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166 CHAPTER 7 Bacteria-Inspired Microrobots

7.1 Introduction

Artificial bacterial microrobots are swimming microrobots that mimic the propulsion
mechanism of bacteria, which use the rotation of helical filaments for motion genera-
tion. The potential applications for bacteria-inspired microrobots are diverse, ranging
from diagnostic and therapeutic tasks in vivo to probing, analyzing, and transporting
microobjects in biology, to fluidic applications in lab-on-a-chip devices. The develop-
ment of microrobotics systems envelops numerous design challenges, including the
fabrication of microagents, providing wireless power and finding locomotion meth-
ods suitable for the low Reynolds (Re) number flow regime in which they exist, to
name just a few (see Fig. 7.1).

This chapter will first take the reader through an introduction into the fluid
mechanics at the microscale in general and present common terms and modeling
methods. The following section covers the description of how bacteria swim, how
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FIGURE 7.1

A road map for helical swimming microrobots we call artificial bacterial flagella (ABFs).
Reproduced with permission from Ref. [1], The Royal Society of Chemistry.
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we can model their motion, and how the fabrication of similar-sized bacterial micro-
robots has been achieved in recent years. Next, we address the challenge of power
supply for bacteria-inspired microrobots and the use of rotating magnetic fields for
actuation and steering. Recent success in actuating and steering these microrobots
has allowed the investigation of their swimming behavior. Interestingly, the effects
of boundaries on ABFs can be directly compared to the findings of how swim-
ming bacteria are affected. A number of phenomena, including frequency dependent
swimming behaviors and gravitational influences, are unique to bacterial robots
and deserve special attention. The last section summarizes the success in utilizing
bacterial microrobots for manipulation tasks thus far and discusses future challenges.

Fluid mechanics at low Reynolds numbers

Humans live in a macroscopic world, and we have developed an intuition for the
world around us and expect, for example, that turbulence occurs when fast flows,
either gas or liquid, hit a blunt obstacle. As we enter the microscopic world, even
though the laws of physics remain the same, the relative importance of forces and
effects changes drastically. When engineering microrobotic systems, it is important
to learn a new intuition about the behavior of physics at the microscale. The first
section of this chapter gives an insight into fluid mechanics at low Reynolds numbers
and methods available to model laminar flows and the motion of microswimmers.

The Reynolds number

In the field of fluid mechanics, the most commonly discussed one is the dimensionless
Reynolds number (Re), because it plays an important role in characterizing the flow
regime, such as laminar or turbulent flow, and it is used to define the transition from
one flow regime to the other. It is defined as

UoLp  inertial forces
Re = ~

7.1
n viscous forces (7.h

where Uy and L are the free-stream velocity and characteristic length, respectively,
and p and 7 are the density and dynamic viscosity of the fluid. The Reynolds num-
ber is a measure of the ratio of inertial to viscous forces, and for Re < 1, the flow
becomes very “viscous,” e.g., like honey, and is called creeping or Stokes flow. In
addition to the “traditional” Reynolds number, a “rotational” Reynolds number Re,
can be defined as

L2
Re, = el

(7.2)

where w is the rotational speed. Both Re and Re, have to be considered when
determining the flow regime.
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Micro-organisms as well as the microrobots discussed in this chapter swim in a
low Re number regime simply because of their size and speed. The Stokes equation,
which describes the flow, is given by

Vp=nVU+f (7.3)

where U is the velocity vector field, p is the pressure scalar field, n is the dynamic
viscosity, and f is the body forces acting on the fluid. Equation (7.3) is a simplification
of the Navier-Stokes equation and is correct only for Re = 0, but can be used as an
approximate solution for Re < 1. Three important properties of the Stokes’ flow shall
be addressed separately. The first one is the fact that inertia is negligible; this can be
seen directly from the Reynolds number in Eq. (7.1). The second characteristic is the
time-invariance, and the third one is the linearity of the Stokes’ equation. These two
latter properties can be recognized from the Stokes’ Eq. (7.3).

7.2.1.1 On the lack of inertia

The negligible effect of inertia in Stokes’ flow is best demonstrated with a case study
of a microsphere in water. A sphere with a radius of R =1 wm that is pulled at a
velocity of Uy = 10jum/s has a Reynolds number of Re &~ 10~ assuming a density
and dynamic viscosity of water of p,, &~ 103kg/m?> and 1 ~ 1073 Pa-s, respectively.
Without external force, the sphere coasts for a distance d before it comes to a halt.
The coasting distance can be calculated by solving the differential equation mU(r) +
Y, U(t) =0, where ¥, = 6mrnR is the translational drag coefficient of a sphere in
Stokes flow. For a microsphere with density p; &~ 10*kg/m?, the coasting distance
is only d ~2A, and it is apparent that inertial effects are indeed very small. The
coasting time is computed to be around ¢ &~ 2 us. This suggests that the acceleration
and deceleration times are very short and are also generally considered negligible.
Hence, a microswimmer reaches the steady-state motion almost instantaneously.

7.2.1.2 On the time-reversibility

The time-reversibility can be recognized from the lack of a time derivative of the flow
field in Eq. (7.3), and it has an important impact when microswimmers want to propel
themselves. At high Reynolds numbers, it is possible to generate thrust by moving
a stiff oar up and down at different speeds. The momentum of the water is different
when being moved fast (down-beat of the oar) or slowly (up-beat of the oar). In
creeping flow conditions, the up and down movement of a stiff oar does not yield a net
propulsion but simply a back and forth movement because the flow is almost perfectly
reversible. This is referred to as the scallop theorem [2]. This reversibility dictates
the propulsion methods that can be employed by microscopic swimmers. In order
to produce a net displacement, a microswimmer has to go through a non-reciprocal
motion.! This concept can be demonstrated with a theoretical three-link swimmer

I'The scallop theorem is only valid in a Newtonian liquid. It has been demonstrated that reciprocal
motion in a Non-Newtonian liquid can create a net propulsion [3].
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depicted in Fig. 7.2. The two hinges offer two degrees of freedom (2DOF), and the
swimmer can go through a series of angle configuration. The non-reciprocal series of
configurations ABCDA (see Fig. 7.2A) results in a net displacement after one cycle.
The series of configurations ABCBA (Fig. 7.2B) on the other hand is reciprocal, and
no net displacement is achieved after one cycle [2]. The continuous rotation of a helix
is one such non-reciprocal motion and is used by bacteria, such as Escherichia coli, as
a propulsion method. Helical swimming is described in more detail in Section 7.3.1.

7.2.1.3 0n the linearity

The linearity of the Stokes’ equations plays an important role for the modeling of
fluid mechanics. In particular, it allows the superposition of singularity solutions; a
method that is the basis for most means used to solve the Stokes’ equations. This
method is further explained in Section 7.2.1. A very useful property for the modeling
of rigid body motions can be extracted from the linearity of the Stokes flow, which
is that the relationships between the body’s velocity U, rotational speed €2, external
force F, and external torque 7 are related linearly and can be represented by a matrix
equation of the following form [4]:

(7))

A,B, and C are each 3 x 3 matrices. For a sphere of radius R, the entries are A =
I-67wnR, B=0,and C =I-87nR>. There are bodies with no mirror symmetry planes,
e.g., chiral bodies, that have a matrix with B # 0. This means that a linear force can
drive a rotational motion or, conversely, an external torque can drive a linear motion.

Modeling Stokes flow

The modeling of Stokes flow around stationary or moving objects has been a research
topic for many decades [4—8]. The linearity of the Stokes equation allows for either
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FIGURE 7.2

Theoretical three-link swimmer as described in Ref. [2]. The two hinges can go through a
non-reciprocal (A) or reciprocal (B) configuration of angles. (A) The non-reciprocal series of
angle configurations ABCDA creates a net displacement after a whole cycle. (B) The
reciprocal series of configurations ABCBA leads to a back and forth motion only.
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an analytical treatment or numerical approaches with a lower computational cost than
modeling high Reynolds number flows. Researchers from a variety of fields, such as
fluid mechanics, mathematics, biology, and recently microrobotics, have interest in
low Reynolds number modeling and, accordingly, a multitude of publications are
available. This section is for the benefit of readers with little background in low
Reynolds number modeling to introduce them to commonly used terms and methods.

As the Stokes equation is linear, the superposition of singular solutions is pos-
sible, and it is often referred to as the method of fundamental solutions (MFSs) or
simply the singularity method. The superposition of singularities is the basis for all
the other methods and is therefore presented first. An introduction to the boundary
element method (BEM), the slender body theory (SBT), and resistive force theory
(RFT) follow.

7.2.2.1 Method of fundamental solutions (MFS)

For special types of external forces, the Stokes Eq. (7.3) can be solved analytically.
One such force is a singular point force f; = & (x — x,)b, where § is the Dirac delta.
This force acts on the fluid at the position xg, and b constitutes the direction and
magnitude of the force. The resulting flow due to the presence of this force can be
computed analytically by solving the equation

—Vp+nVU = —6§ (x — x4)b. (7.5)

The resulting flow field velocity u(x) is [9]

N 1 8 XX
u;i(x) = Sjj(x,xs) - bj, Sij(X) = % - + - (7.6)

where X = x — xg and r = |x|. Similarly, simple expressions can be found for the pres-
sure field and stress tensor [9]. Sj; is called a stokeslet or the Oseen—Burgers tensor
and is the most important fundamental or singularity solution of the Stokes’ flow.
The Stokes equation can be solved for different geometries by superposition of these
singularity solutions. This often involves a two-step approach, where the singularities
are first distributed and their strength determined such that the boundary conditions
are fulfilled, and subsequently the velocities at discrete field points of interest are cal-
culated using Eq. (7.6). The stokeslet is one of the most commonly used singularities,
though other singularities have been successfully employed [10].

7.2.2.2 Boundary element method (BEM)

The boundary element method (BEM) uses a different approach to solve the Stokes
flow around an arbitrary geometric body. Instead of directly superposing singularities,
an integral equation over the surface of a body is found:

uj(xg) = /Sui(x)Tijk(x,xs)nk(x)dS(x) _[gsji(xva)ﬁ(x)dS(x) (7.7)
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by using the Lorentz reciprocal theorem [9]. S;; is the stokeslet, Tix(X) = —3XiXjxr/
4mnr’, and f = on is the modified boundary traction. Details on the derivation and
the application of this method can be found in the literature [7,9, 11-16]. The drag
force on a body, a common parameter of interest, is contained in the boundary traction
force f introduced in this method.

Equation (7.7) is not valid at the point of the singularity xy and special integra-
tion methods have to be used to solve Eq. (7.7) over the surface that includes the
singularity. One way to avoid this problem is by using the method of regularized
stokeslets established by Cortez [17, 18]. Instead of solving the Stokes’ equation for
a point force (see Eq. (7.5)), which is singular at the point x;, the force is applied
over a spreading function distribution &, (x — x) with no singular point. The Stokes’
equation that needs to be solved has the form

—Vp+nV2U = —®, (x —x,)f (7.8)
where @, is a cutoff function that is not singular at x; and with the property

f O_OOO ®,(x)dx = 1. Instead of finding the “traditional” fundamental solution, i.e., the
stokeslet Sjj, the new regularized stokeslet is found.

rP42e? (g — X)) (X — Xs)
(}”2—}-62)3/2 (}’2—}-62)3/2

S5 (x.x5) = 8ij (7.9)

A parameter € is used to tune the spreading of the function ®., and for € approaching
zero, the regularized stokeslet Sfj goes toward S;;/(8wn). Regularized expressions
are also derived for the pressure and the stress tensor and are listed in Refs. [17, 18].
When the boundary integral is formulated with the regularized stokeslets, a numerical
solution can be found using quadrature rules for the surface integrals, without having
to treat improper integrals that contain singularities.

7.2.2.3 Slender hody theory

Generally, the influence of a body on the fluid can be modeled by distributing
singularity solutions over its surface as described above. With the slender body
approximation, the singularities are distributed only along the centerline, which
decreases the complexity of the calculation. In order that the slender body approxi-
mation is valid, the width of the body should be much smaller than the length w < L.
With the decreased complexity, even analytical treatment is possible and the solu-
tion for straight and curved slender bodies can be found [4, 19-22]. In recent years,
numerical methods have been used to solve the singularity distribution for arbitrary
(slender) shapes, such as rotating helices [23] or beating cilia [24].

7.2.2.4 Resistive force theory

The resistive force theory is somewhat different to the methods described previously.
It is not intended to calculate the flow profile but simply the force—velocity rela-
tionship between a body and its surrounding liquid. This relationship is described
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with a drag coefficient ' = —&qr, - u. The derivation is often based on the singular-
ity methods and a variety of authors have published coefficients for slender bodies
using the slender body theory [22,25,26]. Despite the fact that these coefficients
are only approximations, they are very powerful at deriving analytical or numerical
models at a low computational cost and give good results with regard to qualita-
tive behavior. A compilation of drag coefficients &; for slender bodies is presented in
Table 7.1, and the parameters are depicted in Fig. 7.3. The drag force can be computed
as F; = — [&ds-u;. In the case of a helical or undulating rod with a wavelength A,
the drag coefficients have to be understood as coefficients for a slender cylinder, with
circular cross section 2r, of length ds, where ds has to be integrated along the cen-
terline of the curved rod (see Fig. 7.3C). The coordinate system &; corresponds to the
local coordinate system of the cylinder. This needs to be considered when integrating
along the helical curve.

Table 7.1 Drag Coefficients Per Unit Length for Slender Bodies. The
Letters (A)—(C) Refer to Fig. 7.3, Where the Geometrical Parameters
are Depicted. The Drag Force is F; = — [ &;ds- u;.
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FIGURE 7.3

The parameters for calculating the drag coefficients for slender bodies in Table 7.1. (A)
Ellipse with a circular cross section; (B) cylinder with a circular cross section; (C) cylinder
element with a circular cross section of an undulating rod with a wavelength A.
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Bacterial swimming
Bacteria swim by rotating helical filaments

In nature, micro-organisms have found numerous ways to propel themselves, includ-
ing beating flexible flagella and cilia [2]. Bacterial swimmers, such as the extensively
researched E. coli bacterium, use a molecular motor to rotate helically shaped flagella
[27,28]. The continuous rotation of a helix is a non-reciprocal motion and, therefore,
perfectly suited for low Reynolds number navigation. The rotation of the flagella
has to be balanced by a counter-rotation of the bacterium’s body (see Fig. 7.4). The
rotation of the body does not add to the forward propulsion of the swimmer; indeed,
the opposite is true as the bacterium has to use energy to overcome the additional
drag caused by the rotation of its body. In order to understand how the rotation of a
helix creates a forward movement, we can look at a simplified RFT-based swimming
model.

Modeling helical swimming

In order to produce a displacement with a helical filament, two conditions have to
be fulfilled. First, a drag anisotropy on the slender filament has to be present. From
the drag coefficients listed in Table 7.1, it is apparent that this is indeed the case for
a slender cylindrical rod. The ratio of drag force on a cylinder moving perpendicu-
lar and on a cylinder moving parallel to its axis is approximately two (in fact it is
less). For example, if we look at a slender cylinder that has an oblique angle to the
gravitational pull (see Fig. 7.5A), the drag anisotropy of the cylinder causes a set-
tling velocity with components both in vertical and horizontal directions. The second
condition is that the cylinder has to go through a non-reciprocal motion, which is the
case for each section of the rotating helical filament.

In Section 7.2.1, it was shown that the motion of a rigid object can be presented
with a matrix Eq. (7.4). Using RFT, which provides us with a force—velocity rela-
tionship for slender cylinders, we can find the matrix entries for a helical geometry
by integrating along the length of the filament. A 3D-motion model and the detailed
derivation of this can be found in Ref. [29]. For the purpose of understanding helical
propulsion within the scope of this chapter, a simplified model will suffice. It was
Purcell who showed that helical propulsion could be approximated by using a 2 x 2
matrix to relate the forward velocity u, rotational speed w, force F, and torque T

Q

S =YaVo VAV

[0

FIGURE 7.4

A bacterium rotates its helical tail at a frequency of w. To achieve a force equilibrium on the
bacterium, the head has to counter-rotate with a (lower) frequency €.
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(A) A slender cylinder is pulled downward by gravitational forces at an oblique angle. The
resulting settling velocity is tilted by an angle 8. (B) 1D model of helical swimming relates
the velocity u, rotational speed w, force F, and torque T. The helicity angle is 8, A is the
pitch, Ry, is the radius of the helix, and R, is the radius of the spherical body. (C) Assuming
that the head does not influence the flow around the tail, the solution for the motion of the
entire swimmer is the sum of the solutions for the helical tail and the spherical body.

(D) The forward velocity of the helical swimmer is linearly dependent on the rotational
frequency. A large head creates more drag and decreases the slope of the
frequency-velocity relationship.

around the helical axis [2, 30] (see Fig. 7.5B).

OGO e

Purcell called the matrix in Eq. (7.10) the “propulsion” matrix, and its coefficients
a, b, and c are scalars. They can be found by establishing the force and torque
equilibrium in the direction of the helical axis

= 2R, <$|| sin?@ + £ 00329>
cos6

b =2mnRi (&) — &) sinf
& cos?0 + & sin29>

c= ZnnR;’l (
cosf

&) and &, correspond to the drag coefficients &, and &, =&, respectively, listed in
Table 7.1. This result is valid for an integer n number of turns. The helix parameters
A, 6, and Ry, are defined in Fig. 7.5B. F and T are an external force and torque,
respectively, one of which has to be present to move the helical body.

A simple approach to model the influence of the swimmer’s body is to approx-
imate it by the motion of a sphere. The propulsion matrix for a sphere is simple as
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it has no drag anisotropy and the resistance to translational and rotational motions,
Yy, = 67 nRp and ¥, = 8w nR?), respectively, is the same in all directions.

O

In the case of a bacterium, the head would rotate at a lower speed and in the
opposite direction to the helical tail. The microrobots discussed here do not have this
relative movement between their body and helical tail (see next section on Fabrication
methods). Instead, the body and tail form one rigid body and the propulsion matrices
of the body and tail can, under the simplifying assumption that the flows around each
part do not influence each other, be combined into one model:

(5)-(z2)(z)

where « =a+ vy, and y =c+ V.

This simple propulsion matrix (7.12) contains the basic information of bacterial
swimming. It demonstrates that, as b # 0, a forward velocity u can be generated by
the application of an external torque 7 and that it is only the helical tail that con-
tributes to this coupling. It shows that the forward velocity u is linearly related to the
rotational speed w and, as stated previously, the body does not add to the propulsion
but instead decreases the velocity slope (see Fig. 7.5D).

Fabrication of artificial bacterial microrobots

When engineering bacterial microrobots, it would be very difficult to replicate the
molecular motor design of bacteria. As we will see in Section 7.4, the use of rotating
magnetic fields to externally power the microrobots removes the need for an on-board
motor and bearing between the helical tail and the body. Instead, the focus lies on the
challenging fabrication of three-dimensional helix structures at the microscale. Three
methods for the fabrication of helical structures will be given special attention in
this section, as they produce micrometer-scale robots in a controllable and repeatable
manner. What they have in common is that they produce microrobots that have a
helical shape mimicking the bacterial flagella, which is why bacterial microrobots are
often referred to as ABFs. The other common design parameter is the use of magnetic
material in some form or another, which is essential for the magnetic actuation.

7.3.3.1 Self-scrolling method

The self-scrolling technique was the first method published capable of controllable
batch fabrication of bacterial microrobots [31-34]. The technique is based on a thin
film deposition onto a sacrificial layer using molecular beam epitaxy. Structures are
patterned with a lithography and a subsequent reactive ion etching (RIE) step. After
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removing the sacrificial layer, the remaining thin film structures roll up due to inter-
nal stresses in the material (see Fig. 7.6A). The rolling direction is preferred along
the (001) direction of the wafer. By choosing the alignment angle between the rolling
direction and the ribbon pattern, the helicity angle can be chosen precisely. The radius
of the helix is controlled by the thickness of the thin-film layer. Common materials
are Si or GaAs composites, which are not magnetic. A magnetic material, for exam-
ple nickel, is therefore deposited at one end of the ribbon before the self-scrolling
step. Using soft magnetic material requires the shape of the magnetic material to be
designed such that it has an easy axis of magnetization perpendicular to the helical
axis.

7.3.3.2 GLAD method

The glancing angle deposition (GLAD) uses vacuum deposition onto a substrate at an
oblique angle combined with a controlled motion of the stage holding the substrate
[35]. In standard thin film deposition, the atoms strike the surface at an angle of 90°.
If the substrate is tilted, the atoms agglomerate at nucleation sites, and the material
is only deposited along the “line-of-sight” resulting in gaps between the nucleation
sites and in pillars growing in the direction of the vapor flow. By a slow and steady
rotation of the stage, these pillars are grown into helical shapes (see Fig. 7.6B). This
method results in very densely packed batch fabrication of helical swimmers. Similar
to the self-scrolling ABFs, a magnetic material has to be deposited onto the GLAD
grown helices in a second step. This is performed by first releasing the structures
by sonication and evaporating cobalt on the helices laid flat on a surface. Unlike the

B
7
G

(©)

(A)

FIGURE 7.6

Fabrication methods. (A) Self-scrolling technique. After the patterned thin-film deposition,

the sacrificial layer is removed and the ribbons curl into helices. (B) GLAD method. Vapor

deposition at an oblique angle creates pillars growing from the nucleation sites. Rotation of
stage results in helical filaments. (C) 3D lithography. Polymerization of photocurable liquid

at the laser focal point. Movement of the stage allows the fabrication of arbitrary shapes.
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self-scrolled ABFs that have magnetic material only at one end and with a defined
shape, the GLAD grown helices have a magnetic film along the whole structure. For
magnetic actuation, the magnetization has to be perpendicular to the helical axis,
which is achieved by permanently magnetizing the cobalt in the last fabrication step.

7.3.3.3 3D lithography method

The previous methods used fabrication techniques designed for 2D structures in such
a way that the 3-dimensional helices could be created. In recent years, commercial
machines have become available that allow 3D lithographic patterning of photosen-
sitive polymers. A 2-photon polymerization occurs at the focal point of the laser and,
combined with a motorized stage, true 3D structures can be achieved with high flex-
ibility in terms of shapes and sizes (see Fig. 7.6C). A major drawback is the fact
that it is not a batch fabrication process. Also, the combination of multiple materi-
als and compatibility with other fabrication methods remain a challenge. One way to
circumvent an additional step of magnetic material deposition is to use a magnetic
particle polymer composite. Microstructures have successfully been written using
ferromagnetic particles embedded in the photocurable polymer. One possibility is
to permanently magnetize the particles in the polymer perpendicular to the helical
structures [36, 37].

Actuation of artificial bacterial microrohots

Bacterial microrobots swim by rotating around their helical axis which creates a for-
ward propulsion; i.e., along their helical axis. Unlike E. coli bacteria, which use an
on-board rotary motor to rotate their flagella, bacterial microrobots have no relative
motion between their helical tail and body and the rotation of the whole microrobot,
i.e., body and tail simultaneously, is achieved by a wireless application of a magnetic
torque.

Magnetic forces and torques

We use the term magnetic body for objects consisting of material that is either per-
manently magnetized or material that is magnetized when subjected to an external
magnetic field. The force F,, and torque T, on a magnetic body with volume V in an
external magnetic field H [ A - m~!] are

Fo=poVM-VYH (7.13)
Ty = pnoVM x H (7.14)

where o =47 x 1077 T-m-A~! is the permeability of free space and M is the mag-
netization [ A-m™']. For a permanent magnet, the magnetization is a constant value
but for soft-magnetic material it is a function of the applied field.

What we can see from these equations is that in a uniform field, i.e., where there
are no field gradients, there is no force on a magnetic body and only the magnetic
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torque acts to align the body’s axis of magnetization with the direction of the exter-
nal field. If a microrobot is put in such a field it will align itself to the field and
stop moving as soon as the angle between its magnetization M and the field H
becomes zero. In order to keep rotating the microrobot, the external field has to
be rotated continuously. The misalignment angle ¢ between the magnetization and
the field remains constant, while the rotational speed of the field vector is kept at a
constant speed. If the rotational speed changes, the misalignment angle changes as
well so that the magnetic torque is in equilibrium with the drag torque acting on the
microswimmer. As we showed in Section 7.2, this equilibrium state is reached almost
instantaneously.

The microrobot is not only actuated but also steered using magnetic torques.
The orientation of the bacterial robot with regard to the world frame is commonly
described with a pitch and a yaw angle (see Fig. 7.7). While swimming straight,
the external field is rotated in a plane perpendicular to the helical axis. To change
the orientation of the swimmer, the plane of rotation is simply deviated until it is
perpendicular to the new direction of motion and a steering torque is induced until
the artificial swimmer is aligned again. The propulsion and steering torque are not
independent; one torque is largest whenever the other one is smallest. This trade-off
between simultaneous propulsion and steering can easily be found (see Fig. 7.8A),
unless swimming at maximum velocity is attempted. A different way to change the
motion direction by 180° is to simply reverse the rotating direction of the field (see
Fig. 7.8B).

Uniform rotating magnetic fields are sufficient to actuate and steer bacterial
microrobots. Non-uniformities in the applied field, i.e., field gradients, lead to forces
acting on the microrobot, which can be seen from Eq. (7.13). These forces are

FIGURE 7.7

(A) Application of the magnetic torque. The torque T,, is induced due to the misalignment
between the magnetization M of the nickel plate, which is along its diagonal, and the
external field vector H. The magnetic field vector H is rotated in a plane perpendicular to
the helical axis with a rotational speed w. For a constant rotational speed, the misalignment
angle ¢ between M and H is constant (From Ref. [38], © 2010 IEEE). (B) The orientation
of the ABF is described by a pitch and yaw angle. Reproduced with permission from

Ref. [1], The Royal Society of Chemistry.
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FIGURE 7.8

ABF actuation and steering. (A) A rotational magnetic field is generated which creates a
torque on the magnetic body of the microrobot. The ABF is steered by changing the
rotational plane of the magnetic field vector. Simultaneous steering and propulsion
generation is achieved. (B) The motion can be reversed by changing the rotational direction
of the magnetic field. Reprinted with permission from Ref. [33], © 2009 AIP.

generally avoided as the microrobots may get pulled away from the desired motion
trajectory. If applied in a controlled manner, however, they could be used as addi-
tional degrees of freedom in the actuation of bacterial microrobots, for example to
compensate for gravity.

7.4.2 Magnetic field generation

An external magnetic field can either be generated by electromagnetic coils or by
a strong permanent magnet. We know additionally that the field vector has to be
rotated to apply a constant torque. The following two methods have successfully
been employed to actuate artificial bacterial microrobots.

7.4.2.1 Helmholtz coils

By running electric current through a coil, a magnetic field is generated. The field
strength changes linearly with the current run through the coil. This field is not uni-
form, as its strength decreases with distance to the coil. A region of almost uniform
field can be achieved, however, by placing two identical coils opposite to each other
at a distance of R, where R is the radius of the coils. The current should run in the
same direction as indicated in Fig. 7.9A. A pair of coils in this configuration are called
a Helmholtz coil pair. In this way, non-uniformities become negligible in the central
workspace between the two coils, and the field only exerts a torque on the swimmer.
The most elegant way to generate a rotating field is to use three Helmholtz coil pairs
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FIGURE 7.9

Electromagnetic setup. (A) Helmholtz coils. Two identical coils with radii R placed at a
distance of R from each other produce an almost uniform field in the middle, i.e., along the
coil axes at a distance of R/2 from each coil. (B) Experimental setup. 1. Three orthogonal
Helmholtz coil pairs; 2. microscope lens; 3. central workspace and location of the tank.

(C) Schematic of the experimental setup. A swim tank is placed in the middle of the three
orthogonal coil pairs. The three coil pairs surrounding the central workspace have different
radii in order to physically fit around the central workspace. If the bacterial swimmers are
smaller than a few micrometers, the use of a fluorescence microscope is advantageous.
The current output is coordinated with a computer and either manual steering or
closed-loop control is possible if a visual tracker is employed.

placed orthogonally to each other (see Fig. 7.9B). The field strength and orientation is
the summation of the three field vectors of each coil pair and can be chosen arbitrarily
by setting the three current inputs independently. Figure 7.9C shows the components
of a complete microrobotic setup, including the electromagnetic coils, amplifiers,
and optical components, such as a microscope lens and CCD camera, for visual
feedback.

7.4.2.2 Rotating permanent magnet
Triaxial Helmholtz coil systems are particularly useful for controlling magnetically
actuated microrobots due to the fact that they generate only pure magnetic torque
with negligible applied magnetic forces. To achieve this property, however, the coils
in each pair of the Helmholtz arrangement must be separated by their radius and the
microrobot must be operated in the system’s common center. If a triaxial Helmholtz
coil system is to be used for medical applications, the radius of the smallest coil must
be at least large enough to contain the patient with the area of interest positioned in the
coil center. While performing surgical procedures on the eye, for example, where the
patient lies on his back with his head placed in coil center, the actual diameter of
the smallest coil must be at least twice the diameter of his head to keep the position
of the eye in the absolute center of the coils.

Helmbholtz coils are practical for bench-top applications where the operational
workspace of a microrobot in the center of the coils may be several centimeters
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in size. As the coil sizes increase, the magnitude of the current required to obtain
the same magnetic field strength in the workspace center increases proportionally
with the coils’ radii. Scaling these systems to the size needed for medical applica-
tions where a human torso or head may be placed in the center of the Helmholtz
coils’ operational workspace is hindered by the cooling and infrastructure necessary
to accommodate increasing current. Rather than using uniform fields generated by
Helmbholtz coils, it has been proposed to use non-uniform fields emanating from
a single permanent magnet to actuate microswimmers [39]. For clinical applica-
tions, a single permanent magnet may be positioned close to the patient, permitting
the use of smaller and less expensive systems to achieve the same magnetic field
strength—ultimately resulting in systems that scale better for in vivo devices. The
fact that magnetic fields generated by permanent magnets are non-uniform and
produce an applied force on the microrobot, however, significantly complicates
control.

The field H generated by a permanent magnet with dipole moment I' at a position
in space p relative to the center of the permanent magnet is approximated by the
point-dipole matrix equation

T
Mo [3“’ 1] (7.15)

“axpP L pP

where |L¢ is the constant representing permeability of free space, and I is the 3 x 3
identity matrix. Equation (7.15) is nearly exact for permanent magnets with spherical
geometries and is an approximation for the field produced by those with non-spherical
geometry. In Ref. [39], the authors find that the point-dipole model closely matches
the magnetic field of cylindrical permanent magnets (25.4 mm diameter, 25.4 mm
height) magnetized both axially and diametrically (see Fig. 7.10) for distances away
from the magnet center greater than 30 mm. In practice, diametrically magnetized
cylindrical permanent magnets are particularly well suited for generating the rotating
magnetic fields required to actuate helical microswimmers because they (1) com-
pletely utilize the volume of the magnet’s housing (Fig. 7.10) and (2) their moment
area of inertia is less compared to a magnet of the same magnetized volume polarized
axially.

Swimming behavior

From the propulsion matrix Eq. (7.12), we expect that artificial bacterial microrobots
swim faster as the rotational frequency increases and that this relationship should be
linear. Experiments with currently available microrobots show different swim behav-
ior depending on the proximity to solid boundaries, the frequency of actuation, and
under the influence of additional forces, such as gravity or magnetic forces. These
phenomena will be addressed in the following sections.
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FIGURE 7.10

Rotating permanent magnets polarized axially (A) and diametrically (B) placed in a Delrin
housing and mounted to a motor shown in (C) and (D), respectively. Both magnets shown
in (C) and (D) are 25.4 mm in diameter and height. In practice, diametric permanent
magnets utilize available space more efficiently than axially polarized magnets: the
diametric magnet shown in (D) can be increased in size by 50% in the magnetization
direction without altering the size of the housing [39].

7.5.1 Overview

Figure 7.11 shows the velocity of an artificial bacterial microrobot near a solid sur-
face at different frequencies of the rotating magnetic field. The total velocity of the
microswimmer is separated into a forward velocity uy, along the direction of the
helical axis, and into a drift velocity ug, perpendicular to the helical axis. The drift
angle ¢ refers to the angle of misalignment between the total velocity and the desired
forward velocity. Three characteristic regions can be distinguished in the frequency—
velocity plot. The largest middle-range-frequency region is the linear region, where
the behavior follows the simple propulsion matrix model. Here, we focus on the two
extreme regions of very low (drift-dominated region) and very high (step-out region)
frequency.

7.5.2 Drift and wobbling

Until now we have assumed that free-swimming bacterial microrobots have neglected
wall effects. At low Reynolds numbers, however, wall effects play a major role



7.5 Swimming behavior 183

10+
| Drift Linear ., Step-out
N =} P
-y
— 1 - , e ,
@£
% 61 W " —4&— Total velocity
< Ug & —h— i
> ] orward velocity
Z .l ) = Drift velocity
o)
<

0 5 10 15 20
Frequency f (Hz)

FIGURE 7.11

Velocity of bacterial microrobot versus input frequency. There are three characteristic
regions: the linear region at middle-ranged frequencies, the step-out region at high
frequencies, and the drift-dominated region at very low frequencies. From Ref. [38],
© 2010 IEEE.

and have been observed not only on microrobots but also on living microorgan-
isms [40,41]. Wall effects are directly responsible for the drifting of microswimmers.
Wobbling at low Reynolds number has only been reported for artificial bacterial
microrobots [38]. It transpires that the combination of the wall effects and wobbling
causes the phenomenon observed in the drift-dominated region.

7.5.2.1 Drift

Drag forces encountered by a microswimmer near a solid boundary are non-uniform
and increase with proximity to the wall. This results in a drag imbalance between the
part of the swimmer that is closer and the part further away from the surface. If we
consider a bacterial swimmer, the local drag coefficients along the helical filament
become functions of the distance 4 to the wall & = & (h). From Fig. 7.12, it can be
seen that a filament segment of the helical tail closer to the wall encounters a higher
drag than a segment further away. This causes the helix to roll along the surface
perpendicular to the helical axis.

The influence of solid boundaries has been observed and analyzed for E. coli
bacteria [8,41]. The bacteria swim in circles due to the counter-rotation of their head
and helical tail. The ABF has no such counter-rotation and is stabilized with the
magnetic steering torque to keep its orientation while it is drifting (Fig. 7.13). The
rolling speed increases linearly with the input frequency as does the forward speed.
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FIGURE 7.12

Wall effects on the ABF. Side view (A) and front view (B) of a helix rotating near a planar
wall. Due to the drag force imbalance Fq = Fponom — Fiop ON the tail segments while rotating
around the x-axis, the ABF rolls along the surface in the y-direction [38].
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FIGURE 7.13

Time-lapse image showing the top view of an ABF drifting (downward in image) as it swims
from left to right. Reprinted with permission from Ref. [34], © 2009 ACS.

This leads to a stable drift angle ¢ for high frequencies. In the drift-dominated region,
a new phenomenon occurs which causes the drift angle to change.

7.5.2.2 Wobbling

At low frequencies, the helical swimmer starts to wobble with increasing preces-
sion angle as the frequency goes toward zero [38]. The helical shape of the filament
causes a drag torque also perpendicular to the helical axis, which affects the axis of
the swimmer and causes precession. Other effects are likely to aggravate non-ideal
swimming, such as an imbalance due to gravitational forces or an actuation torque
that is not applied along the helical axis. This can occur if the magnetization is not
perfectly perpendicular to the helical axis. At high frequency, the precession is atten-
uated because the total drag on the swimmer is minimized if it rotates around the long
body axis, which corresponds to the helical axis (see Fig. 7.14).

7.5.2.3 Combined drifting and wobbling

The reason for the increase in the drift angle lies in the increased efficiency of the
side-wise propulsion when the ABF wobbles (see Fig. 7.15). This is due to the
increased drag force difference on the filament segments at the bottom and at the top
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Time-lapse of the ABF swimming at two different input frequencies f> > fi. The frequency
of the precession is equal to the input frequency. The precession angle B decreases rapidly
for higher frequencies. From Ref. [38], © 2010 IEEE.
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FIGURE 7.15

Schematic showing the rotation of a slender body without (A) and with (B) precession. The
slender cylinder is representative of a helical tail. The forward propulsion is decreased with
the wobbling while the drifting is enhanced. (C) Experimental results showing the
connection between precession and drift decrease. Even for negligible precession motion
drifting remains (with an approximately constant drift angle) when in proximity to a wall.
From Ref. [38], © 2010 IEEE.

of the helical tail as the distance between the segments grows. While the screw-type
swimming becomes less efficient because of the precession motion, the ABF propels
itself along the wall, in a manner that resembles a paddling motion, which becomes
more efficient as the precession angle increases. The propulsion due to paddling is
so effective that the total velocity grows despite the decrease of the input frequency,
and a local maximum is reached before the velocity goes to zero (see drift-dominated
region in Fig. 7.11). The effectiveness of paddling was demonstrated in an experi-
ment inside a microchannel. The image series in Fig. 7.16 show an ABF swimming
along the channel (downward in images), and the schematic below shows the lateral
position in the channel. At a high frequency, the precession is small, and the swimmer
drifts only slightly to the left. At a lower frequency, the side-wise paddling propul-
sion is strong enough to roll upward along the channel walls onto the flat surface. This



186 CHAPTER 7 Bacteria-Inspired Microrobots

(A)

12345 Y2

o<
o
t=0s 2 t=11s t=34s ti=42s

FIGURE 7.16

Time-lapse images of an ABF inside a microchannel. The channel cross section is round
and has the dimensions 130 um (width) x 55 um (depth). The schematic insets indicate
the lateral position of the ABF in the channel. (A) The ABF prototype swims along the
channel (downward in image) and exhibits a slight drifting to the left. (B) For a lower
frequency, the ABF wobbles and the sidewise propulsion is large enough for the ABF to
climb out of the channel. From Ref. [38], © 2010 IEEE.

experiment demonstrates that the wobbling at low frequency in combination with a
nearby wall causes strong drifting that is not negligible and which must be accounted
for in servoing tasks.

7.5.3 Step-out frequency

The step-out frequency occurs when the drag on the microrobot, which increases with
angular and translational velocity, grows larger than the maximum magnetic torque
available [42]. At that point, the agent can no longer follow the rotation of the field,
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FIGURE 7.17

Step-out frequency for different microrobotic prototypes. (A) Schematic frequency-velocity
plot showing the decrease of velocity at the step-out frequency. An increase in the volume
of the magnetic material (represented with a larger spherical body) always increases the
step-out frequency but, due to increased fluidic drag, not necessarily the maximum velocity
[34, 38]. (B) Experimental result showing different step-out frequencies for a small-headed
and a large-headed ABF. Material reprinted with permission from Ref. [34], © 2009 ACS.

and it steps out of sync with the external magnetic field vector. From the propulsion
matrix, we can see that this limiting frequency wy,y is linearly dependent on the
magnitude of the maximum magnetic torque that can be conveyed.

Wmax = < a ) “Tinax (7.16)

ay —b?

Equation (7.16) is derived from Eq. (7.10) and is valid for a free swimming micro-
robot, where F' = 0. From the magnetic torque in Eq. (7.14), it is apparent that the
maximum torque can be amplified by increasing the magnetic field strength or by
increasing the volume of the magnetic body [34]. During operation, the field strength
is adjusted either by regulating the amount of current through the electromagnetic
coils or by changing the distance of the external permanent magnet to the micro-
robot. Increasing the volume of the magnetic material is (in most cases) equivalent
to increasing the total volume of the microrobot (in Fig. 7.17 represented by a larger
head), and therefore, additional drag forces are created on the swimmer. Even though
the step-out frequency is increased, this is not necessarily the case for the maximum
velocity. It has been shown that an optimal trade-off between torque maximization
and drag minimization can be found [34, 38].

Gravity compensation

Because man-made microswimmers are typically heavier than their fluid medium,
they tend to slowly sink due to their own weight, unlike the bacteria they are designed
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to mimic which are approximately neutrally buoyant. When swimming under an opti-
cal microscope with a small depth-of-field, small changes in the microswimmer’s
distance from the microscope lens due to drift caused by gravity quickly make the
microswimmer to deviate from the focal plane. This downward drift can be counter-
acted by pitching the microswimmer upward and increasing the rotational frequency
accordingly to obtain the desired velocity (see Fig. 7.18). There is a unique combi-
nation of pitch angle and rotational frequency that will cause the microswimmer to
swim at a desired velocity provided that the necessary rotational frequency is less
than step-out.

How the force due to gravity influences the microswimmer’s velocity u in the
direction parallel to its principle axis with the microswimmer rotating at frequency
w is described by the propulsion matrix (7.10). For gravity compensation, a rela-
tionship between the force F acting on the microswimmer in any direction to the
velocity of the microswimmer U in any direction with the microswimmer rotating
about its principle axis with angular velocity € is needed (F, U, and £ are now
three-dimensional vectors). The linear equation of interest to the problem of gravity
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(A) Neutrally buoyant swimmer (B) Heavy swimmer (C) Gravity compensation
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FIGURE 7.18

Flagellated bacteria are nearly neutrally buoyant (A), whereas man-made microswimmers
are typically heavier than their fluid medium, causing them to drift downward under their
weight (B). This downward drift is compensated for by commanding the microswimmer to
swim at a unique pitch angle and rotation frequency (C). (D) and (E) are composite images
from experiments where the microswimmer is commanded to move horizontally with a
constant velocity, without and with gravity-compensation, demonstrating the behaviors
described in (B) and (C), respectively. Used with permission Ref. [29].
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compensation relates F to U, and €2, and is obtained from the 6 x 6 matrix Eq. (7.4):
F =AU+ BR (7.17)
which can be transformed to

U=DF+EQ (7.18)

where D =A~! and E = —A~'B are 3 x 3 matrices expressed in the reference frame
of the microswimmer, assigned such that the x axis of the swimmer frame is aligned
with the principle axis of the microswimmer and the z axis lies in the plane shared
by U and F as shown in Fig. 7.19. The modeled coefficients of D and E are found
in Ref. [29] using resistive force theory, although in practice they can be determined
experimentally (see Ref. [29] for details).

With desired velocity U referenced from vertical by the angle «, we define the
pitch angle of the microswimmer to be the angle ¥ as measured from U. For any
given U and F, the angle v is found by

o ds3|F|sin(a) )
v =tan (|U|+d33|F|cos(a> (7.19)

where d33 is the third coefficient on the diagonal of matrix D. To obtain the desired
velocity U given the angle i, the microswimmer must operate at the rotational

frequency
U dn|F —
ISl|=| |cos(y) +d11[F|cos(y — ) (7.20)
el
v a
¥
U
Y F=mg
FIGURE 7.19

A microswimmer coordinate frame is assigned such that the x axis of the frame is aligned
with the principle axis of the microswimmer, and the z axis of the frame always lies in the
same plane as the desired microswimmer velocity U and force due to gravity F.
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where di; and e are the first coefficients on the diagonal of the matrices D and
E, respectively. The microswimmer can be controlled in an open-loop fashion using
these values obtained for ¢ and |€2| by ensuring that the rotation axis of the applied
magnetic field is pitched above the desired velocity U by angle i and rotates at a
frequency of |€2].

To date, microswimmers are typically operated by manually controlling the rota-
tional speed and rotation axis of the applied magnetic field. This is sufficient for
simple maneuvers; however, for complex maneuvers that may be required for manip-
ulation or other applications where precision is required, the necessary control inputs
for applied field rotation speed and axis may be difficult or nonintuitive for a human
operator. The Eqs. (7.19) and (7.20) offer a different paradigm for control where the
operator controls the desired velocity U, and the control system uses Egs. (7.19) and
(7.20) to set the rotation speed and pitch angle of the applied field’s axis of rotation.
Using the input of desired velocity that has both direction and magnitude is more
spatially intuitive than controlling the applied field’s axis of rotation and speed man-
ually. In Ref. [29], the authors present an open-loop controller based on Egs. (7.19)
and (7.20) enabling maneuvers that would be difficult for an operator to execute if
controlling the rotation speed and axis of the applied magnetic field by hand, such
as the U-turn maneuver shown in Fig. 7.20. Experiments were conducted using a
6-mm-long helical swimmer immersed in corn syrup, which is dynamically similar
(by matching the Reynolds number) to a 140 um-long microswimmer immersed in
water. Without closing a feedback loop, however, the authors show that the open-
loop controller tends to be sensitive to variation in the parameters dq;, d33 and ey,
which may fluctuate if the viscosity of the medium changes. These disturbances can
be compensated for by the operator if it is perceived that the swimmer is not moving
as desired, since correcting Cartesian velocity inputs are more intuitive to a human
operator than corrections in pitch and rotation speed.

FIGURE 7.20

A U-turn maneuver would be difficult to execute if controlling the rotation speed and
rotation axis of the applied magnetic field manually. This maneuver was performed using
desired microswimmer velocity U as a simple and intuitive input to an open-loop controller
based on Egs. (7.19) and (7.20). Used with permission from Ref. [29].
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Break-away and step-out frequencies in non-uniform fields

When using a single permanent magnet to generate rotating applied fields neces-
sary for propulsion, we consider microswimmers to be placed in one of either the
axial control or radial control positions. With world coordinate axis {x,y,z} defined
and with the actuator permanent magnet lying rotating around the x axis in the y-z
plane, the microswimmer is in the axial control position if the vector p, describ-
ing the position of the microswimmer’s magnetic moment relative to that of the
actuator, lies parallel to the x axis (Fig. 7.21A). In this position, the magnetic field
applied to the microswimmer always points in the opposite direction of the actua-
tor’s dipole moment I', and the field magnitude |H| varies purely as a function of the
microswimmer’s distance from the actuator, |p|:

oIl

H| =
i 4r|pl?

(7.21)

If the microswimmer is positioned so that the p lies in the y-z plane, then the
microswimmer is in the radial control position (Fig. 7.21B). In the radial control
position, the magnitude of the applied field varies with both |p| and the angle of the
actuator’s dipole moment I' measured from the z axis by angle 6 in Fig. 7.21:

r
e °|| |L\/ 1+3cos26 (7.22)
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Compared to the field magnitude in the axial position, the magnitude in the radial
position ranges over one revolution of 6 from 100% to 200% of the magnitude in
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FIGURE 7.21

The microswimmer is in the axial control position (A) when placed purely along the x world
axis. When the microswimmer lies in the y-z plane, it is said to be in the radial control
position (B).
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the axial position for the same |p|. Unlike axial control, the applied magnetic field
direction in the radial position is no longer opposite the actuator’s dipole moment
and is described by B = tan~! (tan(9)/2), where B is measured from the z axis in
the same manner as 6. Because both the magnitude and direction of the applied field
fluctuate with the orientation of the actuator, analysis in the radial control position is
significantly more complex than axial control. Therefore, our discussion of actuating
microswimmers using rotating permanent magnets is limited to control in the axial
position.

The applied magnetic force acting on the helical microswimmer by the actuator
dipole field His given by Eq. (7.13) in both the axial and radial positions. If we denote
the dipole moment of the magnetic body rigidly attached to the microswimmer by M
with volume V, then Eq. (7.13) can be expressed as

Fp=pnoVIM-VYH = uoV | 2H? |M (7.23)

In the axial control position, with ¢ measuring the lead angle between the applied
field H and the microswimmer’s dipole moment M (as shown in Fig. 7.7), the applied
magnetic force has magnitude

_ 3uoVIT|IM|

prr cos¢ (7.24)

m

and acts in the negative x direction, pulling the microswimmer toward the actuator.
If the microswimmer is swimming toward the actuator, then the applied magnetic
force contributes to the microswimmer’s forward velocity according to the swim-
mer’s propulsion matrix (7.12). If the microswimmer is swimming away from the
actuator, then the magnetic force tends to attract the swimmer opposite the direc-
tion of forward motion. In this case, in order to travel away from the actuator,
the microswimmer must be rotated fast enough for the generated fluidic force to
overcome the attractive magnetic force. The rotation frequency where the fluidic
force balances the magnetic force is referred to as the break-away frequency and is
given by

3ugVIT| M| 1

Arlpl®  /(Iplb)> + (By)?

where the elements of the microswimmer’s propulsion matrix (7.12), b and vy,
describe how the microrobot’s rotation frequency is related to fluidic force and
magnetic torque, respectively.

For viable propulsion, the microswimmer must be rotated faster than the
break-away frequency while remaining slower than the step-out frequency. At any
given time, the rotation frequency of the microswimmer is a function of the

(7.25)

Whreak =
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applied magnetic force and torque and is derived from the microswimmer’s propul-

sion matrix:
o b o
o=|——=|T-|—— |Fr|—|T (7.26)
ay —b? ay —b? ay —b?

The step-out frequency is the maximum value for @ obtainable from Eq. (7.26). In
practice, despite the presence of the magnetic force (7.24), we find that the step-out
frequency when actuated in the axial position is effectively equivalent to step-out
when operating in uniform magnetic fields where no magnetic force is present. This
is due to the fact that for typical microswimmers, b < @ and F < T (numerically)
as the distance between the actuator and swimmer increases, making the contribu-
tion of the magnetic torque to the step-out frequency (7.26) dominate that from the
applied magnetic force. In uniform fields, the lead angle ¢ converges to 90° when
driving the microswimmer at its step-out frequency. Operating the microswimmer at
this frequency in the axial position also causes ¢ to converge to 90°, and in this con-
figuration, by Eq. (7.24), the applied magnetic force vanishes. This is an important
result because when the microswimmer is driven at the step-out frequency, where the
magnetic torque is maximized with zero applied magnetic force, the microswimmer
behaves as if it were actuated within the uniform field of a Helmholtz coil system.
In Ref. [39], Fountain et al. demonstrated the break-away and step-out frequencies
experimentally using a large swimmer, 4.1 mm in diameter and 12.1 mm in length
(shown on the bottom of Fig. 7.22B), placed in a water-filled lumen positioned axi-
ally to a diametrically magnetized permanent magnet rotated using a motor (shown
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FIGURE 7.22

The break-away and step-out frequencies (A) for the swimmer shown in the bottom of
(B) is plotted as a function of the swimmer’s distance from the rotating permanent magnet
actuator (C) in the axial position [39].
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in Fig. 7.22C). The break-away and step-out frequencies are plotted in Fig. 7.22 as a
function of the swimmer’s distance from the actuator. When rotated at higher frequen-
cies, the swimmer can overcome the attractive magnetic force nearer to the actuator,
however, the swimmer tends to step-out closer to the actuator as well. When rotated
slowly, the swimmer must be positioned far away from the actuator to break away
from the attractive magnetic force, however, the swimmer can travel much farther
before it steps out. This is due to the fact that the magnetic force decreases with |p| ™
but the applied magnetic torque, which governs the step-out frequency, decreases an
order of magnitude slower with |p|~>.

Artificial bacterial microrobot in biomedical
applications

Current achievements

In this chapter, we have seen the successful fabrication, actuation, and control of
artificial bacterial microrobots. These methods summarize the present-day approach
to the challenges of microrobot designs, though new methods may emerge in this
rather young research area. The investigation of current bacteria-inspired microrobots
has led to a number of experimental results and successes in preliminary manipulation
tasks and the potential of these microrobots for biomedical applications are discussed
in this section.

7.6.1.1 Maneuverability

There are a number of factors that play an important role in achieving 3D motion
with microrobots. First, the system has to be capable of generating magnetic fields
that are strong enough and can be oriented arbitrarily in 3D. Second, a microrobotic
agent has to be fabricated that fulfills a combination of fluid mechanical and mag-
netic requirements to achieve enough propulsive force to allow it to swim against the
gravitation pull. Third, other forces, such as magnetic gradient field forces, have to
be overcome as well. Only then true 3D navigation is possible (see Fig. 7.23) and
gravity compensation algorithms become necessary. Both actuation approaches pre-
sented in this chapter, i.e., electromagnetic coils or rotating permanent magnets, have

~ 0s < 187 B8 2s S 3s e 4s
o 10 B - . .
um
FIGURE 7.23

Artificial bacterial flagellum steered in 3D. Insets (compass needle) indicate the orientation
given by the input signal.
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achieved the generation of the demanded field strengths. By design, artificial bacterial
microrobots are capable of navigating in a range of different environments. They can
perform in large cavities as well as within small tubes, both of which are present in the
human body. Their motion paths are easily reversed, as they can swim both forwards
and backwards simply by changing the direction of field rotation. This would, for
example, allow easy extraction from a site by reversing the trajectory. Combining all
these characteristics makes the artificial bacterial microrobot a promising microrobot
design for biomedical applications.

7.6.1.2 Swarm control

External magnetic field actuation is well suited to moving swarms of bacterial micro-
robots. Each agent is subject to the same field orientation, and whole groups of agents
can be moved simultaneously without any additional energy output of the system
(see Fig. 7.24). As these robotic agents are very small, it makes sense to use a multi-
tude of them to, for example, increase the amount of drug delivered to a cancer site.
A swarm of microswimmers may also be easier to detect because they can emit a
stronger signal as a group, for example in the form of fluorescence brightness.

FIGURE 7.24

Swarm-like behavior of three ABFs controlled as a single entity with the input command
indicated by the arrows. During a relatively abrupt steering movement, one ABF is
temporarily separated from the group, but it naturally rejoins. Reprinted with permission
from Ref. [34], © 2009 ACS.
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7.6.1.3 Micromanipulation

Manipulation tasks at the microscale range from pushing, rotating, and twisting to
probing of and injecting into living organisms (see Fig. 7.24). The most obvious way
to manipulate microbeads may be by pushing and rotating the beads. For controlled
long-distance transport it would be necessary to fabricate robot designs that allow
confinement of the cargo. A more efficient way of transporting multiple beads is
by pumping them with the flow field generated by the swimming microagent. The
transport is enhanced by the presence of a nearby boundary which enables unilateral
displacement of the microbeads. If this method was used on living cells, it would
additionally ensure the safety of the organism as no contact between the microrobot
and the cells occurs. These preliminary results show the feasibility of these types of
manipulation tasks for in vitro experiments handling and investigating cells.

7.6.2 Qutlook

There are a number of challenges that remain to be addressed with regard to the
design of complete microrobotic systems. First, the tracking of microrobots in vivo
remains a mostly unresolved issue. While current approaches rely on visual feedback,
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FIGURE 7.25

Micromanipulation with artificial bacterial microrobots. (A)-(D) Conceptual view of contact
manipulatin tasks (© 2009 IEEE [43]). (E) Two polystyrene microspheres are rotated 70° by
an ABF pushing on one of the microspheres. The optical microscope image sequence
represents 2s of elapsed time. (F) A microsphere is pushed for a radius length by an ABF
within 1s. Images (e) and (f) are reprinted with permission [331, © 2009 AIP. (G)
Manipulation of 3um beads inside a channel. Due to the proximity to the of the surface the
beads are moved unilaterally (downwards in image). Reproduced with permission from

Ref. [1], The Royal Society of Chemistry.
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usually by microscopes for magnification and CCD cameras for image caption, new
tracking methods are required for the guidance of microagents inside the human body.
Second, new materials have to be explored that are biocompatible or even bioerodi-
ble. Yet the inclusion of magnetic metals cannot be avoided, and, therefore, non-toxic
coatings have to be used or magnetic particles have to be embedded securely within
the material. Surface coatings are necessary not only for encapsulating material but
can also play an essential role in the functionality of the microrobot. For example,
the microrobot can be coated by smart materials for sensing or for controlled drug
loading and release.
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