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An Omnidirectional Electromagnet for Remote Manipulation

Andrew J. Petruska and Jake J. Abbott

Abstract— An Omnimagnet is an omnidirectional electro-
magnet comprised of a ferromagnetic core inside of three
orthogonal nested solenoids. It generates a magnetic dipole-field
with both a variable dipole-moment magnitude and orientation
with no moving parts. The design of an Omnimagnet, in which
each solenoid has the same dipole moment and minimizes the
differences between each of the solenoid’s fields, is provided and
optimized for strength by tailoring the size of the spherical core
used to amplify the solenoids’ field. This design is then analyzed
using FEA tools and shown to be dipole-like in nature. Various
magnetic control methods are then motivated by providing
the necessary equations relating the three applied currents to
applied field, torque, or force on an adjacent magnetic device.
Finally, the optimal design is constructed and its utility is
demonstrated by driving a helical capsule endoscope mockup
through a transparent lumen.

I. INTRODUCTION

Magnetic microscale and mesoscale devices (both tethered
and untethered) can be manipulated with an externally gen-
erated magnetic field, which applies a combination of force
and torque to the device without any mechanical connection.
Although a combination of permanent magnets and electro-
magnets can be used to produce the magnetic field required
for a manipulation task, some tasks seem better suited to
either permanent magnet or electromagnet systems. Because
they have more direct real-time control of the applied mag-
netic field, electromagnet systems have been used for multi-
degree-of-freedom levitation and position/orientation control
[1]-[4]. Permanent magnets, which require no electrical
power to generate a strong field, have been used for pulling
and rolling tasks in which the environment provides some
structure [5]-[8], as well as for quasistatic pointing tasks
of tethered devices such as magnetic catheters [9]. Because
both attractive and lateral forces can be generated between
a rotating dipole source and a sympathetically rotating mag-
netic device, a rotating dipole field could be more effective
for rolling/screwing propulsion than the rotating uniform
field generated by many electromagnet systems [10]. Finally,
it is challenging to scale many laboratory electromagnetic
systems that surround their workspace (e.g., Helmholtz coils)
to a size that would be required for medical applications,
whereas manipulation systems that utilize dipole fields can
be located adjacent to their workspace.

An omnidirectional electromagnet, formed by any set of
collocated electromagnets that have dipole moments span-
ning R3, combines the real-time control of field strength
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Fig. 1. The assembled Omnimagnet forms a cube constructed of three
nested orthogonal solenoids surrounding a spherical core of ferromagnetic
material. Each square-cross-section solenoid has a different inner width W,
winding thickness T, length L, and associated current density J.

associated with traditional electromagnets and the control of
dipole orientation associated with rotating permanent mag-
nets. In this paper, we introduce a class of omnidirectional
electromagnet that we call an Omnimagnet, comprised of a
ferromagnetic core surrounded by three orthogonal solenoids,
which is able to create a dipole-like field in any orienta-
tion. Specifically, we consider an Omnimagnet comprised
of a spherical core and square-cross-section solenoids (Fig.
1), but other design variations could be considered. An
Omnimagnet contains no moving parts, and when powered
down becomes inert, reducing the safety concerns associated
with permanent-magnet field sources. The concept of three
nested solenoids has been explored as a method of inductive
power coupling [11], but never as a dipole-like magnetic-
field source, and never with a spherical core.

The paper is structured as follows. First, the general design
problem for an Omnimagnet is presented. Next, the magnetic
fields generated by the three solenoids are described using
a multipole expansion of the magnetostatic equations, and
the contribution of the ferromagnetic core is quantified. The
optimization of a specific Omnimagnet follows, and the
design is described. The field generated by this design is then
compared to a dipole-field approximation, and the inverse
solution for determining the dipole moment, and thus the
currents, required to produce a desired static or rotating field,
torque, or force at a given location are provided. Finally,
the capability of the Omnimagnet for the control of capsule
endoscopes is then demonstrated, and future research plans
are discussed.



II. OMNIMAGNET DESIGN AND OPTIMIZATION

The general concept of an Omnimagnet is broad, con-
sisting of three orthogonal nested solenoids surrounding a
ferromagnetic core; however, design choices must be made
to realize and optimize a physical Omnimagnet. First, we
chose the shape of the solenoids to be square-cross-sectional
sleeves to result in a dense packing (see Fig. 1). Next, we
chose the core to be a sphere because a spherical core has
three desirable properties:

e A sphere does not have a preferential magnetization
direction.

When placed in a uniform field (similar to the field
in the center of a solenoid), a sphere produces a pure
point-dipole field [12].

The average applied magnetic field within a sphere is
equal to the applied magnetic field at the center of the
sphere [12].

We chose that the dipole moment generated in each direction,
which consists of the contribution of both an individual
solenoid and the magnetization of the core due to that
solenoid, should be the same when an equal electrical current
density is applied through each solenoid. Other geometric
design choices (e.g., cylindrical solenoids or a cubic core) or
dipole-moment relationships (e.g., scaling the dipole moment
of each solenoid with its heat-transfer capability), could also
be pursued using the general framework for Omnimagnet
design outlined below. Finally, we constrain our design to
use a single wire gauge for all solenoids, which means that
“the same current density” is synonymous with “the same
current”’; current and current density are related by the cross-
sectional area of the wire used. Throughout this paper, I will
be used to refer to currents in units{A} and .J will be used to
refer to current density in units {A-m~2}. Because current
density is invariant to wire selection, the optimization for
shape is performed using J; general discussion, however,
will use I, as it is the more natural parameter from a control
perspective. The final design of the Omnimagnet shown in
Fig. 1 requires ten total constraints (the length, width, and
thickness of each solenoid, and the radius of the core).

The magnetic field generated by the Omnimagnet can
be represented by the field contributed by the magnetized
spherical core superimposed with the field contributed by the
solenoids. Modeling the total field can be performed using
FEA tools with a resolution limited by the number of ele-
ments used. Alternatively, an analytical dipole approximation
can be used to model the field. The dipole approximation
provides a closed-form vector equation that can be used
to calculate the field generated at a point, or inverted to
determine the current necessary to create a particular field.
The closer the Omnimagnet is to generating a pure dipole
field, the better the algorithms based on this approximation
will perform. By correctly choosing the solenoids’ aspect
ratios, the dipole-approximation error can be minimized as
a part of the design optimization.
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A. Solenoid Multipole Field Expansion

For positions outside of the Omnimagnet’s minimum-
bounding sphere (i.e., the smallest sphere that the Omnimag-
net can fit within), the solenoid fields can be represented by
a multipole expansion of a vector potential [12]:

B(p) =V x¥(p) (1)
where
s 1 n L.
i)=Y o (I R e @
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where pg = 47 x 107" T-m-A~! is the magnetic perme-
ability of free space, p is the vector (with associated unit
vector p) from the center of the Omnimagnet to the point
of interest in units {m}, r is the vector (with associated
unit vector r) from the center of the Omnimagnet to the
point in the solenoid being integrated, J (r) is the current
density vector that points in the direction of the current
flow, Vs represents the solenoid’s volume, and P, () are the
Legendre polynomials. Since the divergence of a magnetic
field through a closed surface must be zero, all of the even
terms (those corresponding to Py, P», ...) must be zero,
leaving only the odd terms. The first non-zero term in the
multipole expansion (corresponding to P;) is the dipole field,
which can be expressed in a coordinate-free form as:

B(p) = —— (3pp" — ) m
4 ||pll
where Il is a 3 x 3 identity matrix and m is the dipole moment
in units {A-m?}.

The dipole moment for a current density of any configu-
ration is [12]:
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The dipole moment for a square-cross-section solenoid as
shown in Fig. 1 with uniform current density (i.e., the current
density does not vary along the thickness or length of the
solenoid) is: 4

JL -
5 (8- 7)1 )

where J is the magnitude of J, L is the axial length of the
solenoid (with associated axial unit vector i), and 8; = W/L
and By = (W +2T) /L respectively describe the inner-
width-to-length and outer-width-to-length aspect ratios.

The maximum dipole moment that any electromagnet
with a bounding cube of edge length L containing no
ferromagnetic material could generate in one direction can
be calculated by (5) with 5y = 0, B2 = 1, and is JL4/6.
The maximum theoretical dipole moment that could be
expected for any cubic omnidirectional electromagnet with
edge length L containing no ferromagnetic material is thus
1/3 of the unidirectional case: JL*/18; this quantity is
used throughout the paper to normalize the strength for
a nondimensional optimization, although constructing such
an idealized omnidirectional electromagnet would be very
challenging.

m =



We show in [13] that by varying the aspect ratios of
a rectangular permanent magnet, the dipole-field approx-
imation error can be minimized. The approach finds the
geometry that sets the next term in the multipole expansion,
the quadrupole term, to zero in the scalar potential of the
magnetic field. Using the same technique, but using the
vector potential instead of a scalar potential, the magnetic
field of each solenoid can be shaped to produce a dipole-
like field by removing the quadrupole contribution to the
multipole expansion. The quadrupole term for a square-cross-
section solenoid of uniform current density corresponds to
the P; term in the expansion:

1 T2 A
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where mgy,q is the quadrupole moment, given by:
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The values of 5, and (5 that set (7) to zero correspond to
geometries with minimal dipole-field approximation error.
By letting 81 = a2 in (7) and equating to zero, it can be
shown that the only meaningful solutions lie in the exclusive
range (2 = (1, \/5/73), which corresponds to geometries
that are shorter than they are wide (L < W + 2T'). This
requirement will be used to further constrain and simplify
the optimization space.

B. Core Dipole-Field Contribution

Since the core is spherical and placed in the nearly
uniform field inside of the solenoid, it is assumed that it will
magnetize uniformly and contribute a pure dipole field (we
verified this assumption numerically post facto and found it
to be extremely accurate).

The dipole moment of a low-coercivity, low-remanence,
and high-permeability (x > 1) spherical core, when magne-
tized in its linear region, is

where R, is the radius of the core, M is the magnetization in
units {A-m~'}, the overbar represents a quantity averaged
over the core volume V., and B, is the applied magnetic
field at the center of the core, which is a linear combination
of the field due to each solenoid. The field, calculated by the
Biot-Savart law, for each square-cross-section solenoid with
uniform current density J, length L, and axis 1is:
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C. Omnimagnet Optimization

By combining the dipole moments due to the magnetized
core and each of the solenoids, the total dipole moment of
the Omnimagnet m = m,, + m, + m, is thus:

ﬁi,2
m= Y <8L1RC / atan ( m) d¢
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where the indices z, y, and z correspond to the inner,
middle, and outer solenoids, respectively and without loss
of generality; and M is a linear transformation that maps the
three applied currents in I to the dipole moment m.

The optimal geometry for the Omnimagnet corresponds
to the geometric ratios that maximize the dipole moment
generated in each direction, have the same ratio of dipole
moment to maximum current density in each direction, and
have no quadruple moment. This is a constrained optimiza-
tion problem, and can be non-dimensionalized by dividing
all of the lengths by L. (the edge length of a minimum-
bounding cube) and the moments by mys = JmafoBax /18
(the maximum no-ferromagnetic-material dipole moment in-
troduced earlier). The constraints can be simplified because
we know from (7) that the length of each solenoid must
be shorter than its outer width. Thus, the objective is to
maximize the dipole moment magnitude ||m|| subject to:

(10)

3 3
0,2 i,1

e Eq. (7) equals zero (i.e., the configuration has no
quadrupole moment).

[ || /1er = [y || /mier = (| || /7er.

W, = R, (i.e., the core diameter is the same as the
inner solenoid’s inner width).

Wy = Wy + 2T, (the inner solenoid’s outer width is
the same size as the middle solenoid’s inner width).
W, = W, + 2T, (the middle solenoid’s outer width is
the same size as the outer solenoid’s inner width).

This optimization is performed using R. as the free
parameter (Fig. 2). There is a maximum that occurs when
the core diameter is 60% of Ly.x. Although the magnitude
of the dipole moment in each direction is the same for the
same applied current, the percentage of the dipole moment
attributed to the core or the windings are different for each
solenoid; the percentage of the dipole moment from the
(core/windings) is (41/59), (28/72), and (21/79) for the inner,
middle, and outer solenoids, respectively. Interestingly, this
configuration has dipole-moment magnitudes that are 93%
of what could be theoretically expected with no ferromag-
netic material and no voids (an unrealizable geometry), and
22% greater than the realizable geometry of three nested
solenoids with no ferromagnetic core (but with significantly
less power consumption and more heat-transfer surface area).
Solutions to the right of the maximum in Fig. 2 correspond to
geometries with more inert (non-current-energized) material
and will produce less heat and require less power than
the corresponding geometry left of the optimal point. The
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L/Lmax W/Lmax T/Lmax ﬁl 52
X 0.70 0.60 0.09 0.86 | 1.11
y 0.84 0.78 0.06 0.92 | 1.07
z 0.96 0.91 0.05 0.95 | 1.05

Fig. 2. The optimal geometry for a no-quadrupole Omnimagnet. The dipole
moments have been normalized by JL4,./18 and have a maximum at
a core-diameter-to-outer-Omnimagnet-dimension ratio 2R/ Lmax = 0.60.
The table provides the geometric ratios that describe the shape of the three
nested solenoids that correspond to this optimal configuration. All length
parameters are normalized by the outer Omnimagnet cubic length Lmax.

flatness of the maximum indicates that variations about the
optimal point will not substantially affect the performance
of the resulting Omnimagnet. Fortunately, the solenoids are
shorter than they are wide, which allows paths for conductors
and coolant to reach the middle and inner solenoids, making
the implementation of this design feasible.

An Omnimagnet was constructed using a 100 mm diameter
spherical Nickel-Iron (ASTM A753-08-K94840) core. The
core material was chosen because it has a high magnetic
permeability, a low magnetic remanence, and a low mag-
netic coercivity (i.e., it magnetizes easily but does not
remain magnetized when the magnetizing field is removed).
The solenoids were constructed using 16 AWG square self-
bonding copper wire from MWS Wire Industries Inc. The
optimization was repeated including a 1 mm spacing between
each of the components for assembly. The slightly modified
optimization did not change the shape of the coils substan-
tially but shifted the optimal core size to 57% of the edge
length of the minimum-bounding cube, which is Ly, =
176 mm. The additional empty space also reduced the overall
strength of the design from 93% to 87% of mys. Because
of the quantization in lengths and widths inherent with any
winding, the constructed Omnimagnet has slight variations
in the dipole-moment strengths of each solenoid and has
successfully minimized, but not eliminated, the quadrupole
term (Mguag ~ 0.04m). The geometry constructed is shown
in Fig. 3, with the table providing the dimensions; the
dipole-moment per conductor-current is calculated to be
25.1, 25.8, and 26.3 (A . m2) /A for the inner, middle, and
outer solenoids, respectively, which form the diagonal entries
of M. The field at the surface with 1 A applied is measured
to be 5.6, 4.7, and 3.6 mT for the inner, middle, and outer
solenoids, respectively; at 12cm from the surface the field
is 0.6 mT for each.

Since each solenoid in the Omnimagnet has a different
geometry, the magnetic field produced by each solenoid
will not have exactly the same shape for positions close
to the Omnimagnet. To understand the subtle differences in
field shape, FEA simulations were performed using Ansoft
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Middle and Inner Solenoid Omnimagnet

L(mm) | W(mm) | T'(mm) | 51 | Pa

x| 120 103 16 ]0.386 [ 111
149 137 11 [092]1.07
z| 170 160 8 0.95 | 1.05

Fig. 3. The assembled Omnimagnet used in the testing described in this
paper. The core used is 100mm which is 57% of Lmax = 176 mm. The
deviations from Fig. 2 are due to reoptimizing with lmm air-gaps between
the components for assembly.
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Fig. 4. 'The field shape (top, dotted) and magnitude (top, solid and color
contour) and field error relative to the dipole approximation (bottom) are
shown. The distances are normalized by the radius of a minimum-bounding
sphere (\/Z§Lmax /2). In the top row, the innermost contour line corresponds
to ||B|| = 64uo |m|, and each successively larger contour corresponds to
a halving in field magnitude, with the outermost contour corresponding to
IB| = 4p0 ml.

Maxwell 14.0. Since the core is magnetized in the linear
region and the solenoids are orthogonal, solenoid-solenoid
magnetic coupling is negligible, so in these simulations only
one of the solenoids is energized at a time. The results of
the simulation (field strength, field shape, and percent error
from the point-dipole approximation) for each solenoid are
shown in Fig. 4. As the outermost solenoid is the largest,
it is responsible for the majority of the field deviations
close to the Omnimagnet. The field in each direction rapidly
reduces to a pure dipole field with distance; the deviations
are comparable to non-spherical permanent magnets [13].



III. MANIPULATION WITH AN OMNIMAGNET
A. Applying Field, Torque, or Force

Fundamentally, the Omnimagnet is a magnetic field source
with three control inputs (the current applied to each
solenoid), which can be used to generate a desired magnetic
field at a location in space, or control the torque or force on a
magnetic object. Since the magnetic field generated is closely
represented by a dipole field, at each location in space it will
produce both a field and spatial derivatives in the field. With
only a single Omnimagnet with three degrees of freedom,
it is not possible to independently control field, torque, and
force simultaneously. Moreover, it will be shown that it is
not possible to fully control force in all configurations.

To determine the dipole moment m required by the
Omnimagnet to produce a desired field B at some point p,
the vector dipole equation (3) must be inverted; Mahoney et
al. showed the inverse always exists of the form [8]:

2 o
m = —|p||* (3pp" — 2I) B (1
Ho
Combining with (10), the currents required are thus:
L 2M 3 (oo T
=" lpl"M™ (3pp —21) B (12)

If the tool’s dipole moment m; is known in addition to its
position, it is possible to command torque or force directly,
rather than simply setting a field value. The torque acting on
the tool is

T=m; X B (13)

where x denotes a vector cross product. Although there is
not a unique solution for the magnetic field to create a desired
torque Tges, one simple method, which minimizes the field
applied, is to command the field to be perpendicular to the
tool:

1

a7 (T 100

(14)
This method has also been shown to minimize the attractive
force between the two dipoles [14].

To apply a controlled force for pushing and pulling tasks,
the spatial gradient of the dipole-dipole potential energy must
be controlled:

= %F(mt,ﬁ)m (15)
and
mT (%p" + p&" — (5pp" — I) pT%)
F(m,,p) = |m! (3pT +pyT — (5pp” — 1) p'3) | (16)

m! (2pT + pa’ — (5pp” — 1) p'2)

where X, y, and z are the cartesian x, y, and z unit vectors,
respectively. Since F is a 3 x 3 matrix, this inversion can
be efficiently computed when the inverse exists. Since the
orientation of the field, and therefore the torque applied, is
not controlled, the resulting solution, when it exists, will
likely be locally unstable. Consequently, force control with
a single Omnimagnet is not feasible in practice.
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B. Propulsion of a Helical Capsule Endoscope Mockup

At steady-state, the torque applied by a magnetic field on
a magnetic tool will tend to align the tool with the field. This
can be used to reduce the control problem from controlling
torque directly, and thus requiring both tool orientation and
position, to controlling field directly, and thus requiring only
tool position. Controlling the propulsion of a ball or helical
screw with this approach has been explored using a rotating
permanent magnet [8]. However, when a permanent magnet
is used to create a rotating field, both the magnitude and
rotation rate of the field vary elliptically at the tool location;
thus, the rotational speed of the permanent magnet needs
to be constantly updated in order to produce a constant
tool rotation rate [8]. Since the Omnimagnet can produce
a desired field at a specific point in space, it is possible
to create a rotating field with angular velocity w without
the elliptical modulation associated with rotating permanent
magnets. This can be accomplished by updating the desired
B in (12) as

B(k+1) = S@AYB(k) (17)

where At is the time step of the control system, S(-) is the
skew-symmetric matrix packing of a given angle-axis vector,
and the matrix exponential creates a rotation matrix [15].
Thus, the same steady-state rotating control approachs can be
performed by an Omnimagnet using (12) and (17) in which,
unlike permanent magnets, both the desired field magnitude
and orientation are specified. The minimum required field
magnitude ||B|| is determined by (14) where ||7qes|| is given
by the viscous drag torque on the tool as a function of ||w]|.
In general, the larger the |B|| chosen, the more robust the
control will be to errors in modeling the viscous drag, but
the greater the required Omnimagnet drive currents.

A rotating magnetic field was used to propel a threaded
dummy capsule endoscope down a transparent lumen, which
was offset by 12cm from the surface of the Omnimagnet,
as shown in Fig. 5. Although the trajectory of the capsule is
simple (a line), the translating rotational field necessary to
drive the capsule uses all three degrees of freedom available
to the Omnimagnet (see multimedia attachment). The desired
magnetic field with ||B||=3mT was updated using (17)
for a rotational rate of 2Hz. The position of the capsule
was tracked using a stereo-vision system, although other
localization methods, such as the magnetic localization of
[16], could be used in the future. This position was used
in conjunction with (12) to calculate the currents necessary
to produce the desired field at the location of the capsule.
The necessary currents were controlled by a DC voltage
signal sent from a Sensory S626 controller card to Advanced
Motion Control AMCI16A8 current drives at an update rate
of 100 Hz.

IV. DISCUSSION

The Omnimagnet prototype developed in this paper uses
no form of cooling. However, for Omnimagnets to be truly
effective, they will need to be cooled. Future work will
consider immersive fluid cooling and forced-convection fluid
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Fig. 5. Propulsion of a helical capsule at 1cm-s—! through a lumen
located 12cm from the surface of the Omnimagnet, which is applying
a rotating magnetic field at the location of the helical capsule. (top)
Numerical simulation of required solenoid currents. (bottom) Experimental
demonstration.

cooling, which will enable higher currents, and therefore
higher fields, to be generated. An Omnimagnet’s dipole
strength also increases with size, but this must be balanced
against competing factors (e.g., size, weight., cost).

By combining multiple Omnimagnets together, it will be
possible to create more sophisticated magnetic manipulation
systems. For example, the Octomag system uses eight sta-
tionary electromagnets to generate 3-DOF force and 2-DOF
torque on magnetic devices [3]. A system consisting of three
Omnimagnets is essentially nine stationary electromagnets,
meaning that a similar level of control as the Octomag seems
conceivable. The commercial Stereotaxis Niobe system uses
two large orientation-controlled permanent magnets to steer
magnetic catheters. A system consisting of two Omnimagnets
has the ability to recreate the same type of magnetic control.
Additionally, the spherical cores of Omnimagnets makes
their use in multi-Omnimagnet systems extremely promising;
because the average magnetization of a spherical core can
be solved using only knowledge of the applied field at the
center of the sphere, it will be possible to solve for the
combined field of multiple Omnimagnets analytically, rather
than relying on in situ system calibration.

V. CONCLUSIONS

The design and optimization of an Omnimagnet was
provided. The realized version of the design has an optimal
core-radius to outer-length ratio of 0.6 and can achieve
field strengths that are 87% of the unrealizable theoretical
reference. The design was further optimized to create a
dipole-like field with the error relative to the dipole-model
falling to below 5% within 1.5 minimum-bounding-sphere
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radii from the center. Manipulation with the Omnimagnet
was then demonstrated by actuating a helical capsule down
a lumen. Not only can the Omnimagnet create a rotating
dipole field like a permanent magnet, but it can also control
the field strength like a standard electromagnet. This enables
new control methodologies to be explored. Moreover, the
spherical core will allow the combined field of multiple
Omnimagnets to be solved analytically. Future work will
include characterizing the differences between permanent-
magnet actuation and Omnimagnet actuation of rotating
tools, and exploring multiple-Omnimagnet manipulation.
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