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Localization Method for a Magnetic Capsule Endoscope Propelled by a
Rotating Magnetic Dipole Field
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Abstract— Previous research on the localization of wireless
capsule endoscopes with magnetic fields and sensors has typi-
cally utilized incremental methods. This paper provides a non-
iterative solution to determine the six degree-of-freedom (6-
DOF) position and orientation of a wireless capsule endoscope
being actuated by a rotating magnetic dipole. Non-iterative
solutions in the past have only been used to locate immobile
objects. We experimentally demonstrate that our algorithm
calculates the 6-DOF position and orientation of capsules that
are truly stationary as well as those that are operated in
the “step-out” regime, where the magnetic field is rotated too
quickly for the capsule to rotate synchronously, but the capsule
does undergo chaotic movement.

I. INTRODUCTION

Utilizing magnetics for actuation and localization of cap-
sule endoscopes in the gastro-intestinal tract has become an
active area of research. If the capsule is being controlled
through magnetic actuation [1]-[6], little or no additional
equipment is required to localize the capsule using magnetic
fields. There are two main approaches for magnetic localiza-
tion. The first is to use external sensors to localize a small
magnet placed inside of the capsule [7]-[9]. The second
method involves placing magnetic sensors inside the capsule
and localizing relative to an external magnetic source [10]-
[12]. Irrespective of where the sensors are arranged, there are
numerous different methods of utilizing the collected data to
determine the capsule’s position and orientation. The most
popular approach is to use incremental methods [11], [13].
These iterative approaches employ optimization algorithms
that depend on an initial guess of the solution. Poor initial
conditions can cause convergence to a local minimum instead
of the true position and orientation. To overcome this, [14]
and [7] combine two algorithms: the first gives a good
approximation for initial conditions, which are then used in a
non-linear optimization algorithm. The use of two algorithms
further increases complexity and computation time. Other
approaches include utilizing neural networks [10] and using
precalculated data along with on-board sensing to determine
the capsule’s position and orientation [12], but to date these
methods are somewhat time intensive.

Paperno et al. [15] demonstrated that the magnitude of
a rotating magnetic field generated by a rotating magnetic
dipole fluctuates elliptically at every point in space. The long
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Fig. 1. The magnetic field magnitude generated by a rotating magnetic
dipole, such as a rotating permanent magnet (RPM), fluctuates elliptically
at any point in space. The size of the ellipse changes with the distance
between the RPM and the point.

axis of the ellipse is defined by the maximum-magnitude
magnetic field B,,,x, and the short axis is defined by the
minimum-magnitude magnetic field B,,;,,, as shown in Fig. 1.
With this knowledge they were able to solve for the position
and orientation of a static magnetic sensor in a known quad-
rant, using equations derived from the point-dipole model.
Their result is based on finding the angles of a rotating
electromagnetic coil using a phase-lock technique. We have
reworked this solution in a linear-algebraic approach, which
we believe is more straightforward. In addition, there are
known errors in the orientation algorithm of [15], which have
been corrected here.

Inspired by [15], Ge et al. [16] use two orthogonal coils
in a “searching” technique to determine the position of the
coils that produces the maximum field at the sensor. The
accuracy of this method is directly dependent on how well it
is able to align the coils with the maximum measurements.
This also restricts the motion of the manipulator and makes it
challenging to actuate the capsule with the same coil system
being used for localization.

In our lab we are investigating the use of a single rotating
permanent magnet (RPM) positioned in space by a 6-degree-
of-freedom (6-DOF) robotic manipulator to actuate wireless
capsule endoscopes from arbitrary positions [5]. To most
efficiently control the capsule, its state in the field (e.g.,
Is the capsule rotating synchronously with the field or
has it stepped out of synchronization?) must be known so
appropriate adjustments to the RPM’s pose and speed can
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Fig. 2. The sensor configuration from [17] with each sensor labeled with
the field direction it is measuring and its position from the center of the
magnet in millimeters. The grey sensors are not visible from this angle, but
are located at the equivalent negative position.

be made to actuate the capsule in the desired fashion. We
have previously created a three-axis magnetic sensor array
using six linear Hall-effect sensors that was designed for
the purpose of determining the state of the capsule [17].
This sensor configuration, shown in Fig. 2, was chosen
because the internal magnet’s field is parallel to each sensor
at its position, such that the sensor measurements are not
corrupted by the close proximity of the internal magnet. In
addition, it is possible to average the two sensor readings in
each cardinal direction to approximate the three-dimensional
magnetic field vector at the center of the capsule’s internal
magnet with negligible interference from the magnet itself.
Using this previously designed sensor arrangement, our goal
is to localize the capsule’s position and orientation relative
to the RPM, and thus relative to the world coordinate frame,
as the RPM is used to actuate the capsule.

In our proposed actuation/localization concept, the RPM
is used to actuate the capsule at relatively slow synchronized
frequencies, and periodically the RPM quickly completes
an integer number of rotations above the step-out frequency
of the capsule to update the localization estimate (step-out
occurs when the field is rotating too quickly, given the magni-
tude of the field, for the capsule to remain synchronized with
the field), after which it returns to the synchronous actuation
mode. We have already demonstrated that this synchronous
actuation mode is quite robust against localization errors
[18]. In this paper, we propose a localization method that
provides a fast alternative to iterative algorithms, and is
straightforward to implement. Unlike previous non-iterative
approaches, which focused exclusively on stationary objects,
this solution permits localizing both when the capsule is
stationary and also when it is rotating chaotically above the
step-out frequency.

II. POSITION DETECTION

Because the orientation of the sensor arrangement is not
known a priori, we determine the position based strictly on

the magnitude of the field being measured by the sensors,
and the pose of the RPM dipole moment when the maximum
and minimum magnitudes occur. Using this method, it is
possible to reduce the potential capsule positions to four
points. However, with our understanding of where the RPM
is with respect to the patient, narrowing down the capsule’s
position between these four points in space may be possi-
ble without any further rotations of the RPM. Regardless,
changing the axis of rotation for the RPM and performing a
second rotation would reduce the possible capsule locations
to a single point, and we have already demonstrated the
ability to change the RPM position in this fashion while still
continuously actuating the capsule [5].

Assume an RPM is positioned in space by a 6-DOF robotic
manipulator. The center of the RPM is the origin for the
robot’s end-effector coordinate frame, Q. Any vector in this
coordinate frame will be denoted throughout this paper with
an “R.” The center of the small permanent magnet placed
inside the capsule is the origin of the capsule’s coordinate
frame, O¢. Any vector in this coordinate frame will be
represented with a “C.” All unit vectors are denoted with
a “"”. As depicted in Fig. 1, there exists some vector p
that describes the shift in position between Or and O¢. In
addition, there exists some rotation matrix Rpc that rotates
the capsule’s coordinate frame to align it with the robot’s.
By solving for the position vector p and the rotation matrix
Rprc, the capsule’s relative position and orientation to the
external magnetic source is known.

Four assumptions were made to develop this method: (1)
The direction of the magnetic dipole moment M for the RPM
is known as it rotates. In practice, this is measured with an
optical encoder in our current experimental setup. (2) The
RPM rotates about Q, so that M rotates in the plane normal
to 2. (3) Buin and By, are accurately known using sensors
placed inside of the capsule. (4) The point-dipole model
accurately represents the magnetic field generated by the
RPM (errors induced with this assumption for a nonspherical
RPM are quantified in [19]). With this final assumption, the
field at any capsule position p is given by [20]:

(31515T B ]I) M — Ho

Ho
B
) prmE
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where g is the permeability of free space, I is the identity
matrix, and B is a symmetric matrix that depends only on
the direction of p.

As described in [5], at any position in space p, the
magnitude of the field |B| fluctuates elliptically:

f1o|M]|
B| = 3
4rp|

B is always normal to the local rotation axis w, as shown in
Fig. 1. The maximum and minimum field magnitudes
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occur when the RPM’s dipole moment M is parallel and
perpendicular to p, respectively, where p is the projection of
p onto the plane normal to Q (.e., the plane in which M
resides).

The magnitude of the position vector, which is the distance
from the center of the capsule’s magnet to the center of the
RPM, can be computed by rearranging (4):

1

#0|M| )3
= — 5
| <4W|Bmm| )

This gives a spherical surface of possible capsule locations
with a radius of |p| from the center of the RPM.

To find the direction p, the angle 6 between M and P is
calculated by rearranging (2):

2
2 TS| 4n[B[p/’
cos 9:<M p) == ( -1 (6)
3 ( oM
There are four possible solutions for #. For numerical stabil-
ity, we use arctan instead of arccos to solve for 6:

/1 —cos26
= |+ ——— 7
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As described in [5], when the magnitude of the magnetic
field is maximized, M is parallel to p. The angle solved for
in (7) is thus also the angle between p and p.

Assuming that @ is the rotation axis of the magnetic field
at position p, @ will always be perpendicular to the plane in
which B resides, resulting in the following equation:

N Ho
B'w =
“ 7 anlpP
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sin“ 0
0 = arctan | +4/ ——
cos2 0
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The axis of rotation for the RPM 2 can then be uniquely
solved for because Bw is constant for a given p and M7 =
0 for all M. Therefore, only one solution for Q) exists that
satisfies (8) and remains constant regardless of M rotation:

O = Bo 9)

By expanding (9), it is possible to prove that the rotation

axis ﬂ, the capsule’s position p, and the rotation axis of

the local magnetic field @ are coplanar as follows. Let ¢

represent a scalar constant for normalization, and since from
[5], B~* = (B — 1), (9) can be written as

AT A
O =cB = (30("29)> p—c (10)

and thus @ is in the span of p and €2, and therefore &, P,
and €2 are coplanar.

Using Rodrigues’ formula it is possible to rotate a vector
v about an arbitrary axis k by some angle 6 [21]:

v’ =vcosf + (R X V) sin9+l;(f(-v) (1 —cosf) (11)
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Fig. 3. The four possible p are shown as they would appear in the 2-Mmyax
plane. These result from the four solutions to 6 from (6).

Because p and Q are coplanar and p is parallel to Mmax, by
choosing k = Mmax x Q) = Mmin, where Mmax and Mmin
are the directions of M at the maximum and minimum field
magnitudes experienced by the capsule, k is normal to p and
p. Using (11), we can rotate p, or equivalently M.y, by 6
about Kk to calculate p. There are four possibilities because of
the four possible angles; these are shown in Fig. 3. Finally,
the position vector between the RPM and the capsule can
be solved for by p = |p|p. Pseudocode to implement the
position localization method is given as Algorithm 1.

III. ORIENTATION DETECTION

As depicted in Fig. 1, when the field rotates around @,
it produces an ellipse at any point in space. The size is
dependent on the distance to the point. As long as the
distance remains the same, the size of the ellipse will remain
constant. If the capsule is rotated, the two coordinate frames
are no longer aligned and the ellipse in the capsule’s frame
of reference will be rotated from the original ellipse. The
rotation transformation between the capsule’s and the robot’s
frame of reference will be the same as the rotation between
the two ellipses.

Because the position was previously found, we can de-
termine the magnetic field at the capsule’s position using
(1). This corresponds to the measurements that we could
expect if the capsule’s frame of reference was aligned with
the robot’s. The maximum and minimum field measurements
were previously measured in the capsule’s frame of reference
to calculate the position. Taking the cross product of these
two perpendicular vectors Bomin and Beomax results in a
third vector Bc| = Bo max X Bomin that is normal to the
previous two. Creating a 3x3 matrix Ag with these three
vectors as columns, and the equivalent A calculated using
the point-dipole model (1), it is possible to calculate the
rotation matrix between the two coordinate systems:

Rpc = ApAg! (12)
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Algorithm 1 Pseudocode for determining the position of the
capsule.

S stores n field measurements taken by the capsule’s sensors
during one rotation of the RPM, and D stores the direction of
M corresponding to each field measurement, B, .« and By,
are the fields measured by the sensor with the maximum and
minimum magnitudes, respectively, M.« is the value of M
at the instant that B, occurs, Q) is the axis of rotation of
the RPM, and 6 measures the angle between p and M.

1: S <—populated with data from sensors

2: D <—populated with direction of M for every sensor

measurement in S
3: Biax, Bmin, Mmax < FINDMAXANDMINFIELD(S, D)

1
. poM| )3
& |p| < (47r|B1ni11|

3N 2
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9: 04 +— —0;

Miax

10: Mpypax < M
11: K 4 My X Q2

12: for i = 1 to 4 do o
13: P; < Muax c0s(0;) + (K X Miax) sin(6;)

14: +k(k - Myax) (1 — cos(6;))
15: p; < [p[p;
16: function FINDMAXANDMINFIELD(S, D)

17: S[0] <0
18: for i = 1 to size{S} — 1 do

19: prev < |S[i — 1]
20: cur < |S[d]|
21: next < |S[i + 1]
22: if cur — prev < 0 & next — cur > 0 then
23: Buin < S[{]
24: else if cur — prev > 0 & next — cur < 0 then
25: Biax  S[i]
26: M,,.x < DJi]
where
AC = [BC max BC min BCJ_]
A&R = [BR max BRmin BRL]

Although this method will work accurately to calculate
the orientation when the capsule is completely stationary
and the sensors are free of noise, in practice three data
points are not sufficient. To receive a better estimate, we can
use every sensor measurement gathered during one complete
rotation of the RPM (or at least more than three). By
adding every measurement taken as a column to A and the
corresponding expected measurement to A, each becomes a
3xn matrix where n is the number of measurements taken in

one rotation of the RPM. (12) then uses a pseudo-inverse to
solve for the rotation matrix using a least-squares approach.
Assuming that the capsule is in step-out and not able to rotate
synchronously with the field, it will oscillate chaotically
trying to align itself with the external magnetic field. The
motion will average to an orientation that can be found using
this method.

When the capsule is in the step-out regime, there is no
longer a pure rotation matrix that aligns the robot and capsule
coordinate frames because the capsule has moved throughout
the data set. Instead, we must find the rotation matrix that
best aligns the frames. From [22], it is known that a rotation
matrix can be written in exponential form:

R=¢° (13)
where S is a skew-symmetric matrix:
0 —S83 S9
S=1] s3 0 —s (14)
—S82 S1 0

with the rotation axis k and the angle 6 embedded in it:
15)

Using the rotation matrix that was calculated by (12), it
is possible to solve for the skew-symmetric matrix S =
In(R). Because of the noisy data, S will not necessarily be
skew-symmetric. By converting S to a true skew-symmetric
matrix—setting the small diagonal terms to zero, and aver-
aging the appropriate values to estimate si, ss, and s3—a
best-fit rotation matrix can be found by substituting this new
true skew-symmetric matrix into (13).

IV. EXPERIMENTAL SETUP

Our method was tested by localizing a prototype capsule
that measures 25mm in diameter by 50.5mm in length.
The capsule rotates in a clear acrylic tube that was rigidly
held in place. The RPM was chosen as a 25.4 mm diameter
by 25.4mm long cylindrical Grade-N42 NdFeB permanent
magnet and was attached to the end-effector of a Yaskawa
Motoman MH5 6-DOF robotic manipulator. The RPM was
rotated with a Maxon 24 V A-Max DC motor in conjunction
with an Advanced Motion Controls servo control drive and
amplifier. This setup is shown in Fig. 4.

The prototype capsule measures the magnetic field at the
center of its 108 mm® Grade-N52 cubic internal permanent
magnet using six one-axis Allegro A1392 linear Hall-effect
sensors with a sensitivity of 25 V/T and a range of +64 mT.
The capsule is pictured in Fig. 5. The sensor measurements
are taken at 200 Hz and are wirelessly transmitted from the
capsule to a computer where the localization algorithm is
run. The sensors were calibrated before every test to remove
any offset from the capsule’s internal magnet; the Earth’s
magnetic field (approximately 50 uT) is negligible.

The capsule was placed at a known position and ori-
entation relative to the 6-DOF robot with a £2mm and
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Fig. 4. Experimental setup of system with a diametrically magnetized
RPM mounted to a 6-DOF robot. The capsule was held stationary (shown)
and allowed to rotate in step-out (not shown) in the clear acrylic tube fixed
rigidly in place.

45 degree accuracy, respectively. This relative distance was
held constant throughout each test. When the capsule was
being tested in step-out it was able to oscillate chaotically;
otherwise it was held rigid. The RPM was rotated for 30
seconds and the field measurements collected by the sensors
were wirelessly transferred back to the computer; this amount
of data was collected for purposes of analysis, but in practice
as little as one complete cycle is needed. Concurrently, the
position of the RPM dipole was measured using an optical
encoder attached to the motor that spins the RPM.

V. RESULTS AND DISCUSSION

In the first test, represented in Fig. 6(a), the RPM was
rotated at 5Hz, such that the capsule was operating in the
step-out regime. It oscillated back and forth in the field trying
to align its magnetic dipole moment with the RPM’s. Using
our developed algorithm, the position and orientation of the
capsule in a known quadrant were found with total errors
of 11 mm in the position and 11 degrees in the orientation.
In Fig. 6, the yellow capsule represents the known position
with respect to the external RPM, and the red capsule is
the position estimated using our algorithm. In the bottom
portion, the black dots are the sensor’s field measurements,
which have been rotated from the capsule’s frame to the
robot’s using our calculated Rpc. These measurements are
overlaid on the expected magnetic field (red line) calculated
using (1) at the previously estimated position.

To verify the algorithm’s performance on stationary ob-
jects, a second test was conducted with the capsule held
rigidly, as depicted in Fig. 6(b). The total position error
decreased to 3.8 mm, but the orientation error was slightly
higher at 13 degrees; although this increase in orientation
error from the step-out case is counter-intuitive, it is within
the accuracy of the baseline.

These two examples are representative of the localization
results that we have found experimentally with the proposed
method when post-processing 30 seconds of data. With
an online localization system, utilizing less data will be
desirable; recall that the RPM will be briefly rotated above
the step-out frequency to perform localization. Although the

-
- X

Fig. 5. From left to right, the contents of the capsule include the electronics
for wireless communication, the sensor array with six Hall-effect sensors
surrounding a permanent magnet, and coin-cell batteries. For a closer view
the sensor array is pictured in the bottom left and the communication PCB
in the lower right.

method can work with as little as one rotation of the RPM,
the average total position error in the step-out case doubled
when used in this manner. Using 8 rotations, the error
decreases to 16 mm, and 20 rotations results in 12.6 mm total
error, which is only slightly higher than using 30 seconds
of data (150 rotations). These errors are sufficiently small
for our previously developed magnetic-actuation algorithms
to be used [18]. However, further exhaustive testing of the
workspace (both theoretical and experimental) still needs to
be completed to fully grasp how the pose of the RPM with
respect to the capsule influences the localization errors. Addi-
tionally, a Kalman filter that utilizes a model of the capsule’s
kinematics could significantly improve the localization.

This method was developed assuming the RPM, which
rotates normal to its dipole moment, could be modeled with
the point-dipole equation. In addition, it was assumed that
Baxs Bmin, and the dipole orientation could be perfectly
measured. Although our method would provide perfect local-
ization if these assumptions are true, in practical situations,
this is never the case. In our hardware setup, there was a
time lag between the measurements of the sensors and the
dipole orientation. This led to position errors because the
dipole moment pose is used in the calculation of the direction
of p. We solved this by post-processing the data; however
with improved synchronization, this method could be used
for online localization. This will be the goal of future work.

We have yet to explore the movement of the RPM with
respect to the capsule in order to improve the localization
results (similar to the concept of persistent excitation), which
will also eliminate the false potential positions that occur,
such that the “known quadrant” assumption can be relaxed.
In addition, increased accuracy may be achieved by using the
developed algorithms in conjunction with Bayesian filters,
such that RPM movements are chosen that best reduce
uncertainty in the localization estimate.

VI. CONCLUSION

In this paper, we developed a method to determine the
position and orientation of a magnetic capsule endoscope
using the same rotating dipole field that is being used to
actuate/propel the capsule. The method was experimentally
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Fig. 6. The position of the capsule estimated by the localization algorithm is shown by the red capsule relative to the known position (yellow) and the
RPM on the end of the robot. In (a) the RPM was rotated quickly such that the capsule was in the step-out regime, and in (b) the capsule was held rigidly.
The sensor’s field measurements (black dots) were rotated from the capsule’s frame to the robot’s and were overlaid on the expected measurements (red
line) to show the measured and computed orientation beneath the respective robot position.

verified and was found to result in sufficiently small errors
to be used by existing magnetic-actuation methods. In the
future, this algorithm can be implemented for real-time
localization of a capsule endoscope, subject to improvements
in data-transfer rates.

VII. ACKNOWLEDGMENT

The authors would like to thank Dr. Thomas Schmid for
assistance with the design of the capsule prototype.

REFERENCES

[1] A. Uehara and K. Hoshina. Capsule endoscope NORIKA system. Min
Invas Ther and Allied Technol, 1(1):227-334, 2003.

[2] X. Wang and M.Q.-H. Meng. Computational aspects in actuation and
guidance mechanism for wireless active capsule endoscope. In IEEE
Int. Conf. Intelligent Robots and Systems, pages 1198-1203, 2008.

[3] G. Ciuti, P. Valdastri, A. Menciassi, and P. Dario. Robotic magnetic
steering and locomotion of capsule endoscope for diagnostic and
surgical endoluminal procedures. Robotica, 28:199-207, 2010.

[4] F. Carpi, N. Kastelein, M. Talcott, and C. Pappone. Magnetically
controllable gastrointestinal steering of video capsules. [EEE Trans.
Biomed. Eng., 58(2):231-234, 2011.

[5] A. W. Mahoney, D. L. Cowan, K. M. Miller, and J. J. Abbott. Control
of untethered magnetically actuated tools using a rotating permanent
magnet in any position. In /EEE Int. Conf. Robot. Auto., pages 231—
234, 2012.

[6] J. Kim, Y. Kwon, and Y. Hong. Automated alignment of rotating
magnetic field for inducing a continuous spiral motion on a capsule
endoscope with a twistable thread mechanism. Int. J. of Prec. Eng. &
Manu., 13(3):371-377, 2012.

[71 C. Hu, M. Li, S. Song, W. Yang, R. Zhang, and M.Q.-H. Meng.
A cubic 3-axis magnetic sensor array for wirelessly tracking magnet
position and orientation. IEEE Sensors J, 10(5):903-913, 2010.

[8] W. Yang, C. Hu, M. Li, M.Q.-H. Meng, and S. Song. A new
tracking system for three magnetic objectives. IEEE Trans Magnetics,
46(12):4023 -4029, 2010.

[9] W. Weitschies, H. Blume, and H. Monnikes. ~Magnetic marker
monitoring: High resolution real-time tracking of oral solid dosage
forms in the gastrointestinal tract. European J Pharmaceutics and
Biopharmaceutics, 74(1):93 — 101, 2010.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

5333

X. Guo, G. Yan, and W. He. A novel method of three-dimensional
localization based on a neural network algorithm. J of Med Eng &
Tech, 33(3):192-198, 2009.

M. Kim, Y. Hong, and E. Lim. Position and orientation detection of
capsule endoscopes in spiral motion. Int. J of Prec. Eng. and Manu.,
11(1):31-37, 2010.

M. Salerno, G. Ciuti, G. Lucarini, R. Rizzo, P. Valdastri, A. Menciassi,
A. Landi, and P. Dario. A discrete-time localization method for capsule
endoscopy based on on-board magnetic sensing. Meas. Sci. Technol.,
23(1):015701, 2012.

H. Son and K. Lee. Distributed multipole models for design and
control of PM actuators and sensors. IEEE/ASME Trans. Mech.,
13(2):228-238, 2008.

W. Yang, C. Hu, M.Q.-H. Meng, S. Song, and H. Dai. A six-
dimensional magnetic localization algorithm for a rectangular magnet
objective based on a particle swarm optimizer. IEEE Trans. Mag,
45(8):3092-3099, 2009.

E. Paperno, I. Sasada, and E. Leonovich. A new method for magnetic
position and orientation tracking. [EEE Trans. Magn., 37(4):1938—
1940, 2008.

X. Ge, Y. Wang, N. Ding, X. Wu, Y. Wang, and Z. Fang. An
electromagnetic tracking method using rotating orthogonal coils. IEEE
Trans Magnetics, DOI:10.1109/TMAG.2012.2203917, 2012.

K. M. Miller, A. W. Mahoney, T. Schmid, and J. J. Abbott. Propri-
oceptive magnetic-field sensing for closed-loop control of magnetic
capsule endoscopes. In IEEE Int. Conf. Intel. Robots & Sys., pages
1994-1999, 2012.

A. W. Mahoney and J. J. Abbott. Control of untethered magnetically
actuated tools with localization uncertainty using a rotating permanent
magnet. In /IEEE Int. Conf. Biomedical Robotics and Biomechatronics,
pages 1632-1637, 2012.

A. J. Petruska and J. J. Abbott. Optimal permanent-magnet geometries
for dipole field approximation. IEEE Trans. Mag, 49(2):811-819,
2013.

E. P. Furlani. Permanent magnet and electromechanical devices:
materials, analysis, and applications. Academic Press, San Diego,
California, 1st edition, 2001.

D. Koks. Explorations in Mathematical Physics. Springer, New York,
1st edition, 2006.

R. M. Murray, Z. Li, and S. S. Sastry. A Mathematical Introduction
to Robotic Manipulation. CRC Press, Boca Raton, 1994.



