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Short Papers

Remote Manipulation With a Stationary
Computer-Controlled Magnetic Dipole Source

Andrew J. Petruska, Arthur W. Mahoney, and Jake J. Abbott

Abstract—In this paper, we examine several magnetic control methods
that utilize the fully controllable dipole field generated by the single sta-
tionary dipole source. Since the magnetic field generated by a dipole source
is nonuniform, it applies both forces and torques to magnetic objects and
can be used to manipulate magnetic tools. Recently, the Omnimagnet, a
computer-controlled magnetic dipole source capable of varying both its
dipole-moment direction and magnitude, was developed to perform mag-
netic manipulation. The equations and methods are developed generally;
therefore, they can be applied to any omnidirectional dipole source, but
their effectiveness is demonstrated using the Omnimagnet.

Index Terms—Magnetic manipulation, medical robotics, microrobotics,
omnimagnet, teleoperation.

I. INTRODUCTION

Manipulation systems typically require a mechanical connection be-
tween the tool and the actuation system to achieve a desired force or
torque transfer. This connection is a limiting factor when controlling
objects in areas with access restrictions such as minimally invasive
surgery, in environments with imaging limitations where a mechanical
connection can obscure the field of view, and in low-Reynolds-number
fluid environments where a mechanical connection can result in signif-
icant environmental disturbances. Using combinations of electromag-
nets and permanent magnets, a controllable torque and force can be
applied to a tool without having a mechanical connection. Fundamen-
tally, there have been two design approaches for electromagnet systems
in the past: engineer a field that is aligned in a desired direction with
a controllable gradient in the same direction (e.g., MRI systems and
Helmholtz with Maxwell coils [1]–[4]) or design a system that has a
nonuniform field shape and then calibrate a model or look-up table
for the system in situ [5]–[12]. Permanent-magnet-based systems have
been designed to use follow-the-leader dragging and rotating control
approaches, and they have demonstrated dexterous manipulation using
the dipole-field model without calibration [8], [9], [13]–[16].

This paper explores the capabilities and limitations of performing
magnetic manipulation with an omnidirectional dipole source using
the dipole-field equations recently exploited for permanent-magnetic
control. Many devices can be modeled as an omnidirectional dipole
source at large distances (see, e.g., [5]). Recently, the authors designed
the Omnimagnet, which is an omnidirectional electromagnetic source
accurately modeled by a point-dipole field comprising three solenoids
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with a spherical ferromagnetic core nested such that they share the same
magnetic center [17]. The analysis in this paper is developed in a gen-
eral framework allowing for multiple solenoids and non-Omnimagnet-
specific equations, but all demonstrations will be performed with an
Omnimagnet.

In this paper, we will use bold font to represent vectors (e.g., a,
A) and capitalized blackboard font to represent matrices (e.g., B). The
two-norm of a vector will be expressed as ‖a‖, the inner product of two
vectors will be expressed as a · b, the cross product of two vectors will
either be expressed as a × b or in the skew-symmetric matrix form
S(a)b, the unit-length direction of a vector will be written as â, and
the transpose of a vector or matrix will be expressed as aT .

II. MAGNETICS BACKGROUND

The magnetic field produced by a collection of electromagnets can
be modeled with a series expansion, which is called a multipole ex-
pansion, if the region of interest is outside of the smallest sphere that
encapsulates all of the magnetic sources (i.e., the bounding sphere).
The first term in the multipole expansion is called the dipole field, and
its magnitude decays with ‖p‖−3 , where p is the vector that points
from the center of the bounding sphere to the point of interest. The
second term, which is called the quadrupole term, decays as ‖p‖−5 ,
and the higher order terms decay with monotonically increasing odd
powers. By using the multipole expansion, it is possible to have an
accurate representation of the magnetic field at distances far from the
source (i.e., greater than 1.5 bounding-sphere radii) without having to
use computationally intensive (e.g., numerical integration) or experi-
mentally intensive (e.g., in situ calibration) techniques [18].

The dipole moment m of an electromagnetic source when all integral
ferromagnetic materials are unsaturated can be written as

m = MI (1)

where M is a linear mapping of a column-vector packing of the applied
currents I to the resulting dipole moment m; the rank of M must be
three for magnetic omnidirectionality. The dipole field at any point p,
which is relative to the center of the source’s bounding sphere, is given
by the dipole-field equation:

B =
μ0

4π ‖p‖3

(
3p̂p̂T − I

)
m (2)

where I is a 3 × 3 identity matrix, and μ0 is the magnetic permeability
of free space [19].

This paper will focus on the manipulation of objects (or tools) that
are well modeled by a dipole field, that is, objects that are several
bounding-sphere radii away from the source. The tool’s dipole moment
will be represented as mt , and, in general, the force F and torque TT
acting on this object when placed in a magnetic field B are given
by [19]

F = (mt ·∇)B (3)

TT = mt ×B (4)

where ∇ is the gradient operator.

III. FIELD CONTROL

Sensing Requirements: Position p.
Limitations: If the desired field is changed rapidly, the system dy-

namics may not be able to keep up.
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To determine the dipole momentm required by the source to produce
a desired field B at some point p, the vector dipole equation (2) must
be inverted. Using the dipole field analysis in [15] and [19], it can be
shown that the inverse exists of the form

m =
2π

μ0
‖p‖3 (3p̂p̂T − 2I

)
B. (5)

Combining with (1), the currents required to generate a field are thus

I =
2π

μ0
‖p‖3M† (3p̂p̂T − 2I

)
B (6)

where † identifies a generalized inverse, as M may not be square, and
multiple solutions could exist.

When placed in a magnetic field, an unconstrained magnetic tool
will align with the applied field because of the magnetic torque (4)
experienced. If the field is rotating, the tool will attempt to keep up
with the rotation as well. This tendency to align with the field has been
explored using a rotating permanent magnet to propel a ball and helical
screw [15]. To perform similar control tasks with a dipole source, the
desired field B in (6) should be rotated at a desired angular velocity
ω, and the position should be updated with the tool position. By doing
so, a rotating field that translates with the object will be produced and
can be used for propulsion. The maximum achievable tool rotation
speed ‖ωm ax‖ is limited by the maximum magnetic torque that can be
achieved to counteract the drag torques. The maximum torque, from
inspection of (4), is ‖mt‖‖B‖ and corresponds to the configuration
where the tool’s dipole moment is consistently orthogonal to the applied
rotating field. Operating at a faster speed than this, without increasing
the applied field strength, will cause the system to experience step
out [1].

A rotating magnetic field generated by an Omnimagnet was used to
propel a threaded capsule-endoscope mockup down a transparent lu-
men in [17]. In that demonstration, helical propulsion through a lumen
presented a convenient system for using rotating fields to propel an
object because a lumen provides significant physical constraints on the
tool’s motion. However, these physical constraints are not required to
propel an object using a rotating field. To explore using an Omnimag-
net for control of adjacent objects in a less constrained environment,
a magnetic ball was driven on a flat surface using only position in-
formation and a rotating field. The position information was obtained
with a vision system, and the drive currents were updated at 100 Hz.
The results of driving the ball around a rectangular path on a table-
top and around a Labyrinth maze, shown, respectively, in Fig. 1(a)
and (b), demonstrate the capability of the Omnimagnet to control the
strength and direction of a field at an arbitrary location in space. Un-
fortunately, it is possible for disturbances, such as attractive magnetic
forces or surface roughness, to apply torques about the dipole moment
that cannot be compensated magnetically. In the demonstrations, these
disturbances cause the magnet to deviate from a straight trajectory.

Micromanipulation of objects using magnetic torque and force has
been explored using multiple-magnet systems that surround the viewing
workspace [20]–[22]. The Omnimagnet can produce similar control of
microbeads through rolling as demonstrated previously; however, the
problem is greatly simplified. Since the micromanipulation workspace
is constrained to be under a microscope for viewing, the workspace
is necessarily small compared with the Omnimagnet’s workspace.
As such, the position of the microdevice being manipulated can be
assumed to be constant, and a rotating field can be applied in an
open-loop fashion. Fig. 1(c) shows the manipulation of a 1-mm mag-
netic ball in a viscous medium. Using a Reynolds-number analysis,
the 1-mm-diameter permanent-magnet sphere in corn syrup (2500 cP,
1.36 g · ml−1) has a behavior equivalent to a 30-μm sphere in water.

Note that the Omnimagnet is offset from the workspace by a relatively
large distance (150 mm), allowing for manipulation under a micro-
scope with the Omnimagnet placed as necessary to accommodate other
equipment.

IV. TORQUE CONTROL

Sensing Requirements: Position p and tool dipole moment mt .
Limitations: Torque can only be applied orthogonal to the tool’s

dipole moment.
If both the heading and position of the tool are known, it is possible

to directly apply a torque. Because of the cross product in (4), no
component of torque can be applied parallel to the dipole moment of
the tool, reducing the space of achievable torques to those orthogonal
to the tool’s dipole moment. Thus, it is assumed that any desired torque
TT lies in this reachable plane. For any TT , there is a 1-D subspace of
solutions, parameterized by θ, for the required field and currents

B =
‖TT ‖
‖mt‖

(cot(θ)m̂t + T̂T × m̂t ) (7)

I =
2π‖TT ‖‖p‖3

μ0‖mt‖
M†(3p̂p̂T − 2I)(cot(θ)m̂t + T̂T × m̂t ). (8)

The solution that corresponds to θ = π/2 is the minimum-field solu-
tion. It represents the case where the applied field is perpendicular to
the tool’s dipole moment and has been shown to minimize the attractive
force between the two dipoles [23].

In some configurations, it is possible to choose a solution that re-
quires less electrical power than the one corresponding to the minimum-
field solution and produce the same torque by allowing some field
magnitude in the tool’s dipole-moment direction and exerting addi-
tional force. Letting R be the positive-definite diagonal matrix packing
of the electrical resistance associated with each current, the electrical
power required is ITRI. The currents required to produce a torque with
minimum electrical power are

I =
4π‖p‖3

μ0
R−1/2 (S(mt )

(
3p̂p̂T − I

)
MR−1/2 )†TT (9)

where † in this solution is the Moore–Penrose generalized inverse.
Alternatively, the unused degree of freedom (DOF) can be used to
optimize other favorable parameters, such as minimizing the difference
between the resulting force applied and some desired force or direction
of motion.

V. FORCE CONTROL

Sensing Requirements: Position p and tool dipole moment mt .
Limitations: A singularity exists when the tool’s dipole moment is

orthogonal to the position vector, reducing the space of achievable
forces in this configuration to the plane spanned by the tool’s dipole
moment and the position vector.

To apply a controlled force for pushing and pulling tasks, the field
gradient at the position of the tool must be controlled. The force between
two magnetic dipoles can be expressed as [19]

F =
3μ0

4π‖p‖4 Fm

F ≡mt p̂T + p̂mT
t + (p̂ ·mt ) (I − 5p̂p̂T ). (10)
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Fig. 1. Position control of a spherical magnet using a rotating field to direct the rolling direction of the ball. (a) 12.5-mm-diameter ball rolling without constraint
on a plane adjacent to the Omnimagnet. (b) 12.5-mm diameter ball being directed through a Labyrinth maze adjacent to the Omnimagnet. (c) 1-mm diameter ball
rolling in corn syrup on a plane above the Omnimagnet. In (a) and (b), the ball’s position is found using computer vision and used in closed-loop control. In (c),
the ball is controlled open loop under the assumption that it is always located in the center of the workspace.

Thus, the currents required to apply a particular force F are

I =
4π

3μ0
‖p‖4M†F−1F (11)

F−1 =
(2(p̂ ·mt )

2 + mt ·mt )I − F 2

(p̂ ·mt ) ((p̂ ·mt )
2 + mt ·mt )

.

The inverse of F exists when the inner product of the tool’s dipole
moment mt and the displacement direction p̂ is nonzero.

When mt and p̂ are orthogonal, F is singular, but forces can still be
produced in the plane spanned by mt and p̂, and the currents necessary
to command a desired force in this plane are

I =
4π‖p‖4

3μ0‖mt‖
M† (m̂t p̂T + p̂m̂T

t

)
F. (12)

In the singular configuration, any currents that contribute to a dipole
moment not in the span of {mt , p̂} create no force. The torque associ-
ated with a desired force in the singular configuration is

TT = 2 (mt · F) ‖p‖(m̂t × p̂). (13)

Therefore, it is possible to apply a torque or a force that would rotate
or move the tool such that mt is no longer orthogonal to p̂, thereby
restoring full force control. Since the direction of the field and the torque
applied are not controlled, the resulting force solution will likely be
locally rotationally unstable. Consequently, open-loop unconstrained
force control with a single dipole source is not feasible in practice.
However, if the tool’s dipole moment is known, through sensing or
mechanical support (e.g., a lumen), pushing and pulling an object using
a dipole source with feedback is possible provided the singularity is
avoided or appropriately mitigated.

To demonstrate this capability, an axially magnetized permanent
magnet disk is fixed to a larger plastic disk, placed in a tub of water,
and driven around a rectangular path (see Fig. 2). The buoyant forces
on the plastic disk serve to constrain the tool’s dipole moment to the
vertical direction, and its location is tracked with a vision system.
A closed-loop proportional-derivative position controller is used to
determine the forces to apply, and (11) is used to convert these into the
required electrical currents.

Fig. 2. Position servo control of a floating magnet using applied force, gener-
ated by an Omnimagnet [17]. The dipole moment of the magnet is constrained
by buoyant forces to be in the vertical direction.

VI. FIELD-ALIGNED FORCE CONTROL

Sensing Requirements: Position p and tool dipole magnitude ‖mt‖.
Additional Assumptions: The tool is aligned with the applied field.
Limitations: No repulsive forces can be applied to the tool, requiring

nonmagnetic forces for system stability. The space of achievable mag-
netic forces is reduced to a 28◦ cone opening toward the dipole source.
Rapid changes in force direction, relative to the tool’s rotational time
constant, will cause the tool to become misaligned with the field and
the applied force to deviate from the desired force.

Field alignment of an unconstrained tool has been exploited previ-
ously for 5-DOF heading and force control [7], [16]. Although it is
not possible to achieve 5-DOF control with a single stationary dipole
source, 3-DOF force control can be achieved. The force applied to an
adjacent magnetic tool from a dipole source when the tool is aligned
with the source’s field is

F =
3μ0‖mt‖
4π‖p‖4

((p̂ · m̂)m − (4(p̂ · m̂)2 + 1)‖m‖p̂)
√

3(p̂ · m̂)2 + 1
. (14)

If a ball with a large magnetic susceptibility were used instead of a
permanent magnet, then ‖mt‖ would be a function of the applied field

‖mt‖ =
3Vb‖m‖
4π‖p‖3

√
3 (p̂ · m̂)2 + 1 (15)

where Vb is the volume of the unsaturated magnetized ball.
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Inspection of (14) shows that the force will always be attractive
(i.e., there will always be a component in the −p̂ direction); thus, it is
necessary to have an external restoring force (e.g., gravity) to stabilize
the direction of attraction. By using the projections F · p̂ and F · F,
it is possible to obtain a closed-form solution for the required dipole-
moment to achieve a desired force

m = ± 4π‖p‖4

3μ0‖mt‖

√
3 (p̂ · m̂)2 + 1

(p̂ · m̂)2 ·

(

I −
(

4 (p̂ · m̂)2 + 1
3 (p̂ · m̂)2 + 1

)

p̂p̂T

)

F (16)

where (p̂ · m̂)2 is given by

(p̂ · m̂)2 =
7
(
F̂ · p̂

)2
− 6 ±

(
F̂ · p̂

)√

17
(
F̂ · p̂

)2
− 16

18 − 16
(
F̂ · p̂

)2 . (17)

The magnitude of m is always

‖m‖ =
4π‖p‖4

3μ0‖mt‖
− (F · p̂)

√
3 (p̂ · m̂)2 + 1

. (18)

When a solution exists, (16) provides four choices of m that will
apply the same force—two directions, each in the positive or negative
sense. In the special case when F̂ · p̂ = 1, one solution for p̂ · m̂ is
0 corresponding to the force singularity. In this configuration, (16) no
longer yields a solution for the dipole moment; however, there exists
an infinite number of solutions corresponding to dipole moments in the
plane defined by p̂ · m̂ = 0 with a magnitude given by (18).

Together, (17) and (18) define a geometric constraint on what force
directions can be achieved when the tool is aligned with the dipole
field:

F̂ · p̂ ≤ −
√

16
17

. (19)

This constraint requires any applied force to be attractive (i.e., have a
component in the−p̂ direction), and confines an applied force direction
to differ from the p̂ direction by no more than arccos

(√
16/17

)
≈

14◦, and, thus, constrains the workspace of the tool to a 28◦ cone
emanating from the center of the dipole source and directed along the
direction of the restoring force. Without loss of generality, we will
assume for the remainder of this discussion that the restoring force is
gravity, that it acts in the −ẑ Cartesian direction, and that the dipole
source is located at the origin.

To discuss the manipulability of a tool in this framework, it is useful
to switch to a cylindrical coordinate frame where the axis of the cylinder
is aligned with the ẑ-direction, and the radial and circumferential di-
rections describe motion in a horizontal plane below the dipole source.
The location of a tool will be defined by (zẑ, rr̂, φφ̂), but because of
symmetries in the dipole field, only the z and r values will affect the
following discussion. In this framework, the angle θ = arctan (r/z)
will describe where in the conic workspace the tool is operating.

In the achievable workspace, p̂ will always have its largest compo-
nent in the −ẑ-direction (i.e., the restoring force direction), and (19)
further requires the largest component of any achievable force to be in
the +ẑ-direction. Therefore, it is convenient to normalize any applied
horizontal force with the applied vertical force with the understanding
that as the applied vertical force is reduced to zero, any horizontal com-
ponents must also go to zero. Fig. 3 shows how the space of achievable
radial and circumferential forces changes as the tool moves from be-
ing positioned directly under the source (r = 0⇔ θ = 0◦ ) to being

Fig. 3. (Top) Manipulability measure of a tool aligned with a source’s dipole
field as a function of angular position inside of the 28◦ conic workspace. The
manipulability is the ratio of minimum to maximum force that can be applied
to the tool in the horizontal plane by the source. (Bottom) Achievable forces at
three locations from the center (θ = 0◦) to the edge (θ = 14◦) of the cone. The
magnitude of these forces are normalized by the applied vertical force; as the
vertical force tends to zero, the horizontal forces must also go to zero. As the tool
moves away from vertical alignment (θ = 0◦), larger forces can be generated
to push it toward θ = 0◦ than to push it toward the edge of the workspace.

positioned at the edge of the conic workspace (r = z/4⇔ θ ≈ 14◦).
The manipulability measure in the figure is defined as the minimum
horizontal force (which is always in the positive radial direction) nor-
malized by the maximum horizontal force (which is always in the
negative radial direction). As the tool moves toward the boundary, the
manipulability measure goes to zero because the achievable forces in
both the circumferential and the positive radial directions go to zero.

Unfortunately, the geometric force constraint (19) prevents general
application of (16). To implement a controller with this method, it is
necessary to determine the set of achievable forces and then pick an
achievable force that yields, as close as possible, the response required
by the control system. As before, it is beneficial to split the desired force
into a component parallel to the restoring force and one perpendicular
to the restoring force: F = Fz ẑ + F⊥. For F to be achievable, Fz

must be positive, and ‖F⊥‖ must be small enough to satisfy (19). The
maximum achievable ‖F⊥‖ can be found by finding a positive value
of α, where

F = Fz ẑ + αF̂⊥ (20)

which satisfies (19) at the constraint boundary. This yields a quadratic
equation for α
(

(p̂ · F̂⊥)2 − 16
17

)
α2 + 2Fz ((p̂ · ẑ)(p̂ · F̂⊥))α

+ F 2
z

(
(p̂ · ẑ)2 − 16

17

)
= 0. (21)

Thus, the dipole moment that should be applied given a desired force
and a restoring-force direction requires that F in (16) and (17) be
Fz ẑ + min(‖F⊥‖, α)F̂⊥, where α is the positive real solution to (21).
If a positive and real solution for α exists, and if α ≥ ‖F⊥‖, then the
desired force can be achieved; otherwise, if α < ‖F⊥‖, then the desired
force in the perpendicular direction cannot be achieved and must be
reduced to have a magnitude of α. If no positive solution for α exists,
then it is not possible to apply a force in the positive F̂⊥ direction,
which happens at the edge of the achievable workspace. If no real
solution exists, then it is not possible to achieve Fz ẑ at this location,
which happens if the position is outside of the achievable workspace.

A semiboyant capsule was levitated and driven along a rose curve
using this field-aligned force control approach, as shown in Fig. 4,
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Fig. 4. Semiboyant capsule is levitated and position controlled about a rose
curve using a field-aligned force control approach. The achievable workspace
is confined to the 28◦ cone shown.

using a proportional-derivative controller with visual tracking at a
30-Hz update rate. The orientation of the capsule shows the applied
field direction required at each snapshot to achieve the control forces. If
the manipulated tool were a sphere, the uncontrolled orientation would
not be seen. The capsule has larger tracking error closer to the Omn-
imagnet; this is likely because the assumption that the Omnimagnet’s
field is a pure dipole field has more error close to the Omnimagnet,
with the error reducing with ‖p‖−7 [17]. The tracking error could be
reduced by moving the trajectory farther from the Omnimagnet.

VII. COMMENT ON REFLECTIVE FORCE AND TORQUE

Because the Omnimagnet used in these demonstrations contains a
spherical ferromagnetic core, the permanent magnet used in a magnetic
tool will slightly magnetize the core, causing the permanent magnet to
be slightly attracted to the Omnimagnet even when no power is applied.
Assuming the permanent-magnet tool can be modeled as a point dipole,
which is reasonable for relatively large separation distances [18], the
dipole moment of the soft-magnetic core, mc , due to the permanent
magnet, mt , can be determined by the method provided in [17]

mc =
R3

c

‖p‖3

(
3p̂p̂T − I

)
mt (22)

where Rc is the radius of the core. The torque and force on the magnetic
tool due to the reflection are

TT =
3μ0R

3
c

4π‖p‖6 (p̂ ·mt )(mt × p̂) (23)

F = −3μ0R
3
c ‖mt‖2

4π‖p‖7

(
3m̂tm̂T

t + I
)
p̂. (24)

For perspective, if a 1-cm3 NdFeB grade-N52 magnet, which has a
dipole moment of 1.17 A · m2, is placed at the surface of the outer
coil of an Omnimagnet with the same geometry as the one used in
the experiments, the maximum torque would be 59 ×10−3 mN · m,
and the maximum force would be 5.3 mN (only 7% of its weight).
To account for this coupling, the Omnimagnet’s solenoid currents can
be controlled such that the net dipole moment of the Omnimagnet be-
comes zero by using (1) to calculate the currents required to create
a dipole moment that is the negative of (22) and, then, adding that
quantity to whatever dipole moment is required for the task. This ad-
justment was not necessary in the above demonstrations because of the
relatively low reflective torques and forces at the operation distances
of the demonstrations, and because of the closed-loop controllers used.
However, since the reflective torque and force scales with the square

of the tool’s dipole moment, this effect could become significant for
magnetically stronger tools. Although this analysis assumes a spher-
ical core, the scaling will be similar for dipole sources that contain
nonspherical ferromagnetic elements.

VIII. CONCLUSION

A single stationary electromagnetic dipole source can be used to
manipulate adjacent tools using several methods. If both the position
and heading of the tool are known or sensed, direct force and torque
control methods can be applied. If only position information is avail-
able, in many instances, it is possible to assume the tool will attempt
to align with the applied field, enabling both rotating-field control and
field-aligned force control approaches. Unfortunately, the workspace
for field-aligned force control is fairly limited. Many demonstrations in
this paper are conducted in 2-D workspaces, e.g., ball rolling; however,
the methods developed for manipulation with a single controlled source
are equally applicable to general 3-D workspaces under the provided
assumptions.
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Constraint-Based Prioritized Trajectory Planning
for Multibody Systems

Yuichi Tazaki and Tatsuya Suzuki

Abstract—This paper presents a trajectory-planning method for multi-
body systems. Trajectory planning of a multibody system is formulated as
a constraint-solving problem on a set of variables expressing the motion of
the multibody system over a finite-time interval. Constraints express the
dynamics of rigid bodies, kinematic conditions of joints, various range lim-
itations, as well as achievement of tasks, and they can be assigned different
priority levels. The prioritized constraint-solving problem is then treated
under the framework of lexicographical goal programming, where the lo-
cal optimality of the problem is characterized in terms of Pareto efficiency
condition. Based on this observation, an algorithm that iteratively updates
the variables toward a locally optimal solution is derived. The proposed
method is evaluated in simulation examples.

Index Terms—Constraint solving, multibody systems, priority, trajec-
tory planning.
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I. INTRODUCTION

Trajectory planning of robotic systems with many degrees of free-
dom poses some technical challenges. First, one must find a trajectory
that achieves given tasks, while fulfilling kinematic and physical con-
straints in a high-dimensional state space. Trajectory planning is often
treated as an optimization problem (see [1]–[7]). Here, a set of phys-
ical variables that express a robotic trajectory is optimized to fulfill a
series of constraints that originates from law of physics and various
kinematic relationships between objects. A wide range of optimization
techniques have been investigated, including the Newton method [3],
the shooting method [2], [4], the covariance matrix adaptation [5], and
the SQP [7].

The second difficulty is the multiobjective nature that most real-
world trajectory planning problems possess. The task-space control
framework is capable of handling different priorities of tasks (see [8]–
[13]). In this framework, a unique local coordinate frame called a task
space is defined for each task and tasks with lower priorities are treated
in the null-space of the task spaces of those with higher priorities.
This framework is extended to inequality tasks in [14]. Although it is
quite useful for synthesizing a set of feedback controllers with multiple
priority levels, it is not directly applicable to trajectory planning. When
one considers trajectory planning, task priorities should be considered
in the space of state trajectories rather than in the space of states.
However, trajectory planning is a nonlinear problem in much higher
dimension space. This makes some computational techniques that have
been used in task-space control not directly applicable. These include
the computation of the pseudoinverse matrix of constraint Jacobian (see
[8]), the computation of the basis of constraint null-space using singular
value decomposition (see [12]), and sequence of quadratic programs
(see [14]).

Based on the above background, this paper proposes a trajectory
planning method for robotic systems that are represented as multibody
systems. The multibody representation enables the expression robots
with various morphologies and workspaces with different settings in a
uniform manner. A trajectory-planning problem of a multibody system
is formulated as a constraint satisfaction problem with multiple prior-
ity levels, in which the kinematics and the dynamics of the multibody
system, as well as the achievement of tasks are expressed as a set of con-
straint conditions. It is shown that the problem can be viewed as a class
of goal programming problem (see [18]) and its local optimality condi-
tion is given as a special form of Pareto-efficiency condition. Based on
this observation, an algorithm that iteratively updates a set of decision
variables toward a prioritized Pareto-efficient point is proposed. The
proposed algorithm requires no expensive computation other than the
solution of quadratic programs, and therefore, it is suitable for trajec-
tory planning of robotic systems with many degrees of freedom. The
basic concept of the proposed method has been presented in the authors’
previous publications (see [16] and [17]). In this paper, the theoreti-
cal foundation of the proposed method is strengthened by revealing
the connection between lexicographical optimality and a special type
of Pareto-efficiency (see Section II). The formulation of multibody
trajectory planning is presented considering both sparse and dense
parameterizations (see Section III). Moreover, the computational
performance of the proposed method is compared with conven-
tional multiobjective optimization problems that are computed by a
generic solver (see Section IV). Concluding remarks are made in
Section V.

Notation: A sequence of integers from i1 , i1 + 1, . . . , i2 is written
as [i1 : i2 ]. Moreover, the vertical concatenation of vectors, [vT

1 vT
2 ]T is

written as [v1 ; v2 ]. For a vector c and an index set I, cI denotes the
subvector of c with the components indexed by I.
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