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Background: Guinea pigs are frequently used in otologic
research as animal models of cochlear-implant surgery. In
robot-assisted surgical insertion of cochlear-implant electrode
arrays, knowing the cochlea pose is required. A preoperative
CT scan of the guinea-pig anatomy can be labeled and
registered to the surgical system, however, this process can
be expensive and time consuming.
Methods: Anatomical features from both sides of 11 guinea-
pig CT scans were labeled and registered, forming sets.
Using a groupwise point-set registration algorithm, errors in
cochlea position and modiolar-axis orientation were esti-
mated for 11 iterations of registration where each feature set
was used as a hold-out set containing a reduced number of
features that could all be touched by a motion-tracking probe
intraoperatively. The method was validated on 2000 simu-
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Results: Validation on simulated cochleae resulted in
cochlea-position estimates with a maximum error of 0.43 mm
and modiolar-axis orientation estimates with a maximum
error of 8.1 degrees for 96.7% of cochleae. Physical
validation resulted in cochlea-position estimates with a
maximum error of 0.80 mm and modiolar-axis orientation
estimates with a maximum error of 12.4 degrees.
Conclusions: This work enables researchers conducting
robot-assisted surgical insertions of cochlear-implant elec-
trode arrays using a guinea-pig animal model to estimate the
pose of a guinea-pig cochlea by locating six externally
observable features on the guinea pig, without the need for
CT scans. Key Words: Basilar membrane—Cochlear
implants—Robot-assisted surgery.
Otol Neurotol 42:e1219–e1226, 2021.
requently used as an experimental to the cochlea (2,3). These chara
Guinea pigs are f
animal in otologic research due to favorable anatomy
such as the greater size of the cochlea compared with
other lab animals (1), and an opening of the tympanic
bulla that enables wide access to the tympanic cavity and
cteristics make the
guinea pig a suitable model for preclinical research
involving the surgical insertion of cochlear-implant elec-
trode arrays (EAs) (4,5). Robot-assisted insertion with
magnetic steering has been reported to reduce insertion
forces in vitro and in human cadavers (6–9), which is
thought to be correlated with improved hearing outcomes
by minimizing electrode injury to the scala-tympani wall
and the basilar membrane (10). Proper placement of the
robotic insertion stage and the magnetic field source, as
well as the coordinated motion plan, is reliant on know-
ing the position and orientation of the cochlea in humans
and the corresponding animal model used for the devel-
opment of the technique: the guinea pig.

In the typical image-guided surgery paradigm, a pre-
operative computed-tomography (CT) scan is used to
label the guinea-pig anatomy, which is then registered to
markers or specific external features of the guinea pig
during surgery. However, the process of scanning, label-
ing, and registering can be both expensive and time
consuming. This study presents a method to estimate
the pose of the cochlea, that is, the cochlea’s position and
orientation, not with a preoperative CT scan, but instead
orized reproduction of this article is prohibited.
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using several localized external features of a guinea pig
(including the round window, which is exposed in prep-
aration for EA surgical insertion) using a motion-
tracking probe.

Locating anatomical features based on the locations of
easily identifiable anatomical landmarks has been
explored in various medical contexts. To predict hip
joint centers (HJC) in posture and motion analysis, both
functional and regression methods have been used. Func-
tional methods locate the HJC by estimating the average
center of rotation when performing hip circumduction
movement, whereas regression methods develop equa-
tions to locate the HJC from anthropometric measure-
ments between externally palpable bone landmarks
(11,12). Estimating origins and insertions of the knee
ligaments for knee surgery or gait analysis has also been
explored. Ascani et al. (13) obtained estimates by defin-
ing a point cloud from 16 anatomical landmarks to create
a registration atlas using an affine transformation on a
small data set. With a much larger dataset, Asseln et al.
(14) used a fully automatic mesh morphing method to
estimate ligament attachments involving anatomic sur-
face data fitted using a variant of the point set registration
method known as the iterative closest point algorithm.

Point-set registration is used throughout the medical
and computer-vision literature to match point sets accu-
rately, whether fusing multiple medical images or align-
ing facial landmarks for face recognition (15). Point-set
registration estimates the transformation between two
point sets (pairwise point-set registration) or more than
two point sets (groupwise point-set registration) (15).
Evangelidis et al. (16) presented the groupwise registra-
tion method called Joint Registration of Multiple Point
Clouds (JRMPC), which is an expectation conditional
maximization algorithm that optimally estimates all reg-
istration parameters. It was shown to outperform pairwise
and other groupwise registration methods when evalu-
ated on multiple point sets, and refinements have contin-
ued to improve this method (15,17). We implement this
method to register multiple point sets of guinea-pig
features to accurately estimate features of incomplete
guinea-pig point sets. Various deep-learning approaches
also exist for anatomical localization and segmentation;
however, training for these methods typically require
very large data sets (18,19).

Localizing inner-ear anatomy using CT scans has been
successfully performed for a number of years. For exam-
ple, Stelter et al. (20) obtained standard-deviation regis-
tration results of 0.27, 0.21, and 0.18 mm for localization
of the mastoid, round window, and ear canal on humans,
respectively. A method to estimate cochlea pose (guinea
pig or otherwise) without using CT data of the immediate
subject has never been described previously; this is the
principal contribution of this study. Additionally, this is
the first study to quantitatively characterize the anatomi-
cal properties (mean and variance) of the cochlea poses
of guinea pigs. This work describes a method to estimate
the pose of a guinea-pig cochlea without the need of CT
scans by utilizing previously scanned CT data from
Copyright © 2021 Otology & Neurotology, Inc. Unauthorized
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guinea pigs and labeling specified feature points, by
matching and estimating points using a group-wise point
matching algorithm and customized feature-optimization
process, and by using the distribution of features
observed in the data to extrapolate results to the larger
population of guinea pigs.

MATERIALS AND METHODS

Micro-CT scans of 11 Dunkin-Hartley albino guinea pigs,
taken at the Hannover Medical School, were used for this study;
10 males had been purchased from Charles River Laboratories
(Écully, France, strain code 051) and one female had been
purchased from Harlan Laboratories (Horst, Netherlands), with
weights ranging from 355 to 746 g. Standard micro-CT imaging
procedures were used in each case. The pixel and slice resolu-
tion were equivalent and consistent for each individual scan.
The maximum adjusted CT resolution used was less than
0.25 mm. The scans were performed on the postmortem guinea
pigs of which all previous procedures on the living guinea pigs
were performed in accordance with the European Council
directive (2010/63/EU), approved by the Local Institutional
Animal Care and Research Advisory Committee (IACUC) and
permitted by the local authority (Lower Saxony State Office for
Consumer Protection, Food Safety, and Animal Welfare Ser-
vice [LAVES]; approval number 17/2396 and 10/0045).

Twenty features were used for labeling: 19 were selected
from recognizable anatomical landmarks chosen from the CT
scan (Fig. 1), and one was generated from a few of these
selected points since it could not be easily or accurately labeled.
Although the inner-ear anatomy of a guinea pig differs from that
of a human, the selected features were chosen to be easily
recognizable to clinicians familiar only with human inner-ear
anatomy. Although automated methods for segmenting a
cochlea and describing its pose exist for CT scans in humans
(21–23), none exist for guinea pigs; thus, features were labeled
by hand.

The 20 labeled feature points are described in greater detail
as follows, with visual examples shown in Figure 1. The cochlea
apex (CA) was defined at the apex of the cochlea spiral aligned
with the modiolus. The cochlea base (CB) was defined at the
intersection of the center of the modiolus with the basal turn.
The modiolar axis is defined as the vector from the CB to the
CA, in a basal cochlear coordinate system fashion (20). The
cochlea connection point (CC) is the intersection of the cochlea
with the medial wall of the ventral tympanic bulla. The cochlea
base lateral connection point (CL) is the protruding intersection
of the basal turn of the cochlea with the ventral tympanic wall
visible in the CT transverse view. The dorsal tympanic lateral
point (DTL) is the pointy tip of the small lateralmost extrusion
inside of the dorsal tympanic bulla. The dorsal tympanic
malleus head (DTM) was defined at the point of the malleus
head inside the dorsal tympanic bulla. The anterior and poste-
rior footplate points (FPA, FPP) were defined at the bony region
adjacent to the anterior and posterior edges of the footplate. The
long limb of the incus (LLI) was defined at the incus end point
closest to the round window. Four points were defined at the
anteriormost, posteriormost, lateralmost, and medialmost edges
of the round window (RWA, RWP, RWL, RWM). The cochlea
position, denoted the cochlea origin (CO), was generated from
the CA, CB, and RWA and RWP points defined below in
greater detail. The superior and inferior points for the opening
of the osseous canal (OS, OI) were labeled at the widest opening
of the osseous canal at the superior and inferior edges. The base
 reproduction of this article is prohibited.



of the incisors (IN) was defined at the intersection of the front was defined as the midpoint between the RWA and RWP. The

FIG. 1. Seventeen of the 20 selected feature points labeled on micro-CTscans used in this study. An exterior view of a live guinea-pig head
and guinea-pig skull with associated features are also included. The RWA and RWP were selected directly on the 3D segmented model,
hence associated CT scans for these points are not shown. Visualization of the two coordinate frames used is shown. The RW coordinate
frame is used to align the hold-out set, and the CO coordinate frame is used to align the 11 CT point sets and compute the CO position. The
table shows a list of the internal and external features. CO indicates cochlea origin; CT, computed-tomography; RW, round window; RWA,
round window anterior; RWP, round window posterior.
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two incisors and the inferiormost point of the maxilla. The
malleus handle point (MH) is defined at the bony point directly
adjacent to the superiormost visible point of the malleus handle
from the outer ear canal. The mandible feature point (MN), was
defined at the posteriormost and superiormost point of the
mandible in the CT coronal frame adjacent to the temporal
bone. The lateralmost aspect of the zygoma (ZL) was defined at
the lateralmost point of the temporal bone. Feature positions
were validated by visual inspection on a 3D segmented model
generated from the CT data, which enabled fine tuning of
point placement.

The CO, the origin of the coordinate frame defining the
nominal position of the cochlea, was generated from features
marking the modiolar axis and round window. In previous
studies, the nominal position of the cochlea has been defined
as the intersection of the modiolar axis and the basal plane (7,8).
In our study we maintained the spirit of that definition by
defining the CO as the point on the modiolar axis that is closest
to the round window; that is, the CO is defined such that the
vector from the CO to the round window is orthogonal to the
modiolar axis. The point selected to represent the round window
Copyright © 2021 Otology & Neurotology, Inc. Unauth
round window was used in place of the basal plane due to ease
of selection and its common use in EA insertion. To better
understand the relationship between the 20 selected features, a
comparison matrix is presented in Figure 2, displaying the
between-feature distances as means and standard deviations
across guinea pigs.

Of the 20 features, 11 were ‘‘external features’’ that could be
physically touched by a probe, either on the external surface
before any surgical incisions, or inside the bulla, which is
exposed intraoperatively before EA insertion. These locations
can be recorded by an external tracking system (i.e., touched
with a motion-tracking probe) to form a point cloud used in the
anatomy estimation algorithm. Figure 1 lists internal and
external features.

The process flow of testing is depicted in Figure 3. All 20
features in each guinea-pig CT scan were labeled on both right
and left sides; in the case of the IN, the same point was used for
both sides. The CO point was computed for all sets as previ-
ously described. For general alignment before fitting, each point
set was transformed so that its CO was at the global origin. This
was done by creating an orthonormal coordinate frame with the
orized reproduction of this article is prohibited.
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FIG. 2. Comparison matrix of the between-feature distances, for both left and right sides, for all 11 guinea pigs. Values provided are mean
distances, with standard deviations in parenthesis, in units mm. The feature points included are the cochlea apex (CA), cochlea base (CB),
cochlea connection point (CC), cochlea lateral point (CL), cochlea origin (CO), dorsal tympanic lateral point (DTL), dorsal tympanic malleus
head (DTM), footplate anterior (FPA), footplate posterior (FPP), incisors (IN), long limb of the incus (LLI), malleus handle (MH), mandible
(MN), osseous canal superior (OS), osseous canal inferior (OI), round window anterior (RWA), round window lateral (RWL), round window
medial (RWM), round window posterior (RWP), and lateralmost aspect of the zygoma (ZL).
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x axis directed from the CO to the CA for the left side (reversed
for the right side), the y axis directed from the CO to the round
window midpoint defined previously, and the z axis as the cross
product between the x- and y-axis vectors to form a right-handed
coordinate frame. This is denoted as the CO coordinate frame
and is visualized in Figure 1.

The JRMPC algorithm was used to match the point cloud sets
for the left and right sides, each side registered separately. We
Copyright © 2021 Otology & Neurotology, Inc. Unauthorized
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performed a cross-validation study, which is a common method
used to assess how well a model will generalize to a new data
set. In cross-validation, data are partitioned into two subsets,
where model fitting is performed on one subset, denoted the
training set, and tested on the other, denoted the validation set;
multiple rounds are typically performed where the data are
partitioned in different ways and results from all rounds are
combined for the final solution. In our study, 10 of the 11 point
 reproduction of this article is prohibited.



sets were used as a training set, while one hold-out set was used axis was defined as pointing to the LLI, and the z axis was

FIG. 3. Methods and tests included in the paper to find the best feature combinations. After the JRMPC algorithm runs, an error test with
the original 22 sets, a test on 2000 simulated guinea-pig features, and a physical test on guinea-pig skulls is conducted. JRMPC indicates
Joint Registration of Multiple Point Clouds.
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as the validation set. The training set would consider subsets
(more below) of the full set of 20 features, whereas the
validation set only included subsets of external features from
the training set since the validation set is meant to represent the
features that could be obtained from a guinea pig without
requiring a CT scan. Eleven iterations (i.e., each of the 11
point sets being used once as the validation set) were run; the
results were combined to quantify the error in the modiolar-axis
orientation and CO position estimation. Such a method is
required because the points that define the modiolar axis and
cochlea position (CA, CB, CO) cannot be explicitly touched.

For each iteration, a different point set was selected as the
validation set. Without the CB, CO, and CA in the external feature
set, the validation set cannot be transformed into the CO coordi-
nate frame. A second frame was developed using external feature
points to transform these points in close proximity with those in
the CO coordinate frame. This second frame, the RW coordinate
frame (see Fig. 1), was defined by an orthonormal coordinate
frame where the x axis was the normalized vector from the RWA
to the RWP on the left side (reversed for the right side), the origin
being the point on the RWA-RWP axis closest to the LLI; the y
Copyright © 2021 Otology & Neurotology, Inc. Unauth
computed as the cross product between the x and y axes. This
coordinate frame origin was then translated in its y direction by an
amount equal to the distance from the RWA-RWP axis to the LLI,
to move it closer to the actual position of the CO (to improve the
step to follow). The JRMPC algorithm then registered this point
cloud with all previous 10 point clouds initialized into the CO
coordinate frame together. The initial alignment was found to
improve solving times during optimization.

Error metrics for each point-set registration involved finding a
weighted sum of the modiolar-axis and CO position errors for all
11 iterations of the cross-validation test for each side, explained
below using our custom optimization. To find this cumulative
error, the final rotation and translation metrics for all 11 point sets
were applied to the full 20 features of each respective point set.
The modiolar-axis angle and CO position of the hold-out point set
was then compared with the mean values of the modiolar-axis
angle and CO position of the 10 point sets in the training set. The
cochlea-origin error (ECO) was computed as the L2 norm between
CO positions, as just described. The modiolar-axis angular error
(EMA) was computed by finding the difference between the
modiolar-axis angles as follows: we define a vector pointing
orized reproduction of this article is prohibited.
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CT scan for registration of the skull to the CT scan, using the

FIG. 4. Example of setup for physical validation test. The skull is
secured and touched with a motion-tracking probe. A microscope
is used to accurately position the probe with respect to anatomical
features.

FIG. 5. Graphs displaying the best error estimate found for each
iteration of features selected for the training and validation sets. A,
Objective function outputs for the optimal subset for each number
of training subset features drawn from the complete training set of
20 features. In each iteration, the reduced feature set was
selected from the previously determined best feature set, reducing
down to three sets. B, Objective function outputs for feature
subsets of the optimal training set, which included 16 features,
for the validation set. Only up to 10 features are considered
because one of the 11 externally visible features was not included
in the optimal training set (RWM). For both graphs, a lower value
represents less error, hence a more optimal result. RWM indicates
round window medial.
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from the mean CO to the mean CA of the training set, which we
represent by T; the modiolar-axis vector of the validation set is
represented by V; the modiolar-axis angular error between these
two vectors can then be computed as

EMA ¼ cos�1 ðT � V Þ
jT jj j V jj jð Þ

Due to the possibility that using the full set of the 20
(somewhat arbitrarily) selected features might not be the opti-
mal choice, a custom optimization algorithm was used to find
the best subset of features. Feature subsets varied from three to
20 features for the training set and from three to 11 features for
the validation set, the number of three features being the
assumed minimum number of features for point matching.
The feature subsets of the validation set were constrained to
contain only features that were included in the current feature
subset of the training set. The optimization algorithm began
with all 20 features for the training set, then reduced features
one by one. In each iteration, the reduced feature set was
selected from the previously determined best feature set; for
example, the best 19 features previously selected from the
original 20 became the base feature set when selecting the best
18 features for the next iteration. Each of these feature sets
considered for the training set included a sub-level optimization
in which the number of features in the validation set was
evaluated in an analogous way as in the training set, beginning
with all (at most 11) external features in the training set and
reducing down to three.

The total error (ET), used as the optimization objective
function, is a weighted sum of EMA and ECO for both the right
and left sides (11 per side, 22 values total, for each error metric).

ET ¼
X22

i¼1

½0:2EMAðiÞ þ ECOðiÞ�

The optimization function seeks to minimize ET. Our ratio-
nale for choosing the 0.2 weighting coefficient was to approxi-
mately equate 1 mm of ECO with 5 degrees of EMA. It is difficult
to know precisely how to compare linear and angular measure-
ment units, so this value was chosen through some tuning.

Using the results of the previous steps, validation was
performed on an expanded simulated data set to estimate
robustness to the larger Dunkin-Hartley guinea-pig population.
This was done by first using the JRMPC algorithm to match the
11 point sets and find the mean and covariance of each feature
point cloud in 3D space, resulting in 20 mean points and 20
covariance matrices. Samples were drawn from a Gaussian
distribution formed by these mean points and covariance matri-
ces to generate 1000 new simulated guinea-pig features sets for
both right and left sides, totaling 2000 feature sets. Measuring
the errors for each of these 1000 simulated sets, relative to the
means of the respective 11 sets, occurred using the same method
as described previously.

A final, physical validation test collected and labeled CT
scans for both sides of three new guinea-pig skulls. Ground truth
for the CO position and modiolar axis was established directly
from the CT scans. A 3-mm-diameter hole was made 3 mm
anterior and 1 mm inferior to the center of the outer ear canal to
expose the inner anatomy of the skulls. The six external features
determined in the previous steps were touched on the skulls
using a motion-tracking probe (see Fig. 4). Eight additional
prominent features were selected on the skull and labeled on the
Copyright © 2021 Otology & Neurotology, Inc. Unauthorized
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iterative closest point (ICP) point-matching algorithm (24,25).
The CO position and modiolar-axis orientation estimates com-
puted from the touched points were compared with
ground truth.
 reproduction of this article is prohibited.
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RESULTS

The largest variability in feature positions, shown in
Figure 2, is between the IN and all other feature points. The
smallest occur in the FPP closely followed by the LLI.

Results displaying each level of optimization, including
the best of the 3 to 20 feature sets of the training set, as well
as the best of the 3 to 11 features of the validation set for the
optimal training set, are reported in Figure 5. The optimal
combination of training-set features comprised 16 of the
original 20 features (see Fig. 5A). This included all
features except the CC, FPP, DTL, and RWM. The optimal
combination of validation-set features comprised six of the
original 11 external features, shown in Figure 5B. This
included the CL, MN, OS, RWA, RWP, and LLI.

Using this optimal combination of training-set and
validation-set features, we obtained estimates of the mod-
iolar-axis orientation for the 22 original point sets (all of
which were part of the training data) with mean, median,
and maximum errors of 3.3, 2.7, and 8.1 degrees, respec-
tively, shown in Figure 6A. The CO position was estimated
with mean, median, and maximum errors of 0.22, 0.19, and
0.43 mm, respectively, shown in Figure 6B. The range of
Copyright © 2021 Otology & Neurotology, Inc. Unauth

FIG. 6. The top row shows histograms of modiolar-axis orientation e
measured in millimeters (B) for the 11 cross-validation iterations for the l
data sets that obtained the respective bin-sized error when matched wit
whisker plots of modiolar-axis orientation error (C) and cochlea-origi
generated using the statistical distribution of the data in the correspond
error results from the physical validation tests.
each histogram of Figure 6 spans from the minimum to the
maximum of the estimation errors of the 22 data points.

The box-whisker plots shown in Figure 6C and D
display respective modiolar-axis orientation errors and
CO position errors using the 2000 simulated guinea-pig
feature sets. The modiolar-axis orientation results predict
a mean error of 2.8 degrees, a median error of 2.7
degrees, and a whisker at 7.0 degrees. The CO position
results predict a mean error of 0.21 mm, a median error of
0.20 mm, and a whisker at 0.50 mm. Outliers beyond the
whiskers are not plotted; these outliers made up 3.2% of
the simulated feature sets. The results of the physical
validation test are included as red circles in Figures 6C
and D, showing an average CO position error of 0.65 mm
with a maximum of 0.80 mm and an average modiolar-
axis orientation error of 9.3 degrees with a maximum of
12.4 degrees.

DISCUSSION

Using the method described, the pose of a guinea-pig
cochlea can be estimated using six externally localized
observable features on the guinea pig. This work enables
orized reproduction of this article is prohibited.

rror measured in degrees (A) and cochlea-origin position error
eft and right sides; each bin displays the total number of validation
h the remaining 10 training data sets. The bottom row shows box-
n position error (D) for 2000 simulated guinea-pig feature sets
ing histogram. Circles overlaid on the box-whisker plots represent
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researchers conducting cochlear-implant surgical inser-
tions, and robot-assisted insertions in particular, to esti-
mate the location of a guinea-pig cochlea without the
need for any CT scans with submillimeter CO position
error and modiolar-axis orientation error largely within
the small-angle approximation.

The wide range of guinea-pig weights used in this
study, with the heaviest guinea pig being 110% heavier
than the lightest guinea pig, suggests that our model is not
particularly sensitive to the size of the guinea pig.

Results from the physical validation test with guinea-
pig skulls had larger errors than those predicted in
simulation, however, these results are likely to be more
indicative of what should be expected during an actual
surgical procedure. Ultimately, demonstration of atrau-
matic insertion using this approach will need to be
validated in an in vivo model.

Instructions and code for using this algorithm and a
labeled segmentation example file can be found at https://
www.telerobotics.utah.edu/ and https://github.com/duse-
vitch/gp-cochlea-estimator.
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