels to enable holonomic
control of a spherical magnet’s heading and enable the mag-
net’s instantaneous axis-of-rotation to be set arbitrarily. The
SAMM performs closed-loop control of its dipole using field
measurements obtained from Hall-effect sensors. We describe
the operation and construction of the SAMM, develop and
characterize a controller for the SAMM’s spherical magnet,
and demonstrate remote actuation of an untethered magnetic
device in a lumen.

I. INTRODUCTION

This paper presents a mechatronic device that we refer
to as the spherical-actuator-magnet manipulator (SAMM),
which enables holonomic singularity-free control of a spher-
ical permanent magnet’s orientation, to act as the actuator
magnet in a magnetic manipulation system (Fig.1). The
SAMM is intended to be used as an end-effector mounted
to the tool frame of a robotic manipulator, so as to remove
kinematic limitations encountered in prior permanent-magnet
manipulation systems. The SAMM’s spherical magnet is
driven by three omniwheels that contact the magnet’s surface.
An omniwheel is a common mechanism that incorporates
small rollers that permit controlled rotation about the om-
niwheel’s rotation axis and free rotation about the two
orthogonal axes. Designing the three omniwheel rotation
axes to be linearly independent enables any instantaneous
magnet rotation axis to be achieved. By making the mag-
net’s axis-of-rotation continuously variable, irrespective of
the robotic manipulator used to position the SAMM, the
kinematic singularities of the robotic manipulator can be
avoided, and the robotic manipulator is free to position the
actuator magnet optimally for manipulation. The SAMM will
also enable robotic manipulators with less than six degrees
of freedom (6-DOF) to be considered for use in magnetic
manipulation. The SAMM has the potential to be used for the
remote actuation of a variety of magnetic devices that have
been previously developed for minimally invasive medicine,
including both untethered magnetic devices (UMDs) [1]-
[10], and tethered magentic devices [11], [12].
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Fig. 1. (a) The spherical-actuator-magnet manipulator (SAMM) prototype
as the end-effector of a robotic manipulator. (b) A concept diagram
illustrating the spherical magnet (1), which is prevented from translating
by four constraints (2) that create a rolling form closure. Three omniwheels
(3) whose axes of rotation span R contact the magnet and cause it to rotate
as desired. Magnetic-field sensors (4) measure the magnet’s dipole moment
to be used for closed-loop control of the dipole’s orientation.

Two prior works in our lab motivated the development
of the SAMM. The ability to control a UMD in a luman
using a single rotating permanent magnet as the actuator
magnet was described in [10], in a task reminiscent of
active capsule endoscopy in the intestines. The results of
[10] enable the actuator magnet to be placed in any position
relative to the UMD, provided a specific position-dependent
actuator-magnet rotation axis is established. In the experi-
mental results of [10], the actuator magnet was rotated by
a single DC motor that was rigidly mounted to the tool
frame of an industrial 6-DOF robotic manipulator. In that
setup, the rotation axis of the actuator magnet was fixed
with respect to the tool frame of the robotic manipulator.
Such a setup is capable of placing the actuator magnet with
the correct rotation axis to guide a UMD through relatively
simple trajectories. However, when tasked with navigating
a UMD through tortuous paths (e.g., the small intestines),
the physical constraints of the robotic manipulator (i.e., joint
limits and singularities) limit how the UMD can be actuated,
and limit the workspace.

The effects of manipulator limitations on UMD actuation
were also observed and were characterized in [13], where a
single, nonrotating permanent magnet was used to levitate a
semibuoyant magnetic capsule with 5-DOF (3-DOF position
and 2-DOF heading) control in a task reminiscent of cap-
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sule endoscopy in the stomach. Kinematic singularities and
workspace limitations were identified as the primary limiting
factors to dexterous manipulation. To mitigate the effect of
singularities, the authors introduced a control method that
sacrificed control authority over the capsule’s heading in
order to maintain 3-DOF control over the capsule’s position
when the manipulator nears a kinematic singularity.

The SAMM, with its singularity-free orientation control
of its spherical magnet, can be used to solve the problems
found in both of the projects described above.

There are several reasons for actuating a magnet of spheri-
cal geometry. Firstly, being of constant radius, it is simple to
maintain form-closure regardless of the magnet’s orientation,
allowing it to be easily incorporated into a physical device.
Secondly, a spherical magnet makes the best use of available
space in the sense that it fully utilizes the volume of its
bounding sphere. Thirdly, the field of a spherical magnet
is theoretically perfectly fit by the analytical point-dipole
model. Finally, a spherical body has no principle directions
of inertia, giving it isotropic dynamic properties.

Our SAMM design was inspired by prior “ballbot” sys-
tems, in which a robot balances itself atop a sphere (e.g.,
a bowling ball) [14], [15]. With ballbots, only the instanta-
neous angular velocity of the ball is important for control,
and the ball’s orientation is not measured [16] (i.e., there is
no preferred “north pole” of a bowling ball). However, for
remote magnetic manipulation, knowledge of the magnet’s
dipole-heading is critical since it determines the magnetic
field applied to the actuated magnetic device and how
the device is controlled. Therefore, the SAMM includes
a magnetic-field sensor system to estimate the spherical-
magnet’s dipole heading (we say “heading” since the dipole’s
magnitude is constant and known).

II. VELOCITY KINEMATICS AND INVERSE KINEMATICS

We follow a convention where scalars are denoted by
lower-case standard font (e.g., ¢), vectors by lower-case bold
font (e.g., x), and matrices by capital bold font (e.g., M).
The " symbol denotes a unit-length vector (e.g., X).

For some desired angular velocity wy,, € R3 of the
spherical magnet, the necessary omniwheel rotation speeds
must be determined. Let the unit-length vectors Ell, flg, and
ds point from the magnet’s center to the contact point where
each of the three omniwheels touches the magnet (Fig.2).
We assume that the omniwheel axes a;, as, and a3 are
perpendicular to 611, 612, and ag, respectively, and that there
is no slip between the omniwheels and the magnet. Given
a magnet angular velocity wy,, the surface velocity of the
magnet at the i omniwheel-magnet contact point is

W = 7pWm X dj, (1

where 7, is the radius of the magnet.

The components of u;, uy, and ug parallel to the respec-
tive omniwheel axes are transferred directly into rotation of
the omniwheel rollers, and cause no rotation of the omni-
wheels themselves. All other components of u;, us, and us
cause each omniwheel to rotate with scalar rotation speeds

Fig. 2. Two orthogonal views of the SAMM are shown. The vectors aj,
a9, and a3 are the omniwheel rotation axes, and al, 612, and Elg point
from the magnet center to the corresponding omniwheel contact point. The
depicted coordinate system is used throughout this paper.

Wals Wa2, and w3, respectively. The component direction of
u; that causes the ¢ omniwheel to rotate about its axis is

G = d; x ;. 2)

Under the assumption of no-slip, the projection of u, us,
and ug onto the directions q, 2, and s, respectively, must
be mapped to the scalar rotation speeds of each omniwheel
by the reciprocal of the omniwheels’ radii (denoted by 7,
as we assume identical omniwheels) as

(2
w w

1, T AT A 22
Wai = 7q;'rui = rﬂaT{di} Wm, (3)
where {d;} € so(3) is the skew-symmetric matrix form of
the cross-product operation.
All three omniwheel rotation speeds can be packed into
the vector w, and related to the spherical magnet angular

velocity wyy,, in matrix form, as

~Tr3 2
Wal r A {(}1}2

Wa = |Wa2 | = T ﬁ—zr{dg} Wm- (4)
Wa3 e
aj{ds}

Due to the assumption that &; is perpendicular to d;, (4) can
be simplified to

Wm = TIATwm, (5)

where n = —r,,/r,, is the gear ratio from the omniwheels
to the sphere (with the negative sign indicating the change in
rotation direction from the omniwheels to the magnet), and
where A = [:211 as ég].

The omniwheel axes and positioning must be designed
such that the matrix A has full rank, otherwise there will
exist a direction of wy, that cannot be achieved with any
selection of omniwheel rotation speeds. Although linear
independence of the columns of A is a sufficient condition
mathematically, in practice the columns should be designed
to be as close to mutually orthogonal as possible. Otherwise,
some desired wy, will require an unnecessarily, and possibly
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unachievably, fast omniwheel rotation speed. We designed
our system so that 41, &5, and &3 are mutually perpendicular.

III. DETECTING THE MAGNET’S DIPOLE MOMENT

The dipole moment of the spherical magnetic, denoted by
the vector m € R3, is the vector from the south to north
poles of the magnet. The dipole moment m of the SAMM’s
magnet can be determined by measuring the magnetic field
h that it generates in space. One approach to measuring the
magnetic field uses Hall-effect sensors. Hall-effect sensors
measure the component of the field in the direction normal
to (i.e., passing through) the sensor’s face. We assume the
general case of n Hall-effect sensors. Let each sensor be
positioned in space such that the vectors p; through p,,
in units of meters, measure each sensor’s position relative
to the spherical magnet’s center, and let ¥ through ¥,, be
unit-magnitude vectors that describe the directions that are
sensed by each sensor. Let the magnetic field at each sensor
position be denoted by h; through h,,, in units A-m~!. The
measured component of the field produced by the ™ sensor
is denoted with the scalar s; and is given by

s; =V, h;. (6)

The field h; of a spherical magnet, at each sensor position
Pi, can be accurately predicted with the point-dipole model

1

hj=——
4 [|pil?

(3p:p; —Is)m=Hm, (7
where I3 € R3*3 is the identity matrix.
Substituting (7) into (6) relates the magnet’s dipole mo-

ment m to each of the n sensor measurements, which can
be aggregated into the matrix equation

S1 {’-{Hl
s = = : m = Sm. )
Sn v H,

The n x 3 constant matrix S encapsulates the complete ge-
ometric description of the sensor arrangement, as it pertains
to estimating m. If the matrix S has full column rank, then
a solution for the dipole moment m can be found as

m = Sfs, &)

where ST is the Moore-Penrose pseudoinverse of S, which is
constant and can be calculated off-line. The matrix S should
be made to have full column rank by using at least three
Hall-effect sensors and appropriately selecting the positions
(p;) and directions (¥;) of each sensor. When n > 3, (9)
provides the best estimate of m in a least-squares sense.
Although (9) can provide an instantaneous reading of the
magnet’s measured dipole, in practice a Kalman filter can
be employed to incorporate the manipulator’s dynamics with
the sensor readings to reduce noise in the system.

IV. DESIGN

Our prototype SAMM is shown in Fig. 3. The magnet is a
50.8-mm-diameter, Grade-N42, spherical permanent magnet
with a dipole strength of 71.6 A - m?. The form-closure
constraints that allow only rotation of the spherical magnet
are implemented with four ball-roller-tipped non-magnetic
set-screws. Housed inside the tip of each set-screw is a
freely rotating 5.56-mm ball that is supported by 1.50-mm
sub-rollers. The body of the set-screws are nylon and the
ball-tip and subrollers are ceramic. The SAMM housing
resembles a cylindrical structure with a hemisphere at one
end where three form-closure constraints are mounted. The
housing is constructed out of nonconductive ABS plastic
to mitigate eddy-current damping. The omniwheels contact
the magnet through windows in the cylindrical body. Their
counter-opposed configuration allows the normal forces from
one omniwheel to be transmitted to the other omniwheels,
which mutually increases their traction. The omniwheel axes
are & = [v2/2,v/2/2,0]", a3 = [0,0,—1]", and a3 =
(V2/2,—Vv2/2, O]T in the coordinate system of Fig. 2.

In the configuration shown in Fig.3, the SAMM can be
positioned so that the device’s “bottom” (the hemispherical
side where three of the four set-screws are located), which
is streamlined and free of moving parts, is presented to the
manipulation workspace, reducing the risk of damage to the
moving SAMM components and enabling the spherical ac-
tuator magnet to be positioned close to the remote magnetic
device being manipulated.

The omniwheels employed on the SAMM are miniatur-
ized, nonmagnetic, continuous-contact omniwheels, modified
from the designs in [14], [17]. The omniwheels contact
the magnet with rollers that generate high friction in the
driving direction while allowing the magnet to passively roll
orthogonal to the drive direction with minimal friction. The
major diameter of each assembled omniwheel is 58.2 mm.

The omniwheels are driven by three Maxon RE-max 29
gearmotors, which have a 24:1 gear ratio and 512 CPT
encoders, mounted in a parallel arrangement (Fig.3). The
torques applied to omniwheel axes &4; and &3 are redirected
via 90° gearboxes; the torque applied to omniwheel axis a.
is transmitted via direct-drive. The 90° gearboxes consist of
nylon gears mounted to aluminum shafts supported by dual
acetal ball bearings inside an aluminum case, making the
90° gearboxes entirely nonmagnetic. The gearmotors mount
to the gearboxes (and to the omniwheel drive-shafts in the
case of axis &2) by aluminum helical couplings.

The prototype SAMM employs two approaches to build-
in compliance that keeps the omniwheels in contact with the
magnet despite irregularities in their construction: 1-DOF
rotary motion is employed on the 1% and 3™ omniwheels,
and approximate straight-line motion of the 2"¢ omniwheel
is achieved with two pillow blocks. In the rotary case, both
rotary axes lie parallel to their respective omniwheel axes
(i.e., 4; and &g). The 90° gearboxes make the rotary axis
perpendicular to the respective motor axis, which decouples
the compliance from the motor torque transmission. If the
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Fig. 3. Prototype SAMM shown mounted to the robotic manipulator (a).
Encoders (b) measure the gearmotors’ (c) position. The cluster of Hall-effect
sensors (d) measures the spherical magnet’s dipole. Power is transmitted
through helical shaft couplings (e) to omniwheel axles or 90° gearboxes (g),
which pivot for omniwheel compliance (f). Omniwheels (h) are tensioned
to the spherical magnet through adjustable spring-tensioned pillow blocks
(i), whose tension can be manually tuned through adjustment screws (j). As
viewed from the front, the SAMM is 142.1 mm deep.

direction of compliance were not decoupled from the motor-
torque transmission direction, then both omniwheel irregu-
larities and torque transmission would cause the tensioning
mechanisms to move in the direction of compliance, resulting
in undesirable friction or traction loss.

Tension is applied to the 1% and 3™ omniwheel assemblies
by adjustable spring-tensioned pillow blocks. The pillow
blocks are constructed of 3D-printed ABS plastic with
cutouts revealing serpentine shaped springs. The serpentine
spring is reinforced with a silicone compression spring
(visible in Fig. 3) whose tension is adjusted via an adjustment
screw. On the 2"¢ omniwheel, approximate straight-line
motion is formed utilizing two of the same adjustable spring-
tensioned pillow blocks as on the 1% and 3 axes, to tension
the omniwheel directly onto the magnet in the direction
ds. Although the motion is not strictly constrained to ds,
we have found that the deviation is small and results in
insignificant changes to the A matrix.

A sensor cluster, consisting of six 1-DOF Allegro A1302
Hall-effect sensors arranged on the surface of a 7.5mm
cube, is mounted to the housing as shown in Figs. 3(d) and
4. In addition to being a space free from moving parts,
this location ensures that magnetic-field disturbances in the
workspace below the SAMM (e.g., from the magnet of a
device being manipulated by the SAMM) have a minimal
impact on the estimation of the actuating magnet’s dipole
heading. The gearmotors are the nearest magnetic component
to the sensor cluster, but they are positioned sufficiently far
away to make their contribution to the measured magnetic
field negligible. The sensors are chosen with a sensitivity
of 13 mV/mT, which utilizes their full output-voltage range
without saturation.

Hall-effect Sensors

Fig. 4. The pose of the spherical magnet’s dipole moment is estimated with
a cluster of six 1-DOF Hall-effect sensor arranged on the surface of a 7.5
mm cube. The sensor assembly is mounted to the SAMM housing where
there are no moving parts and magnetic-field disturbances are minimal.

V. CONTROL

The SAMM has two modes of operation: pointing and
rotating. The pointing-mode controller is simply a PID
controller to regulate the dipole heading to some desired
heading, to be used for the generation of quasistatic fields.
For brevity, we will not discuss the pointing-mode controller
in greater detail here. The purpose of the rotating-mode
controller is to generate continuous rotation of the actuator-
magnet dipole with some desired angular velocity &, with the
dipole orthogonal to x, without any concern for the phase
of the dipole within the cycle. Examples where the rotating
mode would be useful include tasks where a rotating field is
fundamental to the actuation strategy (e.g., [4]-[10]).

The Maxon-Motor controllers take as input a desired
motor angular velocity o, but since they act on that input
in a model-based open-loop fashion (in our chosen imple-
mentation), there is no guarantee that the motor’s angular
velocity will achieve the desired, necessitating the inclusion
of our own custom controller to set o.

The rotating-mode controller employs two subcontrollers:
a Pl-plus-feed-forward angular velocity subcontroller that
rotates m about a desired angular-velocity vector k with
control effort given by o, which is parallel to K, and a PD
heading subcontroller to drive 1 to the plane orthogonal
to k with control effort given by o, . These controllers
are independent from each other, as they always actuate
orthogonal to one another. The two orthogonal control laws

are combined to form the total output
(10)

0':0'||—|—0'J_.

To determine control effort in the direction parallel to k,
the angular-velocity error e must first be computed:

(1)

Control effort in the direction parallel to «, which governs
angular velocity, can then be computed at time-sample j as

e” =K — (wm . I%)I%

o) = Kj + ke +kiac(ey ;) - /)R (12)
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where the “k” term represents a feed-forward component,
and the behavior of the capped integration function q. is
defined as

\ ) ae(zi-1) + 0z
al2) = { qe(2j-1) :

ac(zj—1) + 02;([< €
lae(zj-1) + 0z;|> €
13)

where 0 is the time step. The term q. is projected onto the
rotation axis parallel to x to alleviate the effects of integrator
wind-up in what is currently the wrong direction.

To determine control effort orthogonal to x, we compute
a rotation-plane restoration vector as

e, =mx (I3 — &&')r, (14)

which approximates the angular error between the dipole and
the desired plane at small angles. Control effort can then be
computed at time-sample j as

o1y = &k llessll & 5
b b, (lesl o lenml o)),
where §; = sgn(wm,; - M;) is a signum function that is

used to correctly account for signed rotation-plane error (i.e.,
determine if m is above or below the desired plane), the gains
kpi and kg, are proportional and derivative gains, and the
saturation function sat,, is defined as

sat, (z) = {iz

The gains k,; and kg first act upon the magnitude of the
rotation-plane restoration vector ||e ||, and are then applied
in the direction of the rotation-plane restoration vector € .
The inclusion of the signum function is necessary because the
direction of e , computed with (14), flips when the dipole
crosses through the desired plane.

2| < v

lal)> v (10

VI. EXPERIMENTATION

Experiments were performed with the SAMM mounted to
a 6-DOF Yaskawa Motoman MHS robotic arm (Fig. 1). The
SAMM weighs 1.4kg, which is below the arm’s reported
maximum payload weight of 5kg. The control system was
implemented in C++, with a Sensoray 626 PCI DAQ card,
and operates at 1000 Hz.

We used the Ziegler-Nichols tuning method to tune the PD
gains of the “orthogonal” heading subcontroller as k,| =
17.2rad/s and kg, = 1.40rad. The resulting PD controller
had a settling time of approximately ¢t; = 1.5s, which is
equivalent to a time constant of approximately 7 = 0.3 s. The
PI gains of the angular-velocity subcontroller were tuned to
so that the angular-velocity and heading (i.e., orthogonal)
subcontrollers converge to their respective set-points with
similar time constants. This yields the gains of k| = 0.187,
and k; = 0.460 s~!. The derivative terms were clipped
using ¥ = 100, which allows the derivative to function
unimpeded during the majority of its operation, only clipping
the most extreme derivative spikes. The integral terms were

capped at € = 1. This allows the integral term to generally
operate unimpaired, and was rarely observed to grow large,
but prevents excessive wind-up in extreme cases.

To demonstrate the function of the rotating-mode con-
troller, we chose a desired angular velocity Kk = 7 -
[V2/2,0, \/E/Q]Trad/s, since it is not aligned with any of
the omniwheel axes, and it has a magnitude that is similar
to what has been typically used when propelling screw—typre
capsule endoscopes. We initialized the dipole at [0,0,1] ",
which has a relatively large error with respect to the desired
rotation plane. The trajectory of the dipole can be viewed
from multiple angles in Fig.5(a). In this experiment, the
dipole heading is pulled into the desired rotation plane within
its first revolution about k. The rotation-plane error plot
illustrates the rotation-plane heading subcontroller resulting
in an RMS error of 0.0347rad for the final 50% of the
test, keeping the dipole within approximately +5° of the
desired plane. The angular-velocity error plot illustrates the
PI-plus-feedforward angular-velocity subcontroller resulting
in an RMS error of 0.070rad/s for the final 50% of the
test. We can also observe two instances in the angular-
velocity error where the error suddenly increased (possibly
due to omniwheel slip or a high-friction region on the rolling
constraints), which the controller rejects.

In [10], we performed experiments where a spherical
UMD was actuated down a lumen using a rotating field,
generated by a cylindrical permanent magnet, and the UMD
position p was continuously measured by a stereo-camera
system. The actuator magnet was rigidly attached to the
shaft of a DC motor, which was maneuvered in space by the
same manipulator shown in Fig. 1 to ensure that the magnet’s
rotation axis K is set according to

i = H(p)#n (17)
for all time, where Ay, is the magnetic-field rotation axis that
causes the spherical UMD to rotate down the lumen [10], and
H(p) = 3pp' — I3 is from the point-dipole model (7).

In one experiment, the spherical UMD was rolled down
the lumen while the position of the actuator magnet was kept
stationary [Fig.5(b)], which requires the actuator-magnet’s
rotation axis, and thus the robot manipulator’s wrist, to
turn almost 180°. For comparison, Fig. 5(c) shows the same
experiment using the SAMM end-effector, but in this case,
the manipulator remains completely stationary as shown.

In another example, the UMD was rolled down the lumen
while the position of the actuator magnet follows a step-
trajectory independent of the UMD’s position [Fig.5(d)].
In this experiment, the necessary actuator-magnet rotation
axis (17) forces the robot manipulator’s wrist to contort
dramatically (nearly violating joint limits at ¢ = 77s). For
comparison, Fig. 5(e) shows a similar experiment performed
with the SAMM end-effector. In this case, the manipulator’s
wrist remains nearly stationary throughout the trajectory,
only changing slightly to keep the SAMM in a constant
orientation. In both experiments, the SAMM dramatically
reduces the manipulator motion required to perform the
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(a) Recorded dipole heading, rotation-plane error, and angular-velocity error, with the dipole starting from rest at [0, 0,1]T, and commanded

to rotate with angular velocity & = 7 - [v/2/2,0, \/5/ 2]T rad/s expressed in the coordinate system of Fig.2. (b) In prior work [10], a spherical UMD
was rolled down a lumen using a rotating field generated by a rotating permanent-magnet actuator, whose position was held stationary in space while its
rotation axis is set according to (17). This maneuver required the robot manipulator’s wrist to turn almost 180°. (c) For comparison, we used the SAMM
to perform the same maneuver, which required no motion of the robot manipulator. (d) In another example, the UMD is rolled down a lumen while the
rotating permanent-magnet actuator’s position follows a square step-trajectory independent of the UMD’s position, which required the manipulator’s wrist
to contort dramatically to satisfy (17). (e) For comparison, we performed a similar experiment using the SAMM. In this case, the manipulator’s wrist only

moves to keep the SAMM in a constant orientation.

maneuvers. We note that both experiments were possible
with the SAMM held in a constant orientation, demonstrating
that a much simpler robot manipulator (e.g., a Cartesian
robot) could have been used to accomplish the same results.

VII. CONCLUSION

We have presented a singularity-free, holonomic mecha-
tronic device, the spherical-actuator-magnet manipulator
(SAMM), to be used as an end-effector of a robot manipula-
tor for robot-assisted magnetic manipulation. The SAMM
uses three omniwheels to enable holonomic control of a
spherical magnet’s heading and enable the magnet’s rotation
axis to be set arbitrarily. The SAMM performs closed-loop
control of its dipole using field measurements obtained from
Hall-effect sensors. Prior work in robotic magnetic manip-
ulation was limited by robot-manipulator joint limitations
and singularities. We demonstrated that augmenting a robot
manipulator with our singularity-free SAMM end-effector
substantially eliminates these prior difficulties.
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