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Abstract— This is the first demonstration of a modular
and reconfigurable magnetic-manipulation system with integral
ferromagnetic material. This system—which includes multiple
Omnimagnets, each comprising three orthogonal solenoids
and a spherical ferromagnetic core—is capable of dexterous
manipulation of a magnetic tool. The magnetization coupling
of an arbitrary arrangement of spherical ferromagnetic cores is
solved, enabling an analytical solution for the magnetic forces
and torques. Thus, the system does not require extensive field
maps or in situ field characterization. If the positions and
orientations of the Omnimagnets are sensed, the Omnimagnets
can be actively rearranged during manipulation while main-
taining control of the tool. This could enable new capabilities
in medical procedures because the manipulation system can
be modified to accommodate the imaging systems and enable
physician access without loss of control. The capabilities of
this system are demonstrated through five-degree-of-freedom
manipulation (position and heading) of a permanent-magnetic
tool with several arbitrary Omnimagnet configurations.

I. INTRODUCTION

There is significant interest in magnetic-manipulation sys-
tems for current and future minimally invasive medical appli-
cations [1]–[3]. Magnetic-manipulation systems apply forces
and torques to remote magnetic devices without a mechanical
connection, and can project this control unhindered through
most environments, including biological tissue and plastics,
as well as through nonferrous metals in a bandwidth-limited
sense. Magnetic manipulation is also compatible with most
medical-imaging modalities.

Many prior magnetic-manipulation systems have been
designed so that the control of the field magnitude and
direction (and the resulting applied torque) and field gradient
(and the resulting applied force) can be separated and lin-
earized. This is typically accomplished using combinations
of Helmholtz and Maxwell coil pairs [4]–[7]. Clinical MRI
systems are similarly designed, and can be modified for a
similar type of manipulation [8], [9]. This separation and
linearization requires precise design and placement of the
coils to surround the workspace, leading to challenges in
imaging and scalability.

If the generation of the field and the field gradient are not
separated by design, which is the case for the most high-
performing magnetic-manipulation systems demonstrated to
date, then characterization of the magnetic field throughout
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Fig. 1. Five-degree-of-freedom manipulation of a magnetic capsule in
water, using five Omnimagnets. The Omnimagnets are arranged arbitrarily,
and no in situ magnetic field characterization is required.

the workspace as a function of applied current is required. It
is typical to use ferromagnetic materials with high coercivity
and low remanence to enhance the field produced by the
solenoids [10]–[14], although some systems have utilized
air-core electromagnets using similar control methods [15].
In either case, the resulting field is a complex function of
the shape, position, and orientation of each solenoid and all
integral ferromagnetic materials, and no general analytical
solution exists to determine the field resulting from an arbi-
trary arrangement of electromagnets. However, the magnetic
field of a static arrangement of electromagnets is linear with
the solenoid currents (up to the point of saturation of any
ferromagnetic material), which leads to a method for real-
time control with such systems: one field map per solenoid
in situ is generated offline, and the individual field maps
are then linearly combined online. If any component in the
system is moved, the field must be completely remapped. It
may be possible in certain cases to move system components
in a constrained fashion such that the coupled field is
minimally affected [13], but this is not the case in general.

We recently presented the design of the Omnimagnet [16],
which is an omnidirectional electromagnetic cube comprising
three densely packed mutually orthogonal solenoids sur-
rounding a spherical ferromagnetic core. The Omnimagnet
was optimized to be magnetically modeled by the analyt-
ical point-dipole model and is capable of three-degree-of-
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freedom (3-DOF) manipulation in an external workspace
[17]. Originally, the Omnimagnet was conceived as an in-
dividual module for a reconfigurable magnetic-manipulation
system (Fig. 1) capable of dexterous manipulation. In such
a system, each additional Omnimagnet adds three additional
inputs to the system, improving the system’s manipulability
and reducing the power required. The same set of Omni-
magnets could be utilized in various arrangements that are
optimized for a specific application, including optimizing
for a specific medical procedure and location in the human
body, optimizing within the constraints of a specific medical-
imaging modality, or optimizing for a specific size of patient
so there is no need to overdesign a one-size-fits-all system.

In our original conception of this modular and recon-
figurable system, calibration and control would be handled
analogously to prior magnetic-manipulation systems that
contain integral ferromagnetic material, using in situ field
maps. However, we have discovered that Omnimagnets’
spherical cores make them particularly well suited for use in
modular and reconfigurable systems. Spherical ferromagnetic
objects have a property that is unique to their geometry: the
average magnetic field applied over the volume of a sphere is
always equal to the magnetic field applied at the center of the
sphere. We will show that a consequence of this property is
that the coupled magnetic field of an arbitrary number and
arrangement of Omnimagnets can be accurately computed
algebraically, rather than with the field-map method required
previously. This means that a system of Omnimagnets not
only represents the first truly modular and reconfigurable
magnetic-manipulation system, but they are capable of being
reconfigured in real-time, with Omnimagnets being moved,
added, and removed from the system without any additional
calibration step. Real-time reconfiguration capability will en-
able a physician to maintain magnetic control over the remote
device while optimizing the location of the Omnimagnets
for improved performance or improved access to the patient
while accommodating the changing viewing perspectives of
line-of-sight imaging systems (e.g., fluoroscopy).

In this paper, we describe the analytical method to char-
acterize and control an arbitrary system of Omnimagnets,
and we demonstrate dexterous manipulation of an untethered
magnetic device using a multiple Omnimagnet systems.

II. MAGNETICS BACKGROUND

This mathematical discussion uses the following conven-
tions: Bold font denotes vectors (e.g., a, A) and blackboard
font matrices (e.g., B). The transpose is denoted a> or
A>. The vector 2-norm is ‖a‖, normalized direction (i.e.,
a‖a‖−1) is â, inner product is a · b, and cross product is
a × b, which is sometimes written in the skew-symmetric
matrix form S(a)b.

A. Magnetic Dipole Equations

The field produced by a magnetized object or a solenoid
can be well modeled in regions outside of the object’s
bounding sphere (i.e., the smallest sphere that encapsulates

the magnetic source) with a multipole field expansion [18].
The first term in this expansion, the dipole field, is

Bi =
µ0

4π ‖pi,j‖3
(
3p̂i,jp̂

>
i,j − I

)
mj =

µ0

4π
Pi,jmj , (1)

where: Bi is the magnetic field at position i that is produced
by a dipole moment mj at position j; pi,j is the displacement
vector from position j to position i (i.e., the location of the
calculated field Bi with respect to dipole mj); the 3 × 3
matrix Pi,j is a mapping function that is only dependent on
the displacement pi,j , and I is the 3 × 3 identity matrix.
Higher-order terms in the multipole expansion decay rapidly
with distance, are neglected in this analysis, and would not
fundamentally change the results.

Griffiths [18] provides relationships for torque and force.
The torque T i on a magnetic dipole mi in a field Bi is

T i = mi ×Bi = S (mi)Bi. (2)

In general, the force Fi on a magnetic dipole mi is

Fi = (mi ·∇)Bi, (3)

where ∇ is the vector gradient operator. If the magnetic field
is produced by another dipole source mj , the force on dipole
mi from dipole mj is

Fi =
3µ0

4π ‖pi,j‖4

(
mip̂

>
i,j + p̂i,jm

>
j

+(p̂i,j ·mi)
(
I− 5p̂i,jp̂

>
i,j

))
mj

=
3µ0

4π
Fi,jmj . (4)

The 3×3 matrix Fi,j is a mapping function that is dependent
on both the displacement pi,j and the dipole moment mi.
When pi,j is orthogonal to mi, Fi,j is singular and no force
parallel to the pi,j ×mi direction can be generated [17].

B. The Dipole Moment of a Single Omnimagnet

The dipole moment of an Omnimagnet, which is derived
in [16], is composed of two main parts: the dipole moment
of the solenoids and the dipole moment of the ferromagnetic
core, which is magnetized by the solenoids. These two parts
are both linear with current, assuming the core operates in
its linear region, and can be written as

mo = MoIo, (5)

where Mo is a 3 × 3 matrix mapping the three applied
currents, which are packed into the vector Io, to the resulting
dipole moment mo. Mo is diagonal in the Omnimagnet’s
frame and can be easily inverted. Since the average magnetic
field in a spherical volume is the magnetic-field’s value
at the sphere’s center [18], if an Omnimagnet is placed
in an external field, the perturbed dipole moment with the
additional core magnetization is

mo = MoIo +
4π

µ0
R3Bext, (6)
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where R is the radius of the Omnimagnet’s core and Bext

is the external sources’ magnetic field at the core’s center
[16]. The derivation of (6) assumes the core has negligible
remanence and is unsaturated.

III. THEORY OF MULTIPLE-OMNIMAGNET SYSTEMS

The combined effect of all of the field sources and
the coupling between the Omnimagnet cores needs to be
considered when using multiple Omnimagnets to control
one or more magnetic tools. Let there be N Omnimagnets,
with dipole moments mo1 . . .moN as determined by (6),
and L permanent-magnet tools, with dipole moments of
mt1 . . .mtL, which are located far enough from the Omni-
magnets to be considered point-dipole sources [19]. The total
external magnetic field at the center of the ith Omnimagnet’s
core is

Bext,i =
µo

4π


L∑

k=1

Poi,tkmtk +
N∑

j = 1,
j 6= i

Poi,ojmoj

 , (7)

where Poi,oj is the dipole displacement matrix from the
jth to the ith Omnimagnet and Poi,tk is the dipole dis-
placement matrix from the kth permanent-magnet tool to
the ith Omnimagnet. Combining (6) and (7), the coupled
algebraic equations describing the dipole moment of the ith

Omnimagnet moi are

moi = MoiIoi+R
3
i


L∑

k=1

Poi,tkmtk +
N∑

j = 1,
j 6= i

Poi,ojmoj

 .

(8)
Defining m as the vector packing of all of the Omnimagnets’
dipole moments and I as the vector packing of all of the
Omnimagnets’ currents, these 3N algebraic equations (8) can
be extended to a matrix equation for the whole system

m =


O R3

1Po1,o2 R3
1Po1,o3

R3
2Po2,o1 O R3

2Po2,o3 · · ·
R3

3Po3,o1 R3
3Po3,o2 O

...
. . .

m

+

 R3
1Po1,t1 · · · R3

1Po1,tL

...
. . .

...
R3

NPoN,t1 · · · R3
NPoN,tL


 mt1

...
mtL


+

 Mo1 O
. . .

O MoN

 I, (9)

where O denotes the appropriately sized zero padding. Thus,
the dipole moments are given by the affine equation

Dm = MI+mT, (10)

where

D =


I −R3

1Po1,o2 −R3
1Po1,o3

−R3
2Po2,o1 I −R3

2Po2,o3 · · ·
−R3

3Po3,o1 −R3
3Po3,o2 I

...
. . .


(11)

encodes the Omnimagnet coupling,

M =

 Mo1 O
. . .

O MoN

 , (12)

describes the dipole moments of each Omnimagnet in the
absence of magnetic coupling, and is block-diagonal, and

mT =

 R3
1Po1,t1 · · · R3

1Po1,tL

...
. . .

...
R3

NPoN,t1 · · · R3
NPoN,tL


 mt1

...
mtL

 (13)

provides the Omnimagnet dipole moments due to the tools’
field. For any physically realizable system, both D and M are
full rank and invertible. When the magnitude of mT is much
smaller than MI, the tools’ contribution can be neglected,
and (10) becomes linear with current.

These equations assume the tools are permanent magnets.
A soft-magnetic tool, not near saturation, will have a dipole
moment that varies linearly with the applied field, and the
reformulated system will be linear with current. Moreover,
the perturbation to the Omnimagnet’s dipole moment from
the tool’s field will be proportional to VTP2 (VT is the
tool’s volume), which decays as ‖p‖−6, and will only be
relevant for small separation distances. Thus, in many cases,
the singular values of VTP2 will be much smaller than the
singular values of M, and the effect of the tools’ field on the
Omnimagnets can be neglected completely.

To determine the dipole moments resulting from a set of
currents, D−1 must be computed, and needs to be updated
if any of the Omnimagnets’ relative positions change. To
determine the currents to produce a set of dipole moments,
M−1 must be computed, and must be updated if any of
the the Omnimagnets’ orientations change. Because of its
structure, M−1 can be updated to reflect a change in an
Omnimagnet’s orientation more efficiently than D−1 can be
updated to reflect a change in an Omnimagnet’s position.
This difference could become important for systems that
incorporate a large number of Omnimagnets, since, as will
be discussed next, the control choice can be calculated using
either inverse.

Once the magnetic coupling is accounted for, superposi-
tion can be applied to the resulting set of dipole fields. Thus,
the field applied by the Omnimagnets at a specific location
(the location of the tool) is

Bt =
µ0

4π

[
Pt,o1 · · · Pt,oN

]
m. (14)

Therefore, the torque on a single permanent-magnet tool is

T t =
µ0

4π
S (mt)

[
Pt,o1 · · · Pt,oN

]
m, (15)
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and the force on a single permanent-magnet tool is

Ft =
3µ0

4π

[
Ft,o1 · · · Ft,oN

]
m. (16)

To command a field (with which a magnetized object will
attempt to align) and a force (e.g., [12], [15])[

Bt

Ft

]
=
µ0

4π

[
I O
O 3I

] [
Pt,1 · · · Pt,N

Ft,1 · · · Ft,N

]
m. (17)

Alternately, Equations (15) and (16) can be stacked for the
wrench on a single permanent-magnet tool[

T t

Ft

]
=
µ0

4π

[
S(mt) O
O 3I

] [
Pt,o1 · · · Pt,oN

Ft,o1 · · · Ft,oN

]
,

(18)
but this wrench only constitutes 5-DOF due to the cross-
product in (2). Thus, it is not possible to apply a torque
about the tool’s dipole moment, leaving the the field in that
direction unconstrained. However, 6-DOF control is possible
if the tool contains multiple permanent magnets [14], [20].
To achieve 6-DOF control on a tool consisting of L rigidly
affixed permanent magnets, (15) and (16) combine as[

T t

Ft

]
=
µ0

4π

[
S(mt1) S(rt1) . . . S(mtL) S(rtL)

O 3I . . . O 3I

]
·

Pt1,o1 · · · Pt1,oN

Ft1,o1 · · · Ft1,oN

...
...

...
PtL,o1 · · · PtL,oN

FtL,o1 · · · FtL,oN


m, (19)

where rti is the displacement vector from the tool’s center
of mass to the center of the ith affixed magnet.

Each of equations (14)–(19), and their various stacked and
linear combinations, can be expressed in the form

z = Am, (20)

where z is the output and A is the appropriate actuation ma-
trix from above that maps the Omnimagnet dipole moments
to the output. The output can be described as a function of
the applied current by combining (10) and (20)

z = AD−1 (MI+mT) = AD−1MI+ zT, (21)

where zT is due to the tools’ field magnetizing the cores. In
many cases, zT is negligible because it decays with ‖p‖−6
for field or torque and decays with ‖p‖−7 for force.

For some desired output zdes, the direct solution to (21)
computes the minimum-2-norm solution for the dipole mo-
ment vector m and determines the currents to achieve it:

I = M−1
(
DA†zdes −mT

)
, (22)

where the † symbolizes a Moore-Penrose generalized inverse,
i.e., A† =

(
A>A

)−1 A>. This solution is convenient because
it does not require the explicit inverse of D (although it
can be shown that its inverse always exists for physically
realizable systems). If no solution to (22) exists (e.g., if
the system is under-actuated), then the generalized inverse

finds the set of currents I that minimizes the 2-norm of the
difference between z and zdes.

For an over-actuated system, a minimum-dipole-moment
solution is not the only option. Since current is the command
input, seeking a solution that tends to minimize the control
current, rather than dipole moments, could have thermal
and power advantages. To minimize a quadratic function of
current (i.e., I>WI), we define a positive-definite symmetric
weighting matrix W and use the change of variable y =
W1/2I. With this substitution, (21) becomes

z− zT = AD−1MW−1/2y, (23)

and the solution for the control current vector I that mini-
mizes the 2-norm of the weighted currents y and achieving
a desired output zdes is

I = W−1/2
(
AD−1MW−1/2

)†
(zdes − zT) . (24)

Again, if no solution to (24) exists, then the generalized
inverse finds the current vector I that minimizes the 2-
norm of the difference between z and zdes. The choice of
W is arbitrary. Choosing a diagonal matrix packing of the
solenoid resistances minimizes the electrical power required
for a desired output. In a power-constrained system, this
maximizes the capability.

IV. WORKSPACE ANALYSIS

By considering the singular values of the actuation matrix
for a field and force output, we are able to analyze the
condition of the workspace. With two or more Omnimagnets
it is possible to achieve 5-DOF manipulation of a single
permanent-magnet tool at every position. However, there are
some caveats to this statement. For example, if the tool and
all of the Omnimagnets form a line, and if the dipole moment
of the tool is orthogonal to this line, then it is not possible to
apply a force out of the span of {p̂, m̂t}, as is the case for
manipulation with a single Omnimagnet [17]. Any pose that
is close to this pose will be poorly conditioned. Furthermore,
consider a system-bounding-sphere encompassing all of the
Omnimagnets. A multipole expansion of the resulting field
at locations outside of this system-bounding-sphere reveals
the differences between the net field and a point-dipole
field decays rapidly with the distance. Therefore, at large
distances, the manipulability will quickly converge to that of
a single dipole source, which has been quantified in [17] and
is fundamentally only 3-DOF. Thus, the dexterous workspace
of any collection of Omnimagnets is confined to locations
within approximately 1.5 system-bounding-sphere radii and
to configurations where the Omnimagnets and the tool are
not collinear.

With two Omnimagnets the field-force actuation matrix
A from (17) is square, and it is possible to achieve 5-DOF
over a limited range of tool orientations as shown in Fig. 2.
Unfortunately, at every location, there is a continuous set of
tool orientations that are singular. Other systems with only
six control inputs have reported similar orientation-dependent
issues [15], [21]. However, this issue does not appear in the
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Fig. 2. The orientation-dependent minimum singular values for fifteen
tool locations with two Omnimagnets at (1,0) and (-1,0) (the Omnimagnet
at (1,0) is represented by the black square). The other four quadrants
are reflections of this quadrant. Each circle represents a single position
at the center with a hemisphere of tool orientations, with the center
corresponding to the tool’s dipole moment pointing directly out of the
plane and the edge corresponding to the tool’s dipole moment lying in the
plane. At each location, the blue line-like regions correspond to singular
tool orientations and the red hemispherical regions correspond to fully
manipulable orientations. With only two Omnimagnets there are many tool
orientations where 5-DOF manipulation is possible, but there is always a
small set of singular tool orientations where the manipulability is reduced
to 4-DOF.

eight-coil systems developed in [12] and [13]. This suggests
that the root cause of the singularities in the six-input systems
is not a geometric issue, as was suggested by Meeker et
al. [15], but, rather, is due to not having enough inputs to
fully control the magnetic fields produced.

To investigate the root cause of these orientation singular-
ities, we look at the systems from a magnetics perspective
rather than from a mechanics perspective. To achieve a force
on a permanent magnet that is independent of the field
applied, it is necessary to have full control of both the
field and the field Jacobian—commonly referred to as the
field gradient. (We diverge from common usage because we
wish to be clear that the field Jacobian is a 3 × 3 matrix,
not a vector.) Maxwell’s equations state that, ∇ · B = 0
everywhere and ∇ × B = 0 in current-free space (i.e.,
where we will be manipulating the tool), and as a result, the
field Jacobian will be trace-free and symmetric, respectively.
With these constraints, a static (i.e., the coils are in a fixed
geometry) magnetic-manipulation system requires 3-DOF to
fully control the field and 5-DOF to fully control the field
Jacobian. Therefore, every static system that has less than
eight current inputs is not capable of fully controlling the
8-DOF magnetic-field and field-Jacobian system. Thus, the
six-coil systems discussed above are actually under-actuated.
The result is they have singular tool orientations when
viewed from a force-torque or force-field perspective.

Indeed, numerical simulation shows that an actuation
matrix with three non-collinear Omnimagnets (nine inputs) is
never identically singular, but poorly conditioned orientations

still exist for tool positions that are coplanar with the
Omnimagnet positions. With four or more Omnimagnets, it
is possible to arrange them such that the tool and the Omni-
magnets can never be coplanar (e.g., place the Omnimagnets
at the vertices of a triangular pyramid), and simulations show
that the actuation matrix for this system is well conditioned
in the maximum-inscribing-sphere (i.e., the largest sphere
that can be placed inside the arrangement without containing
any of the Omnimagnets) for all possible tool orientations.
Clearly, adding additional Omnimagnets can only enhance
the conditioning of the actuation matrix.

V. EXPERIMENTAL DEMONSTRATION

To demonstrate the reconfigurability of the system, we
chose four different configurations of Omnimagnets as shown
in Fig. 3. We begin our experiments with three Omnimagnets,
then add a fourth, and then a fifth. Finally, we reconfigure
the third arrangement so the two stacked magnets are beyond
the far end of the tank; the rectangular shape of the tank
makes this more than a trivial rotation. For each of these
configurations, the Omnimagnets were arranged by hand
to accommodate the geometry of the water tank and the
stereo-vision cameras, their positions were then measured
with a ruler, and the system configuration was updated in
the control software. No precise placement, measurement,
or characterization was performed.

Two different styles of Omnimagnet were used, and they
work seamlessly together. We use one large Omnimagnet,
and four smaller Omnimagnets. The large Omnimagnet is the
same device used in [16] and [17]; it has a cubic dimension
of 176 mm, a core radius of 50.8 mm, and a maximum dipole
strength of 200 A·m2 at 8 A. The smaller Omnimagnets have
a cubic dimension of 127 mm, a core radius of 38 mm, and
a maximum dipole strength of 50 A·m2 at 8 A.

In each configuration, the Omnimagnets are commanded
to drive a semiboyant capsule around a cubic trajectory,
while maintaining a vertical orientation, then commanded to
hold the capsule in one position while rotating it completely
around the world x- and y-axis, sequentially. The geometry
of the capsule is provided in [22]. It has a dipole moment
of 0.126 A · m2, and a dry weight of 0.0153 N, which is
reduced to an apparent weight of 0.0005 N when submerged
in water. The capsule is painted green and tracked at 40 Hz
with a custom color tracking stereo-vision system, comprised
of two orthogonal Point Grey FL3-U3-13S2C-CS cameras,
with a reproduction error of 0.5 mm. The frame rate and
absolute accuracy (on the order of a few millimeters) are
limited by the color detection and segmentation method, and
could be improved by using a dynamic region-of-interest, but
are adequate for these experiments.

The position error relative to the desired trajectory is
converted to a desired force by a PID controller. This force
along with the desired heading are converted to the required
currents using the method of (17) with (24), and the field
magnitude ‖B‖ was chosen to be 1.5 mT, which was empir-
ically determined. The required currents are converted to an
analog signal with an Advantech D-A card (PCI-1724U), and
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Fig. 3. (top) The four different Omnimagnet configurations tested. (bottom left) The power required to execute the trajectories. (bottom center) A time
overlay of the trajectories from the camera point of view. (bottom right) The tracked positions for each cubic trajectory overlaid on the commanded path.

the current control is accomplished with Advanced Motion
Control current drives (AMC30A8).

In the experiments, we observe that the total system
power required to perform the same task decreases with
each additional Omnimagnet. The average power to complete
the rectangular trajectory with three Omnimagnets is 168 W
and drops to 107 W and 87 W as additional Omnimagnets
are added (see setup 1, 2, and 3 in Fig. 3). Similarly, the
rotational trajectory requires 183 W, 121 W, and 109 W on
average for three, four, and five Omnimagnets, respectively.
Interestingly, the modification of setup 3 into setup 4 moved
the two stacked Omnimagnets farther from the trajectory,
increasing the average power required to 107 W for the
rectangular and 130 W for the rotational trajectories. Videos
of these trajectories are available at the author’s website [23].

Since the positions and orientations of the Omnimagnets
were not precisely measured, the individual strengths of
the Omnimagnets have not been calibrated to account for
manufacturing differences, and the field contributed by each
Omnimagnet has small deviations from the dipole model,
it was necessary to add the integration to eliminate the
steady-state position error. Despite accumulating modeling
errors, the method proposed is robust enough to stabilize
the inherently unstable magnetic control system even while
operating at the relatively slow update rate of 40 Hz.

VI. CONCLUSION AND DISCUSSION

This paper makes three key contributions: First, it derives
an analytical model for the magnetic coupling of ferro-
magnetic spheres. This is a fundamental contribution to
magnetic analysis and can be used to predict the behaviors of
magnetic colloids or other systems comprised of interacting
magnetic spheres. Second, it shows that any system of static
electromagnets must have at least eight inputs to exhibit full
control of a magnetic tool in all locations and orientations.
The shift from analyzing the system from a mechanical to a
magnetic perspective will help future magnetic manipulation
system designers analyze their systems more effectively.
Third, it presents the first modular and reconfigurable mag-
netic manipulation system.

The applications for a modular and reconfigurable mag-
netic manipulation system are numerous. For example, cur-
rent magnetically controlled catheter ablation procedures use
C-arm fluoroscopy to image the catheter for the physician,
and current manipulation systems significantly limit the
viewing angles of the C-arm. One could imagine a multiple-
Omnimagnet system adjusting the positions of the electro-
magnets to provide the best perspectives to the physician.
Continuing along the lines of ablation procedures, a typical
procedure has two parts: navigation and ablation. During
navigation, it is beneficial to have excellent control of the
field in order to steer the catheter tip though the vasculature.
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During ablation, it is beneficial to have excellent control of
the force in order to press the catheter tip into the ventricle
wall ensuring good thermal connection. This system can
maintain control of the catheter tip while relocating the
Omnimagnets to optimize the actuation matrix for each task,
e.g., making a strong field during navigation and strong
gradients during ablation.

The system presented in this paper is modular, reconfig-
urable, and has an analytically described field and gradient.
It is the most versatile magnetic-manipulation system to
date. It can be easily adapted to new tasks and procedures,
assembled in any configuration desired, and modified during
use, with no time-intensive in situ empirical or numerical
field characterization required.

Although we have not fully explored the topic, it seems
possible that this versatility could come at a cost in terms of
performance for a specific application. The omnidirectional
nature of the Omnimagnets can be interpreted as them both
being equally good at generating a magnetic field in any
direction or being equally poor at generating a magnetic
field in any direction. An electromagnet of comparable size
that is designed to generate a field in only a single direction
will certainly be stronger in that direction. It may be that
for a specific single application, a custom electromagnet
system will outperform the modular approach. However,
the benefits of being able to generate multiple orthogonal
and collocated dipole fields using Omnimagnets creates new
possibilities in terms of dexterous magnetic manipulation that
are still unexplored, and that could potentially outweigh the
drawbacks.

REFERENCES

[1] E. H. Frei, “Medical applications of magnetism,” Crit Rev Solid State
Mat Sci, vol. 1, no. 3, pp. 381–407, Sep 1970.

[2] G. T. Gillies, R. C. Ritter, W. C. Broaddus, M. S. Grady, M. A.
Howard III, and R. G. McNeil, “Magnetic manipulation instrumen-
tation for medical physics research,” Rev Sci Instrum, vol. 65, no. 3,
pp. 533–562, Mar 1994.

[3] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for
minimally invasive medicine,” Annu Rev Biomed Eng, vol. 12, no. 1,
pp. 55–85, 2010.

[4] A. W. Jenkins and H. M. Parker, “Electromagnetic support arrange-
ment with three-dimensional control. I. theoretical,” J App Phys,
vol. 30, no. 4, pp. S238–S239, Apr 1959.

[5] K. B. Yesin, K. Vollmers, and B. J. Nelson, “Modeling and control
of untethered biomicrorobots in a fluidic environment using electro-
magnetic fields,” Int J Rob Res, vol. 25, no. 5-6, pp. 527–536, May
2006.

[6] T. Honda, K. I. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,” IEEE Trans Magn, vol. 32,
no. 5, pp. 5085–5087, Sep 1996.

[7] S. M. Jeon, G. H. Jang, H. C. Choi, S. H. Park, and J. O. Park,
“Utilization of magnetic gradients in a magnetic navigation system
for the translational motion of a micro-robot in human blood vessels,”
IEEE Trans Magn, vol. 47, no. 10, pp. 2403–2406, Oct. 2011.

[8] T. P. L. Roberts, W. V. Hassenzahl, S. W. Hetts, and R. L. Arenson,
“Remote control of catheter tip deflection: an opportunity for inter-
ventional MRI,” Magn Reson Med, vol. 48, no. 6, pp. 1091–1095,
2002.

[9] J.-B. Mathieu, S. Martel, L. Yahia, G. Soulez, and G. Beaudoin,
“Preliminary investigation of the feasibility of magnetic propulsion
for future microdevices in blood vessels,” Biomed Mater Eng, vol. 15,
no. 5, pp. 367–374, Sep 2005.

[10] E. E. Covert, “Magnetic suspension and balance systems,” IEEE Aero
Elec Sys Mag, vol. 3, no. 5, pp. 14–22, May 1988.

[11] T. Nakamura and M. B. Khamesee, “A prototype mechanism for three-
dimensional levitated movement of a small magnet,” IEEE ASME
Trans Mechatron, vol. 2, no. 1, pp. 41–50, Mar 1997.

[12] M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul,
and B. J. Nelson, “OctoMag: An electromagnetic system for 5-DOF
wireless micromanipulation,” IEEE Trans Robot, vol. 26, no. 6, pp.
1006–1017, Dec 2010.

[13] Y. Shachar, “Apparatus and method for shaped magnetic field control
for catheter, guidance, control, and imaging,” US Patent 8,027,714 B2,
2011.

[14] P. Berkelman and M. Dzadovsky, “Magnetic levitation over large
translation and rotation ranges in all directions,” IEEE/ASME Trans
Mechatron, vol. 18, no. 1, pp. 44–52, Feb 2013.

[15] D. C. Meeker, E. H. Maslen, R. C. Ritter, and F. M. Creighton,
“Optimal realization of arbitrary forces in a magnetic stereotaxis
system,” IEEE Trans Magn, vol. 32, no. 2, pp. 320–328, Mar. 1996.

[16] A. J. Petruska and J. J. Abbott, “Omnimagnet: An omnidirectional
electromagnet for controlled dipole-field generation,” IEEE Trans
Magn, vol. 50, no. 7, pp. 1–10, Jul 2014.

[17] A. J. Petruska, A. W. Mahoney, and J. J. Abbott, “Remote manipu-
lation with a stationary computer-controlled magnetic dipole source,”
IEEE Tran Robot, vol. 30, no. 5, pp. 1–6, Dec 2014.

[18] D. J. Griffiths, Introduction to Electrodynamics. Prentice Hall, 1999.
[19] A. J. Petruska and J. J. Abbott, “Optimal permanent-magnet geome-

tries for dipole field approximation,” IEEE Trans Magn, vol. 49, no. 2,
pp. 811–819, Feb 2013.

[20] E. Diller, J. Giltinan, G. Z. Lum, Z. Ye, and M. Sitti, “Six-degrees-of-
freedom remote actuation of magnetic microrobots,” in Proceedings
of Robotics: Science and Systems, Berkeley, USA, July 2014.

[21] S. Afshar, M. B. Khamesee, and A. Khajepour, “Optimal configuration
for electromagnets and coils in magnetic actuators,” IEEE Trans Magn,
vol. 49, no. 4, pp. 1372–1381, Apr 2013.

[22] A. W. Mahoney and J. J. Abbott, “5-dof manipulation of an unteth-
ered magnetic device in fluid using a single permanent magnet,” in
Proceedings of Robotics: Science and Systems, Berkeley, USA, July
2014.

[23] [Online]. Available: www.telerobotics.utah.edu/index.php/Research/
Omnimagnets

155


