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ABSTRACT

This dissertation explores the design and use of an electromagnetic manipulation system

that has been optimized for the dipole-field model. This system can be used for noncontact

manipulation of adjacent magnetic tools and combines the field strength control of current

electromagnetic systems with the analytical modeling of permanent-magnet systems. To

design such a system, it is first necessary to characterize how the shape of the field source

affects the shape of the magnetic field.

The magnetic field generated by permanent magnets and electromagnets can be modeled,

far from the source, using a multipole expansion. The error associated with the multipole

expansion is quantified, and it is shown that, as long as the point of interest is 1.5 radii of

the smallest sphere that can fully contain the magnetic source, the full expansion will have

less than 1% error. If only the dipole term, the first term in the expansion, is used, then

the error is minimized for cylindrical shapes with a diameter-to-length ratio of
√

4/3 and

for rectangular-bars with a cube.

Applying the multipole expansion to electromagnets, an omnidirectional electromagnet,

comprising three orthogonal solenoids and a spherical core, is designed that has minimal

dipole-field error and equal strength in all directions. Although this magnet can be con-

structed with any size core, the optimal design contains a spherical core with a diameter that

is 60% of the outer dimension of the magnet. The resulting magnet’s ability to dextrously

control the field at a point is demonstrated by rotating an endoscopic-pill mockup to drive

it though a lumen and roll a permanent-magnet ball though several trajectories. Dipole

fields also apply forces on adjacent magnetized objects. The ability to control these forces is

demonstrated by performing position control on an orientation-constrained magnetic float

and finally by steering a permanent magnet, which is aligned with the applied dipole field,

around a rose curve.
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CHAPTER 1

INTRODUCTION

Manipulation of objects typically requires physical contact between the manipulator

and the object to achieve a desired force or torque transfer. This physical connection is

a limiting factor when control of objects is desired in areas with access restrictions such

as surgery, where the larger the access incision the longer the recovery time and greater

the cost. Magnetic fields provide a method of applying forces and torques to an adjacent

object without a mechanical connection. Unfortunately, Earnshaw’s theorem proves that

no stable equilibrium can exist in a system comprising solely static magnetic elements [1].

The instability has been exploited over the past 100 years to control objects using magnetic

field sources with initial examples including the removal of ferrous objects from wounds

during the first and second world wars [2]. Computer-controlled magnetic manipulation,

which can stabilize the magnetic interactions through feedback and time-varying fields,

was explored some 80 years later when IBM investigated the use of magnetics to create a

spherical robotic wrist [3], the University of Texas at Austin applied magnetic levitation

technologies to micro-robotic control [4], and the University of Virginia began using air-core

solenoids to control ferromagnetic objects in the brain for stereotatic surgery [5].

Currently, the state of the art for electromagnet manipulation has split into two main

areas: the uniform-direction and uniform-gradient fields produced by MRI machines and

similar laboratory setups are used to control devices for medical applications [6], and the

nonlinear fields generated by collections of electromagnets that have been calibrated in situ

are used for position and orientation control of both soft-magnetic objects and permanent

magnets [7], [8]. These two approaches rely on an accurate model of the system’s field for

control; this accuracy is obtained either though design to achieve uniformity (e.g., MRI

systems) or calibration to empirically quantify the response (e.g., solenoid based systems)

in situ.
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Permanent magnet based systems, which require no electrical power to generate a strong

static field, have been used for pulling and rolling tasks in which the environment provides

some structure [9]–[13], as well as for quasistatic pointing tasks of tethered devices such

as magnetic catheters [14]. The magnetic field is generally modeled by the dipole-field

model since the operating distances are large relative to the size of the magnet. Control

of adjacent objects is then converted to position and orientation control of the magnetic

source to achieve a desired response given the dipole-field model. As these systems typically

are unable to change the location and orientation of the source magnet faster than the end

effector can respond, a nonmagnetic force (e.g., gravity) is required to stabilize the instability

predicted by Earnshaw.

An electromagnet capable of producing a magnetic moment with a variable strength and

orientation will provide the field strength control associated with traditional electromagnet

systems and the adjacent and adaptable workspace associated with permanent-magnet

systems. To create such a device, it is necessary to surround a ferromagnetic core with

at least three linearly independent (e.g., orthogonal) solenoids. The concept of using three

orthogonal solenoids to generate a magnetic field is not new, as it has been explored as

a method of magnetic localization [15], inductive power coupling [16], and multi-object

formation flight [17] and is the fundamental basis for MRI machines and Helmholtz coils.

However, neither using three orthogonal solenoids for adjacent magnetic manipulation (i.e.,

external to the enclosed volume of the electromagnets), nor using three orthogonal solenoids

with an internal spherical core has been explored previously.

The development of a controllable dipole-source for manipulation can be split into three

main tasks. First, understand the shape of the magnetic fields produced by different source

geometries with similar magnetic moments. Second, use the knowledge of how geometry

affects field shape to design an optimized controllable dipole-source. And, third, determine

the capabilities and limitations of this device for control.

The magnetic field associated with either a current distribution or a material magnetiza-

tion can be approximated using an infinite series—the multipole expansion. This expansion

is only accurate for distances outside of a sphere that bounds all of the magnetized material

and current. The first nonzero term in this expansion is the dipole-field term [18]:

B =
µ0

4π‖p‖3
(

3p̂p̂> − I
)
m, (1.1)

which is convenient for control because the resulting field B is linear with respect to the

source’s dipole moment m at the location p, where ‖p‖ is the euclidian length of the vector

from the source to the point of interest and p̂ is its unit-length direction, I is a 3×3 identity
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matrix, and µ0 is the permeability of free space. The higher-order terms in the multipole

expansion are not linear with respect to dipole moment and are more difficult to use in

an inverse solution for field or field gradient. Thus, it is desirable to choose a magnetic

field source that is well modeled by the dipole term alone. Chapter 2 discusses how to

accomplish this with a permeant magnet system and Chapter 3 applies the same technique

to an electromagnet system.

The dipole moment of a system is a function of the size of that system [18]:

m =

∫∫∫

V

(M (r) + 1/2r× J (r)) dV, (1.2)

where V represents the volume of the source, M (r) is the magnetization of any integral

material, J (r) is the current density present, and r is the displacement vector from the

reference center to the point of integration. The magnetization M (r) is also a linear function

of the applied current density J, and in systems with ferromagnetic materials can account for

a large percentage of the system’s dipole-moment. To design an electromagnet system that is

well modeled by a dipole-field, it is necessary to account for both the current contribution

and the magnetization contribution to the magnetic field. Chapter 3 analyzes how to

construct an electromagnetic system, which is optimized for strength, that has the same

dipole-moment strength for an applied current vector in any direction.

Chapter 4 examines how to use such a device to control adjacent permanent magnet

tools. Since a single source has only three degrees of freedom (the three solenoid currents),

it is shown that it is not possible to independently control torque and force on an object.

Despite this limitation, it is still possible to dexterously manipulate an object by operating

in situations where the forces cause minimal disturbances, the torques can be resolved by

external support, or the tool’s orientation is free to align with the applied field.

Finally, some recommendations for future work are provided based on the lessons learned

from this effort.
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CHAPTER 2

OPTIMAL PERMANENT-MAGNET

GEOMETRIES FOR DIPOLE

FIELD APPROXIMATION

The following paper, originally published in IEEE Transactions on Magnetics and reprinted

with permission, is aimed at understanding how well the dipole-field model predicts the

magnetic field associated with several different permanent magnet shapes. The paper then

determines what the optimal geometric aspect ratios are for several shapes to be represented

by a dipole field.

A. J. Petruska and J. J. Abbott, “Optimal permanent-magnet geometries for dipole field
approximation,” IEEE Trans. Magn., vol. 49, no. 2, pp. 811–819, 2013

c©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.
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Optimal Permanent-Magnet Geometries for Dipole Field Approximation
Andrew J. Petruska and Jake J. Abbott

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA

The dipole approximation for magnetic fields has become a common simplifying assumption in magnetic-manipulation research when
dealing with permanent magnets because the approximation provides convenient analytical properties that are a good fit at large dis-
tances. What is meant by “good fit at large distances” is generally not quantified in the literature. By using a parameterized multipole
expansion and collaborating finite-element analysis (FEA) simulations to represent the magnet’s field, we quantify the error associated
with the dipole approximation as a function of distance from the permanent magnet. Using this expression, we find cylindrical, washer,
and rectangular-cross-section bar permanent-magnet aspect ratios that minimize the error of the dipole approximation. For cylinders
and rectangular-cross-section bars, these aspect ratios are a diameter-to-length ratio of and a cube, respectively.

Index Terms—Magnetic analysis, magnetostatics, permanent magnets.

I. INTRODUCTION

T HE magnetic fields generated by current distributions and
permanent magnet can be modeled in numerous ways

from direct integration of the Biot–Sivart law, to finite-element
analysis (FEA), to harmonic expansions of the fields. The
dipole approximation, the first spherical harmonic of the field,
provides a concise and easily manipulated representation of the
magnetic field and is increasingly accurate with distance. This
approximation is commonly used for localization of objects
in areas ranging from medical imaging applications [1], to
military applications [2]–[4], to object tracking [5]–[20]. The
dipole representation also provides interesting applications in
real-time control of magnetic devices for medical applications
[21]–[24]. A pure dipole field can be generated by a uniformly
magnetized spherical permanent magnet; however, other shapes
of permanent magnets can be represented by a dipole field as an
approximation at large distances. Understanding the limitations
of this approximation for the commonly available cylindrical,
washer, and rectangular-cross-section bar permanent magnets
is the focus of this paper, along with answering the question:
“What shape of cylindrical/washer/bar permanent magnet is
best represented by a pure dipole field?”

There are works that explicitly address the accuracy of the
dipole approximations of permanent magnets. Hu et al. [6]–[9]
propose placing a cylindrical permanent magnet inside a cap-
sule endoscope for localization. They use the dipole approx-
imation to describe the magnetic field produced by the per-
manent magnet and use linear calibration techniques to mini-
mize the error associated with the strength of the magnet. Wang
and Meng [11] explore the accuracy of the dipole model for
two types of cylindrical magnets for use as magnetic markers
in capsule endoscopes. They quantify the error along the axis
and radius of the cylindrical magnet and suggest a rectangular
“keep-out region” for the approximation that is three times the
dimension of the magnet, but they do not examine the error asso-
ciated with the model for other locations. They also indicate that
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an axially magnetized magnet with a diameter-to-length ratio
of 2.5 is better represented by the dipole model than an axially
magnetized magnet with a diameter-to-length ratio of 0.5. Foun-
tain et al. [21] examine the use of a rotating permanent magnet
to control helical swimmers and propose using a dipole model
to represent the field of the cylindrical permanent magnets. The
approximation is justified a posteriori by a least squares fit of the
dipole model to experimental data collected along the magneti-
zation axis for both diametrically magnetized and axially mag-
netized cylindrical magnets. Interestingly, the fit to the diametric
magnet shows better agreement with the dipole model than the
axial magnet with the same geometry. Mahoney et al. [23] con-
tinued this research and exploited the linear-algebraic properties
of the dipole field to show interesting force and torque combi-
nations can be applied by one rotating permanent magnet acting
on another sympathetically rotating permanent magnet. They
then use the dipole model to demonstrate that rotating magnetic
fields can be generated about arbitrary axes in space using a
single rotating permanent magnet in any relative position [24].
The above works show the dipole model is an accurate approx-
imation for distances far away from the permanent magnet and
imply that using a permanent magnet that is more accurately
modeled by the dipole approximation at distances nearer to the
magnet will enable more accurate real-time magnetic control of
untethered devices. Two observations in the works by Fountain
et al. and by Wang and Meng indicate there may be an optimal
aspect ratio and magnetization direction to accurately represent
the magnetic field produced by a cylindrical permanent magnet
using the dipole approximation.

To explore the nature of a shape that is optimally represented
by the dipole-model approximation and to quantify the error
in the model at any location outside the magnet, a parameter-
ized multipole expansion is presented in this paper for axially
and diametrically magnetized cylindrical magnets and rectan-
gular-cross-section bar magnets. The accuracy of this expan-
sion is verified by comparisons to FEA models of the mag-
netic fields from different magnet geometries. Since the dipole
approximation is the first term of this expansion, analytically
calculating the optimal shape aspect ratios can be achieved by
minimizing the contribution of the remaining terms to the field
representation.

The paper is structured as follows. First, the theoretical foun-
dation for a multipole expansion for representing the magnetic

0018-9464/$31.00 © 2012 IEEE
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field of a permanent magnet is reviewed, and the criteria for
defining the shape with minimal dipole-model error will be in-
troduced. Then, the multipole expansion for axially and diamet-
rically magnetized cylindrical magnets and rectangular-cross-
section bar magnets is solved and compared to FEA models of
several different magnet geometries to validate the expansion.
The optimal aspect ratios for cylindrical magnets and rectan-
gular bars is then solved and extended to washers. Finally, the
error associated with the dipole approximation for both the op-
timal and other commonly available shapes is presented.

II. PERMANENT-MAGNET FIELD APPROXIMATION

The magnetization inside a permanent magnet is a
function of the applied field , the magnetic remanence of
the material , the susceptibility of the material , and the
shape demagnetization factors along the principal axes of the
magnet

(1)

where all vectors are expressed relative to the principal axes
of the magnet. The demagnetization factors are a set of three
fractional values, which sum to one, that describe how a given
shape magnetically interacts with itself, and how susceptible the
shape is to magnetization in each of the principle directions;
for a sphere, the demagnetization factors are 1/3 in each prin-
ciple direction. The demagnetization factors for ellipsoids of
revolution, cylinders with ellipsoidal cross sections, and rect-
angular bars have been calculated [25]–[28]. For hard-magnetic
materials with relatively low magnetic recoil susceptibilities for
applied fields weaker than the coercive field strength, such as
NdFeB with , the demagnetizing field becomes negli-
gible and the magnetization reduces to the magnetic remanence
of the material. For a permanent magnet with no external field
applied, the magnetic field can be described as the gradient of
a scalar potential , which can be defined by the magnetization
of the object [29]

(2)

This can be solved using direct integration [29]

(3)

where is the magnetization, is the normal unit vector
pointing out of the surface of the magnetized material, is the
vector from the center of the magnetized volume to the point of
interest and is independent of the integral, is the vector from
the center of the magnetized volume to the point of integration,
and and are their respective unit vectors.

For permanent magnets with low susceptibilities and uniform
remanence, which is a reasonable assumption for permanent

magnets that are saturated during manufacturing, the divergence
in the volume is equal to zero, reducing (3) to

(4)

This can be rewritten using a Taylor series as a multipole expan-
sion if the points of interest are outside the minimum bounding
sphere (i.e., the smallest sphere that will encompass the magnet)
surrounding the permanent magnet [30]

(5)

where are Legendre polynomials and .
The magnetic field represented by this scalar potential is only
defined outside the permanent magnet and is

(6)

where is the permeability of the surrounding medium (for free
space ).

As a consequence of , no even terms (e.g.,
) exist in (6). The first nonzero term of the

expansion is the dipole term , which is independent
of geometry and is commonly used for approximation of the
magnetic field for control applications because of its convenient
vector form. This term is

(7)

where is a identity matrix and is being introduced
here as the dipole moment of the object defined by

(8)

The next nonzero term in the series is the quadrupole term
and the next is a hexapole , all of which are func-

tions of magnet geometry. In these higher order terms, will
represent any factors that parameterize the shape of the magnet,
such as a diameter-to-length ratio for a cylinder.

For an approximation of the field consisting of the first
terms, the relative error at any given point is

Error

(9)

Without loss of generality, will be assumed to be an odd
number, requiring the even terms ( and ) to be zero,
simplifying the error to

Error (10)

7
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Fig. 1. Geometry definition for cylindrical magnets. The spherical coordinate
definition is shown for the axially magnetized case only.

As and higher order terms are asymptotically bounded
by the term, the optimal approximation geometry for dis-
tances much greater than the radius of the minimum bounding
sphere radius can be determined by minimizing the mag-
nitude of the term alone. As this provides the optimal
geometry for distances far away from the minimum bounding
sphere, it is conceivable that at some intermediate distance a
different geometry could provide a locally optimal solution. To
determine locally optimal solutions, the integral of (10) over the
region of interest would need to be minimized and more terms
than just the term would need to be considered. As this
minimization is application specific, only the far-field optimal
geometry for the dipole approximation will be con-
sidered in this paper and the quadrupole term term will be
minimized by finding the value of that sets the contribution of
the term to zero at every location in space.

III. MAGNET MULTIPOLE EXPANSION

A. Cylindrical Magnet

Cylindrical permanent magnets are most readily available
in the axially magnetized and diametrically magnetized forms.
Without loss of generality, the axis of the cylinder is aligned
with the Cartesian -axis, as shown in Fig. 1. The parameter that
characterizes the shape of the cylinder is the diameter-to-length
aspect ratio . The following equations summarize some useful
relationships using this parametrization, where is the radius
of the minimum bounding sphere and is the volume of the
cylinder:

(11)

For materials like NdFeB with small susceptibilities ,
(1) and (8) simplify to , which, given a minimum
bounding sphere, maximizes when . However, max-
imizing the dipole moment of the magnet given a sphere size
does not ensure a dipole approximation with minimal error; for
that, a multipole expansion of the shape is required.

In the following sections, a spherical coordinate system will
be used. All primed variables are defined relative to the magnet
for integration and all nonprimed coordinates are defined rela-
tive to a global coordinate system in which the point of interest

is defined. In this convention, is measured from the mag-
netization axis of the material, is measured from a conve-
nient axis orthogonal to the magnetization axis (typically along
the length of the magnet), and is defined as a radial distance
from the center of the material. In the global frame, is the
vector from the center of the magnetized material to the point
of interest and will be described in a spherical frame with:
measured from the global -axis and pointing in the positive

direction, measured from the positive -axis and pointing
in the positive direction, and taken as the magnitude of the

vector with pointing in the direction (the difference in
variable name is to avoid confusion when switching between
spherical and coordinate-free descriptions). For reference, Fig. 1
shows the coordinate system with both the global and material
coordinate systems aligned.

1) Axially Magnetized Cylinder: The multipole expansion
defined by (5) is adapted to axially magnetized cylinders by
taking to be on the top surface, on
the bottom surface, and 0 on the cylindrical wall

(12)

where

Using the substitution , can be further simplified

odd

even

where

(13)
The magnetic field of an axially magnetized cylindrical magnet
described in cylindrical coordinates is then

(14)

where is the magnitude of the dipole moment . Noticing
that and that , the
spherical-coordinate field definition can be converted into a co-
ordinate-free form. The first term is the dipole term, as expected.
The next two terms will be used in Sections IV-A and IV-C to

8
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find the geometry that maximizes the contribution of the dipole
term to total field

(15)

2) Diametrically Magnetized Cylinder: Adapting the multi-
pole expansion to diametrically magnetized cylinders requires
taking the term in (5) to be on the cylindrical
wall and 0 on the top and bottom surfaces. This aligns the mag-
netization direction with the Cartesian -axis, and the scalar po-
tential described by (5) becomes

(16)

where

and

The magnetic field described in spherical coordinates is then

(17)

Noticing that , ,
and , and defining to run along the axis of
the magnet, the spherical-coordinate field definition can be con-
verted into a coordinate-free form. The first term is the dipole
term. The next two terms will be used in Sections IV-A and IV-C

Fig. 2. Definition of a rectangular-cross-section bar magnet geometry.

(18)

B. Rectangular-Cross-Section Bar Magnet

Rectangular bar magnets require two aspect ratios to describe
their shape. For this discussion, the height of the magnet will
be taken along the magnetization direction and will be oriented
with the -axis, and and will be taken as the length-to-
height and width-to-height aspect ratios and will be oriented
along the - and -axes, respectively. The geometry is shown
in Fig. 2. For this geometry, (5) is adapted by taking to
be on the top and on the bottom and becomes

(19)

where

and

9
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can be further simplified to

odd

even.

The magnetic field described in spherical coordinates is then

(20)
Defining to point along the direction, and noticing
that , ,

, , and
, the spherical-coordinate field definition

can be converted into a coordinate-free form. The first term is
the dipole term. The next term will be used in Section IV-B

(21)

C. Validation of Multipole Expansions With FEA Solutions

To verify the validity of the expansions, the first nine nonzero
terms of the multipole expansions are compared to FEA sim-
ulations solved by Ansoft Maxwell version 14.0. A cross-sec-
tional contour plot showing the relative error between the mul-
tipole expansion and the FEA simulation for axially and diamet-
rically magnetized cylinders and rectangular-cross-section bars
are shown in Fig. 3. The average and maximum errors at a given
distance are shown in Fig. 4. These comparisons demonstrate
that the first nine terms of the multipole model are quite accurate
for distances greater than 1.5 minimum-bounding-sphere radii.

IV. OPTIMAL GEOMETRIC RELATIONS FOR DIPOLE

APPROXIMATION

A. Cylinders

In both the axially magnetized and diametrically magnetized
conditions, the cylindrical magnet has the same shape-depen-
dent factors in the multipole expansion, as shown by the second

Fig. 3. Contour plot showing the 2% (outer) and 50% (inner) bands of error
between the multipole expansion and the FEA model for several geometries of
cylinder and rectangular magnets. Note that the error drops to below 2% after
1.5 radii of the minimum bounding sphere for each.

terms in (15) and (18), respectively. Using the far-field criterion
for an optimal approximation geometry, the optimal is defined
by the equation . Therefore, the far-field optimal

10
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Fig. 4. The average error of the first nine terms of the multipole approximation
as compared to FEA simulation over a spherical surface as a function of distance
for several different geometries of cylinder and rectangular magnets. The dashed
line represents the maximum error and the error bands 1 standard deviation
about the average error.

for both the diametrically magnetized and axially magnetized
conditions is . This aspect ratio corresponds

to a 3% compromise in magnet volume and, therefore, dipole
moment from the maximum given a minimum bounding sphere,
which occurs when .

B. Rectangular-Cross-Section Bar

The optimal dipole approximation for a rectangular-cross-
section bar can be obtained by determining which values of
and set the term in the multipole expansion defined in
(21) to zero. Inspection of (21) shows that is the
only solution that sets every component of the coefficient
to zero. Conveniently, this cubic geometry also corresponds to
the maximum dipole moment for a given minimum bounding
sphere.

C. Axially Magnetized Washer

As superposition holds for permanent magnet materials with
low recoil susceptibilities (i.e., an externally applied or self-gen-
erated field does not appreciable affect the magnetization of the
material), the optimal dipole shape for the washer shown in
Fig. 5 can be defined by a linear combination of two cylinders
of equal length. The larger diameter cylinder is taken to have
a magnetization of and a diameter-to-length ratio of and
the smaller is taken to have a magnetization of and a diam-
eter-to-length ratio of . The volumes that these two cylinders
overlap is equivalent to a hole in the larger cylinder. Following
the procedure outlined previously, the equation that defines the
optimal dipole approximation geometry for an axially magne-
tized washer is a linear combination of the coefficients from
(15) of the two cylinders scaled by their volumes ( and )

(22)

There is a real solution when

(23)

Outside this range, the optimal dipole approximation is defined
by minimizing the square of the quadrupole coefficient and
is equivalent to having no hole or no magnet. Moreover, the
only real values of and subject to (23) that minimize
the hexapole coefficient are and 0, respectively.
That is, adding a hole to a nonoptimal configuration can make
the approximation better, but the best geometry for dipole
approximation has no hole. If a hole is desired, the optimal
washer length can be calculated by substituting the definitions
of and into (23) and solving for , and is

(24)

D. Diametrically Magnetized Washer

For a diametrically magnetized washer, the optimal hole size
is defined by a linear combination of the coefficients from
(18) of the two cylinders scaled by their volume

(25)

11
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Fig. 5. Definition of washer-shaped magnet geometry.

which exists when and is equal to

(26)

Using this equation to define the relationship between and ,
the magnitude of the hexapole term in (18) can be minimized

(27)
which minimizes when or, equivalently,
the no-magnet geometry (i.e., the hole is the same size as the
magnet). If (27) is normalized by the remaining dipole moment

, the resulting formula minimizes at the no-hole
geometry; that is, the optimal geometry for a diametrically mag-
netized cylindrical magnet has no hole. If a hole is desired for a
diametrically magnetized magnet, the optimal length is

(28)

V. ERROR CHARACTERIZATION OF OPTIMAL DIPOLE

GEOMETRIES

The average percent error over the surface of a sphere asso-
ciated with the dipole approximation can be quantified by aver-
aging (10) over the surface of a sphere (and multiplying by 100).
The average error as a function of distance from the center of
the magnet is given for axially magnetized cylinders, diametri-
cally magnetized cylinders, and rectangular-cross-section rods
in Fig. 6.

The crossover between the and error
curves, shown in the diametrically magnetized cylindrical
magnet error plot, indicate that a geometry other than the
far-field optimal will minimize the dipole approximation error
for distances close to the surface of the magnet. Numerical
analysis of diametrically magnetized cylinder magnets indi-
cates that minimizes the dipole approximation error
for distances between 1 and 4 minimum-bounding-sphere
radii; however, the optimal near-field geometry provides only
a marginal reduction in error when compared to the far-field
optimal geometry at those distances.

Fig. 6. The average errors associated with different geometries of cylindrical
and rectangular permanent magnets are plotted as a function of distance from
the center of the magnet. Distances are normalized by the radius of the minimum
bounding sphere.

Fig. 7. The error associated with the optimal dipole geometries. The cube-
shaped magnet has the least dipole approximation error, followed by the dia-
metrically magnetized cylinder.

A comparison of the average error associated with the op-
timal geometries for the cylindrical and rectangular-cross-sec-
tion bar magnets is shown in Fig. 7. The average error associ-
ated with the different optimal geometries is very close, with
the cubic magnet having the least and the axially magnetized
magnet having the most. Figs. 8 and 9 show the variation of
error as a function of angle at a given distance. To determine
the error at a given position, it is only necessary to multiply the
average error given in Fig. 7 by the value in the error variation
plot that corresponds to the angular position.
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Fig. 8. Variation in dipole approximation error as a function of angle for an
axially magnetized cylindrical magnet with . The magnetization
axis of the magnet corresponds to . See Fig. 1.

Fig. 9. Variation in dipole approximation error as a function of angle for an
optimal diametrically magnetized cylindrical magnet and cube magnet. Each
contour line represents a step in 0.1 times the average error at a given radius.
The magnetization axis corresponds to and the direction corresponds
to and . See Figs. 1 and 2.

The diametrically magnetized cylinder has both the highest
average error and the largest error range, which appears in con-
flict with the observations in the work by Fountain et al. [21],

which shows diametrically magnetized magnets are preferable
to the axially magnetized magnets. However, upon closer in-
spection, the least squares fit of the dipole approximation in the
work by Fountain et al. is based on field measurements taken
only along the magnetization axis of the magnet. At those lo-
cations, Figs. 7–9 predict a lower error for diametrically mag-
netized magnets than axially magnetized magnets, since the av-
erage error is approximately the same and the error multiplier
for is 0.91 versus 1.6, respectively. Because Fountain
et al. took their data along the magnetization axis, the dipole
fit not only was better for the diametrically magnetized mag-
nets, but also was more accurate in determining the dipole mo-
ment of the magnet. This also explains why Fountain et al. cal-
culated different dipole moments based on their measured data
for the axially magnetized magnet and the diametrically mag-
netized magnet despite both magnets having the same volume
and material.

VI. CONCLUSION

The multipole expansion provides an accurate method for de-
termining the field generated by a permanent magnet for po-
sitions away from the surface of the magnet. This expansion
also provides a direct way to determine the optimal dipole ap-
proximation geometric parameters for various shapes of mag-
nets. This optimal geometry for cylinders (both axially and di-
ametrically magnetized) is a diameter-to-length ratio of
and, for rectangular-cross-section bars, it is a cube. By choosing
these ratios, the error associated with the dipole model is re-
duced compared to nonoptimal geometries, as shown by the
trend depicted in Fig. 6. The accuracy of the approximation in-
creases faster with distance for optimal geometries than it does
for nonoptimal geometries. Given a minimum bounding sphere,
there is no reduction in dipole moment magnitude from the max-
imum in rectangular bars to achieve an optimal dipole approxi-
mation and the reduction required in cylinders is less than 3%.
Of the geometries studied for a given distance from the magnet,
the cubic magnet has the least average dipole approximation
error followed closely by the diametric and axial magnets. The
axially magnetized cylindrical magnet has the smallest range in
error at a given distance from the center of the magnet.
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CHAPTER 3

OMNIMAGNET: AN OMNIDIRECTIONAL

ELECTROMAGNET FOR

CONTROLLED DIPOLE-

FIELD GENERATION

Using the tools developed in the last chapter, namely using a multipole expansion to

characterize the field associated with a magnetic source and then minimizing the quadruple

term to obtain an optimized dipole-field source, an electromagnet capable of being modeled

by the dipole-field is developed. This design is then optimized for strength by selecting

the appropriate core diameter such that the system’s dipole-moment per applied-current

is maximized. This paper has been accepted for publication in IEEE Transactions on

Magnetics and is reprinted here with permission.
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Omnimagnet: An Omnidirectional Electromagnet for Controlled
Dipole-Field Generation

Andrew J. Petruska and Jake J. Abbott

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA

An Omnimagnet is an omnidirectional electromagnet comprising a spherical ferromagnetic core inside of three orthogonal nested
solenoids. It generates a magnetic dipole field with both a variable dipole-moment magnitude and orientation with no moving parts.
The magnetic and physical properties (e.g., dipole moment, weight, resistance, and inductance) of any Omnimagnet are derived.
These general relationships are used to design an optimal Omnimagnet subject to the constraints that it has the same dipole-moment
per applied current in any direction, each solenoid has no quadrupole contribution to the magnetic field, and the spherical core size
maximizes the strength of the resulting dipole field. This optimal design is analyzed using FEA tools and is verified to be dipole-like
in nature. Finally, the optimal design is constructed and its utility is demonstrated by driving a helical capsule-endoscope mockup
through a transparent lumen.

Index Terms—Magnetic Manipulation, Magnetic dipoles, Electromagnets, Spherical Core

I. INTRODUCTION

MAGNETIC microscale and mesoscale devices (both
tethered and untethered) can be manipulated with an

externally generated magnetic field, which applies a combina-
tion of force and torque to the device without any mechanical
connection. Although a combination of permanent magnets
and electromagnets can be used to produce the magnetic
field required for a manipulation task, some tasks seem better
suited to either permanent-magnet or electromagnet systems.
Because they have more direct real-time control of the ap-
plied magnetic field, electromagnet systems have been used
for multi-degree-of-freedom levitation and position/orientation
control [1]–[8]. Permanent magnets, which require no elec-
trical power to generate a strong field, have been used for
pulling and rolling tasks in which the environment provides
some structure [9]–[12], as well as for quasistatic pointing
tasks of tethered devices such as magnetic catheters [13].
Because both attractive and lateral forces can be generated
between a rotating dipole source and a sympathetically rotating
magnetic device, a rotating dipole field could be more effective
for rolling/screwing propulsion than the rotating uniform field
generated by many electromagnet systems [14]. Finally, it is
challenging to scale many laboratory electromagnetic systems
that surround their workspace (e.g., Helmholtz coils) to a
size that would be required for medical applications, whereas
manipulation systems that utilize dipole fields can be located
adjacent to their workspace.

An omnidirectional electromagnet, formed by any set of col-
located electromagnets that have dipole moments spanning R3,
combines the real-time control of field strength associated with
traditional electromagnets and the control of dipole orientation
associated with rotating permanent magnets. In this paper
we describe the Omnimagnet, a subclass of omnidirectional
electromagnets that comprise a ferromagnetic core surrounded
by three orthogonal solenoids. Specifically, we optimize an
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Fig. 1. The assembled Omnimagnet forms a cube constructed of three nested
orthogonal solenoids surrounding a spherical core of ferromagnetic material.
Each square-cross-section solenoid has a different inner width W , winding
thickness T , length L, and associated current density J .

Omnimagnet comprising a spherical core and square-cross-
section solenoids (Fig. 1), but other design variations could
be considered. An Omnimagnet creates a fully controllable
dipole-like magnetic field, contains no moving parts, and
becomes inert when powered down—reducing the safety con-
cerns associated with permanent-magnet field sources. The
concept of three nested solenoids has been explored as a
method of magnetic localization [15] and inductive power
coupling [16], but never with a spherical core, and never as a
dipole-like magnetic manipulator.

The paper is structured as follows. First, the general design
problem for an Omnimagnet is presented. Next, the mag-
netic fields generated by the three solenoids are described
using a multipole expansion of the magnetostatic equations,
and the contribution of the ferromagnetic core is quantified.
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The optimization of a specific Omnimagnet follows, and the
design is described. The field generated by this design is
then compared to a dipole-field approximation. The inverse
solution for determining the dipole moment, and thus the
currents, required to produce a desired static or rotating field
at a given location is provided. Finally, the capability of the
Omnimagnet for the control of untethered magnetic devices
is then demonstrated by driving a mockup capsule endoscope
through a lumen. This paper expands on our result originally
presented in [17] by providing: a more detailed treatment
of the quadruple minimization, methods for calculating other
relevant mechanical, electrical, and magnetic properties, and
an analysis of how extraneous magnetic fields will affect the
core magnetization.

II. DESIGN AND OPTIMIZATION

The general concept of an Omnimagnet is broad, consisting
of three orthogonal nested solenoids surrounding a ferromag-
netic core; however, design choices must be made to realize
and optimize a physical Omnimagnet. First, we chose the
shape of the solenoids to be square-cross-sectional sleeves to
result in a dense packing (see Fig. 1). Next, we chose the core
to be a sphere because a spherical core has three desirable
properties [18]:
• A sphere does not have a preferential magnetization

direction.
• When placed in a uniform field (similar to the field in

the center of a solenoid), a sphere produces a pure dipole
field.

• The average applied magnetic field within a sphere is
equal to the applied magnetic field at the center of the
sphere.

We chose that the dipole moment generated in each direction,
which consists of the contribution of both an individual
solenoid and the magnetization of the core due to that solenoid,
should be the same when an equal electrical current density is
applied through each solenoid. Other geometric design choices
(e.g., cylindrical solenoids or a cubic core) or dipole-moment
relationships (e.g., scaling the dipole moment of each solenoid
with its heat-transfer capability), could also be pursued using
the general framework for Omnimagnet design outlined below.
Finally, we constrain our design to use a single wire gauge for
all solenoids, which means that “an equal electrical current
density” is synonymous with “an equal current”; current and
current density are related by the cross-sectional area of the
wire used. Throughout this paper, I will be used to refer to
currents in units {A} and J will be used to refer to current
density in units {A·m−2}. Because current density is invariant
to wire selection, the optimization for shape is performed
using J ; general discussion, however, will use I , as it is the
more natural parameter from a control perspective. The final
design of the Omnimagnet shown in Fig. 1 requires ten total
constraints (the length, width, and thickness of each solenoid,
and the radius of the core).

The magnetic field generated by the Omnimagnet can
be represented by the field contributed by the magnetized
spherical core superimposed with the field contributed by the

solenoids. Modeling the total field can be performed using
FEA tools with a resolution limited by the number of elements
used. Alternatively, an analytical dipole approximation can be
used to model the field. The dipole approximation provides
a closed-form vector equation that can be used to calculate
the field generated at a point, or inverted to determine the
current necessary to create a particular field. The closer the
Omnimagnet is to generating a pure dipole field, the better
the algorithms based on this approximation will perform
(e.g., [12], [14], [15], [19], [20]). By correctly choosing the
solenoids’ aspect ratios, the dipole-approximation error can be
minimized as a part of the design optimization.

A. Solenoid Multipole Field Expansion

For positions outside of the Omnimagnet’s minimum-
bounding sphere (i.e., the smallest sphere that the Omnimagnet
can fit within), the solenoids’ fields can be represented by a
multipole expansion of a vector potential [18]:

B (p) = ∇×Ψ (p) (1)

Ψ (p) =
µ0

4π

∞∑

n=0

1

‖p‖n+1

∫

Vs

J (r) ‖r‖n Pn (p̂ · r̂) dV (2)

where µ0 = 4π× 10−7 T·m·A−1 is the magnetic permeability
of free space, p is the vector (with associated unit vector p̂)
from the center of the Omnimagnet to the point of interest
in units {m}, r is the vector (with associated unit vector
r̂) from the center of the Omnimagnet to the point in the
solenoid being integrated, J (r) is the current density vector
that points in the direction of the current flow at location
r, Vs represents the solenoid’s volume, and Pn () are the
Legendre polynomials. Since the divergence of a magnetic
field through a closed surface must be zero, all of the even
terms (those corresponding to P0, P2, . . .) must be zero,
leaving only the odd terms. The first non-zero term in the
multipole expansion (corresponding to P1) is the dipole field,
which can be expressed in a coordinate-free form:

B (p) =
µ0

4π ‖p‖3
(
3p̂p̂T − I

)
m (3)

where I is a 3×3 identity matrix and m is the dipole moment
in units {A·m2}. The dipole moment for a current density of
any configuration is [18]:

m =
1

2

∫

Vs

r× J (r) dV (4)

The dipole moment for a square-cross-section solenoid as
shown in Fig. 1 with uniform current density (i.e., the current
density does not vary along the thickness or length of the
solenoid) is:

m =
JL4

6

(
β3

2 − β3
1

)
l̂ (5)

where J = ‖J‖, L is the axial length of the solenoid
(with associated axial unit vector l̂), and β1 = W/L and
β2 = (W+2T )/L respectively describe the inner-width-to-length
and outer-width-to-length aspect ratios.

The maximum dipole moment that any electromagnet with
a bounding cube of edge length L containing no ferromagnetic
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material could generate in one direction can be calculated by
(5) with β1 = 0 and β2 = 1, and is JL4

/6. The maximum
theoretical dipole moment that could be expected for any cubic
omnidirectional electromagnet with edge length L containing
no ferromagnetic material is thus 1/3 of the unidirectional case:
JL4

/18; this quantity is used throughout the paper to normal-
ize the strength for a nondimensional optimization, although
constructing such an idealized omnidirectional electromagnet
would be very challenging.

We show in [21] that by varying the aspect ratios of a
rectangular permanent magnet, the dipole-field approximation
error can be minimized. The approach finds the geometry that
sets the next term in the multipole expansion, the quadrupole
term, to zero in the scalar potential of the magnetic field. Using
the same technique, but using the vector potential instead
of a scalar potential, the magnetic field of each solenoid
can be shaped to produce a dipole-like field by removing
the quadrupole contribution to the multipole expansion. The
quadrupole term for a square-cross-section solenoid of uniform
current density corresponds to the P3 term in the expansion:

Bquad (p) =
µ0

4π

1

‖p‖5
((

35
(
m̂Tp̂

)2 − 15
)

p̂p̂T

−
(

15
(
m̂Tp̂

)2 − 3
)
I
)

mquad

(6)

where mquad is the quadrupole moment, given by:

mquad =
3

40
L2

(
β2

1 +
β4

2 + β1β
3
2

β2
1 + β1β2 + β2

2

− 5

3

)
m. (7)

The values of β1 and β2 that set (7) to zero correspond
to geometries with minimal dipole-field approximation error.
Letting β1 = αβ2 and substituting into the polynomial in
(7) and setting to zero gives an alternate equation for zero
quadruple moments:

3β4
2(α4 + α3 + α2 + α+ 1)− 5β2

2(α2 + α+ 1) = 0 (8)

Inspection of (8) shows there is no quadrupole moment when
β1 = β2 = 0 (no magnet), when β1 = β2 = α = 1 (thin
walled shell), and when β1 = 0, β2 =

√
5/3, α = 0 (no inner

hole). As the definition of β1 and β2 requires β1 ≤ β2, the only
physically meaningful solutions to (8) lie in the range β1 ∈
(0, 1) and β2 ∈ (1,

√
5/3), which correspond to geometries

that are shorter than they are wide (L < W + 2T ). A fit of
the roots of (8) can be used to provide an approximation of
the relationship between β1 and β2:

β2 ≈ ((5/3)
n/2 − βn1 )

1/n (0 ≤ β1 ≤ 1)

n =
2 log 2

log (5/3)
≈ 2.714

(9)

which provides solutions to (8) accurate to within 0.17% over
the range β1 ∈ (0, 1).

B. Core Dipole-Field Contribution

Since the core is spherical and placed in the nearly uniform
field inside of the solenoid, it is assumed that it will magnetize
uniformly and contribute a pure dipole field (it was verified
numerically post facto that the root-mean-squared deviation in
the magnetization was less than 7% of the mean).

The dipole moment of a low-coercivity, low-remanence, and
high-permeability (χ � 1) spherical core, when magnetized
in its linear region (i.e., below magnetic saturation), is

mc = MVc =

(
χ

1 + 1
3χ

B

µ0

)(
4π

3
R3
c

)
≈ 4πR3

c

µ0
Bc (10)

where Rc is the radius of the core, M is the magnetization
in units {A·m−1}, the overbar represents a quantity averaged
over the core volume Vc, and Bc is the applied magnetic field
at the center of the core, which is a linear combination of the
field due to each solenoid. The applied field from each square-
cross-section solenoid with uniform current density J , length
L, and axis l̂, calculated by the Biot-Savart law, is:

Bc =
2LJµ0

π

β2∫

β1

atan

(
1√

1 + 2ζ2

)
dζ l̂. (11)

By combining the dipole moments due to the magnetized
core and each of the solenoids, the total dipole moment of the
Omnimagnet m = mx + my + mz is thus:

m =
∑

i∈{x,y,z}
Ji

(
8LiR

3
c

βi,2∫

βi,1

atan

(
1√

1 + 2ζ2

)
dζ

+
L4
i

6

(
β3
i,2 − β3

i,1

)
)

l̂i

= M



JxAw,x
JyAw,y
JzAw,z


 = MI

(12)

where the indices x, y, and z correspond to the inner, middle,
and outer solenoids, respectively and without loss of gener-
ality, Aw is the conductor (e.g., wire) area used to wind the
solenoid, and M is a linear transformation that maps the three
applied currents in the array I to the dipole moment m. Since
the matrix M is only a function of the solenoids’ geometries,
the optimization problem can be split into four steps: choose
the maximum current densities Imax in each direction based
on thermal or amplifier constraints, determine the geometric
β factors to equalize the components of MImax, optimize the
overall size to a set of physical and operational constraints
(e.g., field strength, field gradient, weight, electrical time
constant), and finally tailor the wire gage for manufacturability
or amplifier voltage/current limitations.

C. Dipole Moment Equalization

The optimal geometry for the Omnimagnet corresponds
to the geometric ratios that maximize the dipole moment
generated in each direction, have the same ratio of dipole
moment to maximum current density in each direction, and
have no quadruple moment. This is a constrained optimization
problem, and can be non-dimensionalized by dividing all of
the lengths by Lmax (the edge length of a minimum-bounding
cube) and the moments by mref = JmaxL

4
max/18 (the maximum

no-ferromagnetic-material dipole moment introduced earlier).
The constraints can be simplified because, from (7), the length
of each solenoid must be shorter than its outer width. Thus,
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Fig. 2. The optimal geometry for a no-quadrupole Omnimagnet. The dipole
moments have been normalized by JL4

max/18 and have a maximum at a
core-diameter-to-outer-Omnimagnet-dimension ratio 2Rc/Lmax = 0.60. The
table provides the geometric ratios that describe the shape of the three nested
solenoids that correspond to this optimal configuration. All length parameters
are normalized by the outer Omnimagnet cubic length Lmax.

the objective is to maximize the dipole moment magnitude
‖m‖ subject to:
• Eq. (7) equals zero (i.e., the configuration has no

quadrupole moment).
• ‖mx‖/mref = ‖my‖/mref = ‖mz‖/mref (i.e., omnidi-

rectionality).
• Wx = 2Rc (i.e., the core diameter is the same as the

inner solenoid’s inner width).
• Wy = Wx+ 2Tx (i.e., the inner solenoid’s outer width is

the same size as the middle solenoid’s inner width).
• Wz = Wy + 2Ty (i.e., the middle solenoid’s outer width

is the same size as the outer solenoid’s inner width).
This optimization is performed using Rc as the free parameter
(Fig. 2). There is a maximum that occurs when the core
diameter is 60% of Lmax. Although the magnitude of the dipole
moment in each direction is the same for the same applied
current, the percentages of the dipole moment attributed to the
core or the windings are different for each solenoid; the per-
centage of the dipole moment from the core/windings is 41/59,
28/72, and 21/79 for the inner, middle, and outer solenoids,
respectively. The optimized configuration has dipole-moment
magnitudes that are 93% of what could be theoretically
expected with no ferromagnetic material and no voids (an
unrealizable geometry), and 22% greater than the realizable
geometry of three nested solenoids with no ferromagnetic core
(but with significantly less power consumption and more heat-
transfer surface area). The optimal design’s dipole moment is:

m = 61.86× 10−3L4
zJ

= 51.45× 10−3L4
maxJ

(13)

Solutions to the right of the maximum in Fig. 2 correspond
to geometries with more inert (i.e., non-current-energized)
material and will produce less heat and require less power than
the corresponding geometry to the left of the optimal point.
The flatness of the maximum indicates that variations about
the optimal point will not substantially affect the performance
of the resulting Omnimagnet. Fortunately, the solenoids are
shorter than they are wide, which allows paths for conductors
and coolant to reach the middle and inner solenoids, making
the implementation of this design feasible.

Frame and Core Inner Solenoid and Core

Middle and Inner Solenoid Omnimagnet

L (mm) W (mm) T (mm) β1 β2

x 120 103 16 0.86 1.12
y 149 137 11 0.92 1.07
z 170 160 8 0.95 1.05

Fig. 3. The assembled Omnimagnet used in the testing described in this
paper. The core used is 100 mm, which is 57% of Lmax = 176 mm. The
deviations from Fig. 2 are due to reoptimizing with 1mm air-gaps between
the components for assembly.

D. Prototype

An Omnimagnet was constructed using a 100 mm diam-
eter spherical Nickel-Iron (ASTM A753-08-K94840) core.
The core material was chosen because it has a high mag-
netic permeability, a low magnetic remanence, and a low
magnetic coercivity (i.e., it magnetizes easily but does not
remain magnetized when the magnetizing field is removed).
The solenoids were constructed using 16 AWG square self-
bonding copper wire from MWS Wire Industries Inc. The
optimization was repeated including a 1 mm spacing between
each of the components for assembly. The slightly modified
optimization did not change the shape of the coils substantially
but shifted the optimal core size to 57% of the edge length
of the minimum-bounding cube, which is Lmax = 176 mm.
The additional empty space also reduced the overall strength
of the design from 93% to 87% of mref. Because of the
quantization in lengths and widths inherent with any wind-
ing, the constructed Omnimagnet has slight variations in the
dipole-moment strengths of each solenoid and has successfully
minimized, but not eliminated, the quadrupole term (mquad ≈
0.04m). The prototype constructed is shown in Fig. 3, with
the table providing its dimensions; the dipole-moment per
conductor-current is calculated to be 25.1, 25.8, and 26.3(
A ·m2

)
/A for the inner, middle, and outer solenoids, re-

spectively, which form the diagonal entries of M. The field at
the surface with 1 A applied is measured to be 5.6, 4.7, and
3.6 mT for the inner, middle, and outer solenoids, respectively;
at 12 cm from the surface the field is 0.6 mT for each. The
inductance for each solenoid in the assembled Omnimagnet
was measured to be 120, 107, and 78 mH for the inner, middle,
and outer solenoids, respectively.

Since each solenoid in the Omnimagnet has a different
geometry, the magnetic field produced by each solenoid will
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Fig. 4. The field shape (top, dotted) and magnitude (top, solid and color contour), and field error relative to the dipole approximation (bottom) are shown.
The distances are normalized by the radius of a minimum-bounding sphere:

(√
3/2

)
Lmax. In the top row, the innermost contour line corresponds to ‖B‖ =

64µ0 ‖m‖, and each successively larger contour corresponds to a halving in field magnitude, with the outermost contour corresponding to ‖B‖ = 4µ0 ‖m‖.

not have exactly the same shape for positions close to the
Omnimagnet. To understand the subtle differences in field
shape, FEA simulations were performed using Ansoft Maxwell
14.0. Since the core is magnetized in the linear region and the
solenoids are orthogonal, solenoid-solenoid magnetic coupling
is negligible, so in these simulations only one of the solenoids
is energized at a time. The results of the simulation (field
strength, field shape, and percent error from the point-dipole
approximation) for each solenoid are shown in Fig. 4. As
the outermost solenoid is the largest, it is responsible for the
majority of the field deviations close to the Omnimagnet. The
field in each direction rapidly reduces to a pure dipole field
with distance; the deviations are comparable to non-spherical
permanent magnets [21].

III. EFFECT OF ADJACENT MAGNETIC SOURCES

Because the Omnimagnet contains a spherical ferromagnetic
core, any adjacent magnetic source (e.g., a permanent magnet
used in a magnetic tool) will slightly magnetize the core,
causing the resulting dipole moment of the Omnimagnet to be
perturbed. The effect of the external field on the core is given
by (10) where Bc = Bc,p is given by the value of the external

field that is perturbing the magnetization at the center of the
core. Due to the linearity of the magnetics equations when the
core is unsaturated, the resulting Omnimagnet dipole moment
is the sum of the original desired moment and the perturbed
moment:

m = MI +
4πR3

c

µ0
Bc,p (14)

To account for perturbing field sources, it is necessary to
subtract their effect from the desired dipole moment prior to
calculating the currents required.

IV. PHYSICAL PROPERTIES

The primary design of an Omnimagnet is focused on the
optimization of its magnetic properties. However, any physical
system will have to be designed around other limitations
such as weight, electrical resistance, electrical inductance, and
heating limits.
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A. Weight

The weight of the Omnimagnet is purely a function of
volume:

W = ρcore
4πR3

c

3
+ ρs

∑

i∈{x,y,z}
L3
i (β

2
i,2 − β2

i,1) (15)

where ρcore and ρs are the densities of the core and solenoid
material, respectively, in units (kg·m−3).

B. Resistance and Heating/Cooling Limits

The electrical resistance of each solenoid is a function of
both the volume and the wire size chosen:

R =
ρwηL

3

A2
w

(β2
2 − β2

1) (16)

where ρw is the resistivity of the wire in units (Ω·m), Aw is
the cross-sectional area of the conductor used, and η describes
the packing density of the conductor (1 for square wire and
π/4 for round wire). The resistance of the Omnimagnet system
can be described by the diagonal matrix R, which is formed
by packing each coil’s resistance along the diagonal. With this
definition the power lost to Joule heating becomes:

q̇gen = ITRI (17)

For the Omnimagnet to be operating at thermal equilib-
rium, the heat generated q̇i,gen must be balanced by the heat
conducted or convected from the coil to the environment via
a fluid (e.g., air, transformer oil). The heat transfer rate is a
function of surface area and temperature difference:

q̇i,out = 2hiL
2
i

(
β2
i,2 − β2

i,1 + 2(βi,2 + βi,1)
)

∆Ti (18)

where h describes the total heat transfer coefficient and
∆T is the temperature difference between the coil and the
environment. The equilibrium temperature is reached when
the heat generated by Joule heating is balanced by the heat
convected out of the system, which determines the maximum
current density:

Ji,max =

√
hi∆Ti
Lmaxρw

2(β2
i,2 − β2

i,1 + 2(βi,2 + βi,1))

(Li/Lmax)(β2
i,2 − β2

i,1)
(19)

From the definition of the Nusselt number and assuming
forced convection in a channel, we have h ∝ L−1, which
implies Jmax ∝ L−1

max. The maximum dipole moment that can
be generated is thus:

mmax = MJmax ∝ L3
max (20)

which is the same scaling as would be expected for a per-
manent magnet. The magnetic field generated scales homoth-
etically and the field gradients, which are proportional to the
force applied to an adjacent magnet, scale inversely with Lmax.

C. Inductance and Time Constant

The inductances, and therefore time constants, of the Omn-
imanget solenoids are difficult to calculate exactly because of
their shape and the presence of the spherical core. However,
an approximation can be derived that will suffice for use in
Omnimagnet design. The approach separates the problem into
two parts: the inherent inductance in the solenoid due to the
windings, and the additional inductance due to the spherical
core. As shown in the derivation provided in the Appendix, the
inductance L can be written as a function of relative solenoid
shape scaled by a function of solenoid size.

L ≈ µ0ηL
5

6πA2
w

f1(β1, β2, βc), (21)

f1(β1, β2, βc) = (β3
2 − β3

1)

1/2∫

−1/2

β2∫

β1

f2(ζ1, ζ2)dζ1dζ2

+ πβ3
c (β2 − β1)

β2∫

β1

f2(ζ1, 0)dζ1

f2(ζ1, ζ2) = arctan

(
1 + 2ζ2√

(1 + 2ζ2)2 + 2ζ21

)

+ arctan

(
1− 2ζ2√

(1− 2ζ2)2 + 2ζ21

)

where βc is the ratio of core diameter to solenoid length. The
calculated inductances for the as-built configuration are 163,
110, and 82 mH, for the inner, middle, and outer solenoids
respectively. This is within 35% of the measured values
reported above, indicating reasonable agreement between the
approximation and the measurement. The values of f1 for the
optimal geometry defined earlier are 0.372, 0.089, and 0.037
for the inner, middle, and outer solenoids, respectively.

The time constant τ for each solenoid is:

τ =
L
R
≈ L2 µ0

2πρw

f1(β1, β2, βc)

β2
2 − β2

1

(22)

Although the system resistance and inductance can be tailored
through wire selection, the time constant is independent of
wire choice. Since the equations for time constant and dipole
moment are functions of the same variables, it is not possible
to design the two properties independently.

V. FIELD CONTROL

Fundamentally, the Omnimagnet is a magnetic field source
with three control inputs (the current applied to each solenoid),
which can be used to generate a desired magnetic field at a
location in space. Since the magnetic field generated is closely
represented by a dipole field, at each location in space it will
produce both a field and spatial derivatives in the field. With
a single Omnimagnet with three degrees of freedom, it is
not possible to independently control field and field gradient
simultaneously.

To determine the dipole moment m required by the Om-
nimagnet to produce a desired field B at some point p, the
vector dipole equation (3) must be inverted. Using the dipole
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field analysis in [12], it can be shown that the inverse exists
of the form:

m =
2π

µ0
‖p‖3

(
3p̂p̂T − 2I

)
B (23)

Combining with (12), the currents required are thus:

I =
2π

µ0
‖p‖3M−1

(
3p̂p̂T − 2I

)
B (24)

VI. REMOTE MANIPULATION WITH AN OMNIMAGNET

At steady-state, the torque applied by a magnetic field on a
magnetic tool will tend to align the tool with the field. This
can be used to reduce the control problem from controlling
torque directly, and thus requiring both tool orientation and
position, to controlling field directly, and thus requiring only
tool position. Controlling the propulsion of a ball or helical
screw with this approach has been explored using a rotating
permanent magnet [12]. However, when a permanent magnet
is used to create a rotating field, both the magnitude and
rotation rate of the field vary elliptically at the tool location;
thus, the rotational speed of the permanent magnet needs to be
constantly updated in order to produce a constant tool rotation
rate [12]. Since the Omnimagnet can produce a desired field at
a specific point in space, it is possible to create a rotating field
with angular velocity ω without the elliptical modulation in
magnitude associated with rotating permanent magnets. This
can be accomplished by updating the desired B in (24) as

B[k + 1] = eS(ω∆t)B[k] (25)

where ∆t is the time step of the control system and the
matrix exponential of a skew-symmetric matrix creates a
rotation matrix [22]. Thus, the same steady-state rotating
control approaches can be performed by an Omnimagnet using
(24) and (25) in which, unlike permanent magnets, both the
desired field magnitude and orientation are specified.

A rotating magnetic field was used to propel a threaded
capsule endoscope mockup down a transparent lumen, which
was offset by 120 mm from the surface of the Omnimagnet,
as shown in Fig. 5. Although the trajectory of the capsule
is simple (a line), the translating rotational field necessary to
drive the capsule uses all three degrees of freedom available to
the Omnimagnet. The desired magnetic field with ‖B‖=3 mT
was updated using (25) for a rotational rate of 4π rad · s−1.
The position of the capsule was tracked using a stereo-
vision system, although other localization methods, such as
the magnetic localization of [20], could be used in the future.
This position was used in conjunction with (24) to calculate the
currents necessary to produce the desired field at the location
of the capsule. The necessary currents were controlled by a
DC voltage signal sent from a Sensoray S626 controller card
to Advanced Motion Control AMC16A8 current drives at an
update rate of ∆t =0.01 s.

VII. DISCUSSION

The Omnimagnet prototype developed in this paper uses
no form of forced cooling. However, for Omnimagnets to
be truly effective, they will need to be cooled. Immersive

fluid cooling and forced-convection fluid cooling will enable
higher currents, and therefore higher fields, to be generated.
An Omnimagnet’s dipole strength also increases with size, but
this must be balanced against an increase in cost and weight.

By combining multiple Omnimagnets together, it will be
possible to create more sophisticated magnetic manipulation
systems. For example, the Octomag system uses eight sta-
tionary electromagnets to generate 3-DOF force and 2-DOF
torque on magnetic devices [7]. A system consisting of three
Omnimagnets is essentially nine stationary electromagnets,
meaning that similar levels of control as the Octomag seem
conceivable. The commercial Stereotaxis Niobe system uses
two large orientation-controlled permanent magnets to steer
magnetic catheters. A system consisting of two Omnimagnets
has the ability to recreate the same type of magnetic control.
Additionally, the spherical core inside the Omnimagnet makes
its use in multi-Omnimagnet systems extremely promising.
Because the average magnetization of a spherical core can be
solved using only knowledge of the applied field at the center
of the sphere, it will be possible to solve for the combined field
of multiple Omnimagnets analytically, rather than relying on
in situ system calibration.

If an Omnimagnet were constructed with a cubic core,
the available ferromagnetic material would increase by 57%,
which suggests that the overall strength of the magnet would
increase. Using the methodology outlined in this paper, pre-
liminary simulations indicate that the dipole moment of an
equivalently sized Omnimagnet with a cubic core would be
about 115% of the no-ferromagnetic-material reference geom-
etry, which is 24% stronger than the optimal spherical-core
geometry. Because the core is no longer spherical, this addi-
tional strength is also associated with larger dipole-modeling
errors (equivalent to the errors associated with cubic perma-
nent magnets [21]) and a significantly more complicated core
magnetization calculation. If multiple Omnimagnets were to be
used in concert, the complexity of the mutual magnetization
could be prohibitive, requiring in situ calibration. However, if
only one Omnimagnet is required for the application, a single
Omnimagnet with a cubic core could provide a significant
increase in strength with only a marginal increase in reopti-
mization and development complexity.

VIII. CONCLUSIONS

The design and optimization of an Omnimagnet was pro-
vided. The realized version of the design has an optimal
core-radius to outer-length ratio of 0.57 and can achieve
field strengths that are 87% of the unrealizable theoretical
reference. The design was optimized to create a dipole-like
field with the error relative to the dipole model falling to below
5% outside of 1.5 minimum-bounding-sphere radii from the
center. Manipulation with the Omnimagnet was demonstrated
by actuating a helical capsule down a lumen. Not only can
the Omnimagnet create a rotating dipole field like a permanent
magnet, but it can also control the field strength like a standard
electromagnet. This enables new control methodologies to be
explored. Moreover, the spherical core will allow the combined
field of multiple Omnimagnets to be solved analytically.
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Fig. 5. Propulsion of a helical capsule at 10 mm·s−1 through a lumen located 120 mm from the surface of the Omnimagnet, which is applying a rotating
magnetic field at the location of the helical capsule. (left) Numerical simulation with (center) resulting solenoid currents. (right) Experimental demonstration
with a capsule mockup.

APPENDIX

This appendix provides the derivation of the approximate
inductance of a square-cross-sectional solenoid with a spheri-
cal core. The magnetic flux Φ through a current loop is related
to the inductance of the loop L by:

Φ ≡
∫

B · da = LI (26)

where da is the differential area of the plane inside the loop
[18]. It should be noted that if the Omnimagnet’s solenoids
are mutually orthogonal, the mutual inductance between each
solenoid is zero because of the dot product in (26). Thus, the
inductance of a collection of connected loops is:

L =
N∑

i=1

Φi
I

(27)

where N is the total number of loops. Letting η be the area
packing efficiency of the wire, the total number of loops can
be obtained geometrically:

N =
ηTL

Aw
=
η(β2 − β1)L2

2Aw
(28)

Although possible, computing the sum in (27) is cumbersome.
If, instead of summing fluxes and loops in the solenoid, we
integrate an effective flux and cross-sectional loop density over
the solenoid, the computation of the inductance can be greatly
simplified. The loop density, gleaned by inspection of (28), is
η/Aw. Thus, in terms of an an effective loop density the total
number of loops is:

N =

∫
dN =

L/2∫

−L/2

T∫

0

η

Aw
dTdL (29)

Keeping with the theme of non-dimensionalizing the geometric
lengths, we use the change of variable dT = LdζT and dL =

LdζL. With this substitution we obtain:

N =

1/2∫

−1/2

(β2−β1)
2∫

0

ηL2

Aw
dζT dζL (30)

and (27) can be approximated as:

L ≈ ηL2

IAw

1/2∫

−1/2

(β2−β1)
2∫

0

Φ(ζT , ζL)dζT dζL (31)

It is now left to define the effective flux density in the solenoid
Φ(ζT , ζL). Referring to (26), the flux density is formed by an
area component and a field component. The area associated
with the loop density can be obtained geometrically and is
L2(2ζT + β1)2; the loop-density flux is therefore:

Φ(ζT , ζL) = L2(2ζT + β1)2B(ζT , ζL) (32)

The magnetic field B(ζT , ζL) associated with the loop-density
flux is the average field within the differential loop, which is
difficult to calculate exactly but will be simplified with another
approximation.

Without loss of generality, we will take the axis of the
solenoid to be oriented in the cartesian z direction. The
calculation of B(ζT , ζL) is simplified by assuming the field
inside the solenoid when no core is present Bs(z) varies along
the solenoid axis but is constant across the cross-section.

Bs(z) =
LJµ0

π

β2∫

β1

(
atan

(
1 + 2z/L√

(1 + 2z/L)2 + 2ζ2

)

+atan

(
1− 2z/L√

(1− 2z/L)2 + 2ζ2

))
dζ

(33)

Note that (33) reduces to (11) when z = 0. Since we are
magnetizing the spherical core in its linear region, the field is
the superposition of the field from only the solenoid current
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Bs(LζL) and the field only from the magnetization of the core
Bc(ζT , ζL); thus, B(ζT , ζL) ≈ Bs(LζL) + Bc(ζT , ζL). With
this simplification, the inductance due to the solenoid with a
core can be split into two separate problems: the inductance
of a solenoid with no core and the inductance due only to the
magnetization of the core.

Using (31), (32), and (33), the inductance for a square
solenoid with no core is:

Ls ≈
ηL4

AwI

1/2∫

−1/2

β2−β1
2∫

0

(β1 + 2ζT )2Bs(LζL)dζT dζL

≈ ηL4(β3
2 − β3

1)

6AwI

1/2∫

−1/2

Bs(ζLL)dζL

(34)

The inductance contribution of the core is more difficult to
calculate; but, the calculation can be split into two parts as
well: that which is associated with the uniform field inside
the core, and that which is associated with the dipole field
outside the core.

Inside of a uniformly magnetized spherical core, the mag-
netic field due only to the magnetization of the material is
uniform and is [18]:

Bc,i =
2

3
µ0‖M‖ = 2Bs(0) (35)

When the magnetization is due to an external field, the total
internal field is then 2Bs(0) + Bs(0) = 3Bs(0), which is
expected since the demagnetization factor of a sphere is
1/3. Since the external field is already accounted for in the
solenoid-alone inductance, the field of 2Bc(0) will be used to
calculate the part of the inductance only due to magnetizing
the core material. The inductance associated with the field
inside the core is thus:

Lc,i =
ηL4(β2 − β1)

2AwI

βc/2∫

−βc/2

π(β2
c/4 + ζ2

1 )Bs(0)dζ

=
πηL4(β2 − β1)β3

cBs(0)

6AwI

(36)

where βc is being introduced as the ratio of core diameter to
solenoid length.

Outside of the magnetized core, the field is purely dipolar
with the dipole moment given by (10). To numerically deter-
mine the inductance of this field, the differential flux is given
by:

dΦ

da
=
µ0‖m‖
4π‖p‖3 ẑT (3p̂p̂T − I

)
ẑ =

L3β3
cBs(0)

8‖p‖3
(
3(ẑTp̂)2 − 1

)

(37)
The inductance is given by (31) where the flux is the flux
outside of the core and inside of the loop-density width being
integrated:

Lc,dipole =

ηβ3
cL

4

8AwI
B(0)

∫∫∫∫ (
2(ζLL)2 − x2 − y2

(x2 + y2 + (ζLL)2)5/2

)
dxdydζT dζL

(38)

Numerical analysis of this contribution indicates it accounts
for less than 2% of the total inductance and will be neglected
for simplicity.

Therefore, the total inductance is the combination of the
inductance due to the solenoid alone, plus the inductance due
to uniform field inside of the magnetized core:

L ≈ ηL4

6AwI
(β3

2 − β3
1)

1/2∫

−1/2

Bs(ζ2L)dζ2

+
ηL4

6AwI
π(β2 − β1)β3

cBs(0)

(39)

Combining (33) and (39), this inductance can be rewritten as
a function of relative solenoid shape scaled by a function of
solenoid size as shown in (21), where f1(·) is the integration
described in (39) with f2(·) comprising the integrand of (33).

ACKNOWLEGMENT

This material is based upon work supported by the National
Science Foundation under Grant Nos. 0952718 and 0654414.

REFERENCES

[1] T. Honda, K. I. Arai, and K. Ishiyama, “Micro swimming mechanisms
propelled by external magnetic fields,” IEEE Trans. Magn., vol. 32,
no. 5, pp. 5085–5087, 1996.

[2] D. Meeker, E. H. Maslen, R. C. Ritter, and F. Creighton, “Optimal
realization of arbitrary forces in a magnetic stereotaxis system,” IEEE
Trans. Magn., vol. 32, no. 2, pp. 320–328, 1996.

[3] M. Sendoh, K. Ishiyama, and K. Arai, “Direction and individual control
of magnetic micromachine,” IEEE Trans. Magn., vol. 38, no. 5, pp.
3356–3358, 2002.

[4] H. Lee, A. Purdon, and R. M. Westervelt, “Micromanipulation of bio-
logical systems with microelectromagnets,” IEEE Trans. Magn., vol. 40,
no. 4, pp. 2991–2993, 2004.

[5] S. Martel, C. C. Tremblay, S. Ngakeng, and G. Langlois, “Controlled
manipulation and actuation of micro-objects with magnetotactic bacte-
ria,” Appl. Phys. Lett., vol. 89, no. 233904, pp. 1–3, 2006.

[6] S. Martel, J.-B. Mathieu, O. Felfoul, A. Chanu, E. Aboussouan,
S. Tamaz, P. Pouponneau, L. Yahia, G. Beaudoin, G. Soulez, and
M. Mankiewicz, “Automatic navigation of an untethered device in
the artery of a living animal using a conventional clinical magnetic
resonance imaging system,” Appl. Phys. Lett., vol. 90, no. 114105, pp.
1–3, 2007.

[7] M. P. Kummer, J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and
B. J. Nelson, “Octomag: An electromagnetic system for 5-dof wireless
micromanipulation,” IEEE Trans. Robot., vol. 26, no. 6, pp. 1006–1017,
2010.

[8] M. Mehrtash, N. Tsuda, and M. Khamesee, “Bilateral macro-micro
teleoperation using magnetic levitation,” IEEE-ASME Trans. Mech.,
vol. 16, no. 3, pp. 459–469, 2011.

[9] M. H. Hagiwara, T. K. Kawahara, Y. Yamanishi, and F. Arai, “Driving
method of microtool by horizontally arranged permanent magnets for
single cell manipulation,” Appl. Phys. Lett., vol. 97, no. 013701, pp.
1–3, 2010.

[10] G. Ciuti, P. Valdastri, A. Menciassi, and P. Dario, “Robotic magnetic
steering and locomotion of capsule endoscope for diagnostic and surgical
endoluminal procedures,” Robotica, vol. 28, pp. 199–207, 2010.

[11] S. Yim and M. Sitti, “Design and rolling locomotion of a magnetically
actuated soft capsule endoscope,” IEEE Trans. Robot., vol. 28, no. 1,
pp. 183–194, 2012.

[12] A. W. Mahoney, D. L. Cowan, K. M. Miller, and J. J. Abbott, “Control
of untethered magnetically actuated tools using a rotating permanent
magnet in any position,” IEEE Int. Conf. Robotics and Automation, 2012.

[13] S. Ernst, F. Ouyang, C. Linder, K. Hertting, F. Stahl, J. Chun,
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CHAPTER 4

REMOTE MANIPULATION WITH

A STATIONARY COMPUTER-

CONTROLLED MAGNETIC

DIPOLE SOURCE

The Omnimagnet, developed in the last chapter, is a stationary magnetic dipole-source

and can generate controllable magnetic dipole fields. By choosing to control field primarily,

or field gradients primarily, this paper demonstrates the capabilities of a single stationary

dipole-source to control an adjacent object. It has been accepted for publication in IEEE
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Short Paper

Remote Manipulation With a Stationary
Computer-Controlled Magnetic Dipole Source

Andrew J. Petruska, Arthur W. Mahoney, and Jake J. Abbott

Abstract—In this paper, we examine several magnetic control methods
that utilize the fully controllable dipole field generated by the single sta-
tionary dipole source. Since the magnetic field generated by a dipole source
is nonuniform, it applies both forces and torques to magnetic objects and
can be used to manipulate magnetic tools. Recently, the Omnimagnet, a
computer-controlled magnetic dipole source capable of varying both its
dipole-moment direction and magnitude, was developed to perform mag-
netic manipulation. The equations and methods are developed generally;
therefore, they can be applied to any omnidirectional dipole source, but
their effectiveness is demonstrated using the Omnimagnet.

Index Terms—Magnetic manipulation, medical robotics, microrobotics,
omnimagnet, teleoperation.

I. INTRODUCTION

Manipulation systems typically require a mechanical connection be-
tween the tool and the actuation system to achieve a desired force or
torque transfer. This connection is a limiting factor when controlling
objects in areas with access restrictions such as minimally invasive
surgery, in environments with imaging limitations where a mechanical
connection can obscure the field of view, and in low-Reynolds-number
fluid environments where a mechanical connection can result in signif-
icant environmental disturbances. Using combinations of electromag-
nets and permanent magnets, a controllable torque and force can be
applied to a tool without having a mechanical connection. Fundamen-
tally, there have been two design approaches for electromagnet systems
in the past: engineer a field that is aligned in a desired direction with
a controllable gradient in the same direction (e.g., MRI systems and
Helmholtz with Maxwell coils [1]–[4]) or design a system that has a
nonuniform field shape and then calibrate a model or look-up table
for the system in situ [5]–[12]. Permanent-magnet-based systems have
been designed to use follow-the-leader dragging and rotating control
approaches, and they have demonstrated dexterous manipulation using
the dipole-field model without calibration [8], [9], [13]–[16].

This paper explores the capabilities and limitations of performing
magnetic manipulation with an omnidirectional dipole source using
the dipole-field equations recently exploited for permanent-magnetic
control. Many devices can be modeled as an omnidirectional dipole
source at large distances (see, e.g., [5]). Recently, the authors designed
the Omnimagnet, which is an omnidirectional electromagnetic source
accurately modeled by a point-dipole field comprising three solenoids
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with a spherical ferromagnetic core nested such that they share the same
magnetic center [17]. The analysis in this paper is developed in a gen-
eral framework allowing for multiple solenoids and non-Omnimagnet-
specific equations, but all demonstrations will be performed with an
Omnimagnet.

In this paper, we will use bold font to represent vectors (e.g., a,
A) and capitalized blackboard font to represent matrices (e.g., B). The
two-norm of a vector will be expressed as ‖a‖, the inner product of two
vectors will be expressed as a · b, the cross product of two vectors will
either be expressed as a × b or in the skew-symmetric matrix form
S(a)b, the unit-length direction of a vector will be written as â, and
the transpose of a vector or matrix will be expressed as aT .

II. MAGNETICS BACKGROUND

The magnetic field produced by a collection of electromagnets can
be modeled with a series expansion, which is called a multipole ex-
pansion, if the region of interest is outside of the smallest sphere that
encapsulates all of the magnetic sources (i.e., the bounding sphere).
The first term in the multipole expansion is called the dipole field, and
its magnitude decays with ‖p‖−3 , where p is the vector that points
from the center of the bounding sphere to the point of interest. The
second term, which is called the quadrupole term, decays as ‖p‖−5 ,
and the higher order terms decay with monotonically increasing odd
powers. By using the multipole expansion, it is possible to have an
accurate representation of the magnetic field at distances far from the
source (i.e., greater than 1.5 bounding-sphere radii) without having to
use computationally intensive (e.g., numerical integration) or experi-
mentally intensive (e.g., in situ calibration) techniques [18].

The dipole moment m of an electromagnetic source when all integral
ferromagnetic materials are unsaturated can be written as

m = MI (1)

where M is a linear mapping of a column-vector packing of the applied
currents I to the resulting dipole moment m; the rank of M must be
three for magnetic omnidirectionality. The dipole field at any point p,
which is relative to the center of the source’s bounding sphere, is given
by the dipole-field equation:

B =
μ0

4π ‖p‖3

(
3p̂p̂T − I

)
m (2)

where I is a 3 × 3 identity matrix, and μ0 is the magnetic permeability
of free space [19].

This paper will focus on the manipulation of objects (or tools) that
are well modeled by a dipole field, that is, objects that are several
bounding-sphere radii away from the source. The tool’s dipole moment
will be represented as mt , and, in general, the force F and torque TT
acting on this object when placed in a magnetic field B are given
by [19]

F = (mt · ∇)B (3)

TT = mt × B (4)

where ∇ is the gradient operator.

III. FIELD CONTROL

Sensing Requirements: Position p.
Limitations: If the desired field is changed rapidly, the system dy-

namics may not be able to keep up.

1552-3098 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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To determine the dipole momentm required by the source to produce
a desired field B at some point p, the vector dipole equation (2) must
be inverted. Using the dipole field analysis in [15] and [19], it can be
shown that the inverse exists of the form

m =
2π

μ0

‖p‖3
(
3p̂p̂T − 2I

)
B. (5)

Combining with (1), the currents required to generate a field are thus

I =
2π

μ0

‖p‖3M† (
3p̂p̂T − 2I

)
B (6)

where † identifies a generalized inverse, as M may not be square, and
multiple solutions could exist.

When placed in a magnetic field, an unconstrained magnetic tool
will align with the applied field because of the magnetic torque (4)
experienced. If the field is rotating, the tool will attempt to keep up
with the rotation as well. This tendency to align with the field has been
explored using a rotating permanent magnet to propel a ball and helical
screw [15]. To perform similar control tasks with a dipole source, the
desired field B in (6) should be rotated at a desired angular velocity
ω, and the position should be updated with the tool position. By doing
so, a rotating field that translates with the object will be produced and
can be used for propulsion. The maximum achievable tool rotation
speed ‖ωmax‖ is limited by the maximum magnetic torque that can be
achieved to counteract the drag torques. The maximum torque, from
inspection of (4), is ‖mt‖‖B‖ and corresponds to the configuration
where the tool’s dipole moment is consistently orthogonal to the applied
rotating field. Operating at a faster speed than this, without increasing
the applied field strength, will cause the system to experience step
out [1].

A rotating magnetic field generated by an Omnimagnet was used to
propel a threaded capsule-endoscope mockup down a transparent lu-
men in [17]. In that demonstration, helical propulsion through a lumen
presented a convenient system for using rotating fields to propel an
object because a lumen provides significant physical constraints on the
tool’s motion. However, these physical constraints are not required to
propel an object using a rotating field. To explore using an Omnimag-
net for control of adjacent objects in a less constrained environment,
a magnetic ball was driven on a flat surface using only position in-
formation and a rotating field. The position information was obtained
with a vision system, and the drive currents were updated at 100 Hz.
The results of driving the ball around a rectangular path on a table-
top and around a Labyrinth maze, shown, respectively, in Fig. 1(a)
and (b), demonstrate the capability of the Omnimagnet to control the
strength and direction of a field at an arbitrary location in space. Un-
fortunately, it is possible for disturbances, such as attractive magnetic
forces or surface roughness, to apply torques about the dipole moment
that cannot be compensated magnetically. In the demonstrations, these
disturbances cause the magnet to deviate from a straight trajectory.

Micromanipulation of objects using magnetic torque and force has
been explored using multiple-magnet systems that surround the viewing
workspace [20]–[22]. The Omnimagnet can produce similar control of
microbeads through rolling as demonstrated previously; however, the
problem is greatly simplified. Since the micromanipulation workspace
is constrained to be under a microscope for viewing, the workspace
is necessarily small compared with the Omnimagnet’s workspace.
As such, the position of the microdevice being manipulated can be
assumed to be constant, and a rotating field can be applied in an
open-loop fashion. Fig. 1(c) shows the manipulation of a 1-mm mag-
netic ball in a viscous medium. Using a Reynolds-number analysis,
the 1-mm-diameter permanent-magnet sphere in corn syrup (2500 cP,
1.36 g · ml−1) has a behavior equivalent to a 30-μm sphere in water.

Note that the Omnimagnet is offset from the workspace by a relatively
large distance (150 mm), allowing for manipulation under a micro-
scope with the Omnimagnet placed as necessary to accommodate other
equipment.

IV. TORQUE CONTROL

Sensing Requirements: Position p and tool dipole moment mt .
Limitations: Torque can only be applied orthogonal to the tool’s

dipole moment.
If both the heading and position of the tool are known, it is possible

to directly apply a torque. Because of the cross product in (4), no
component of torque can be applied parallel to the dipole moment of
the tool, reducing the space of achievable torques to those orthogonal
to the tool’s dipole moment. Thus, it is assumed that any desired torque
TT lies in this reachable plane. For any TT , there is a 1-D subspace of
solutions, parameterized by θ, for the required field and currents

B =
‖TT ‖
‖mt‖

(cot(θ)m̂t + T̂T × m̂t ) (7)

I =
2π‖TT ‖‖p‖3

μ0‖mt‖
M†(3p̂p̂T − 2I)(cot(θ)m̂t + T̂T × m̂t ). (8)

The solution that corresponds to θ = π/2 is the minimum-field solu-
tion. It represents the case where the applied field is perpendicular to
the tool’s dipole moment and has been shown to minimize the attractive
force between the two dipoles [23].

In some configurations, it is possible to choose a solution that re-
quires less electrical power than the one corresponding to the minimum-
field solution and produce the same torque by allowing some field
magnitude in the tool’s dipole-moment direction and exerting addi-
tional force. Letting R be the positive-definite diagonal matrix packing
of the electrical resistance associated with each current, the electrical
power required is ITRI. The currents required to produce a torque with
minimum electrical power are

I =
4π‖p‖3

μ0

R−1/2 (S(mt )
(
3p̂p̂T − I

)
MR−1/2 )†TT (9)

where † in this solution is the Moore–Penrose generalized inverse.
Alternatively, the unused degree of freedom (DOF) can be used to
optimize other favorable parameters, such as minimizing the difference
between the resulting force applied and some desired force or direction
of motion.

V. FORCE CONTROL

Sensing Requirements: Position p and tool dipole moment mt .
Limitations: A singularity exists when the tool’s dipole moment is

orthogonal to the position vector, reducing the space of achievable
forces in this configuration to the plane spanned by the tool’s dipole
moment and the position vector.

To apply a controlled force for pushing and pulling tasks, the field
gradient at the position of the tool must be controlled. The force between
two magnetic dipoles can be expressed as [19]

F =
3μ0

4π‖p‖4
Fm

F ≡ mt p̂
T + p̂mT

t + (p̂ · mt ) (I − 5p̂p̂T ). (10)

28



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 3

Fig. 1. Position control of a spherical magnet using a rotating field to direct the rolling direction of the ball. (a) 12.5-mm-diameter ball rolling without constraint
on a plane adjacent to the Omnimagnet. (b) 12.5-mm diameter ball being directed through a Labyrinth maze adjacent to the Omnimagnet. (c) 1-mm diameter ball
rolling in corn syrup on a plane above the Omnimagnet. In (a) and (b), the ball’s position is found using computer vision and used in closed-loop control. In (c),
the ball is controlled open loop under the assumption that it is always located in the center of the workspace.

Thus, the currents required to apply a particular force F are

I =
4π

3μ0

‖p‖4M†F−1F (11)

F−1 =
(2(p̂ · mt )

2 + mt · mt )I − F2

(p̂ · mt ) ((p̂ · mt )
2 + mt · mt )

.

The inverse of F exists when the inner product of the tool’s dipole
moment mt and the displacement direction p̂ is nonzero.

When mt and p̂ are orthogonal, F is singular, but forces can still be
produced in the plane spanned by mt and p̂, and the currents necessary
to command a desired force in this plane are

I =
4π‖p‖4

3μ0‖mt‖
M† (

m̂t p̂
T + p̂m̂T

t

)
F. (12)

In the singular configuration, any currents that contribute to a dipole
moment not in the span of {mt , p̂} create no force. The torque associ-
ated with a desired force in the singular configuration is

TT = 2 (mt · F) ‖p‖(m̂t × p̂). (13)

Therefore, it is possible to apply a torque or a force that would rotate
or move the tool such that mt is no longer orthogonal to p̂, thereby
restoring full force control. Since the direction of the field and the torque
applied are not controlled, the resulting force solution will likely be
locally rotationally unstable. Consequently, open-loop unconstrained
force control with a single dipole source is not feasible in practice.
However, if the tool’s dipole moment is known, through sensing or
mechanical support (e.g., a lumen), pushing and pulling an object using
a dipole source with feedback is possible provided the singularity is
avoided or appropriately mitigated.

To demonstrate this capability, an axially magnetized permanent
magnet disk is fixed to a larger plastic disk, placed in a tub of water,
and driven around a rectangular path (see Fig. 2). The buoyant forces
on the plastic disk serve to constrain the tool’s dipole moment to the
vertical direction, and its location is tracked with a vision system.
A closed-loop proportional-derivative position controller is used to
determine the forces to apply, and (11) is used to convert these into the
required electrical currents.

Fig. 2. Position servo control of a floating magnet using applied force, gener-
ated by an Omnimagnet [17]. The dipole moment of the magnet is constrained
by buoyant forces to be in the vertical direction.

VI. FIELD-ALIGNED FORCE CONTROL

Sensing Requirements: Position p and tool dipole magnitude ‖mt‖.
Additional Assumptions: The tool is aligned with the applied field.
Limitations: No repulsive forces can be applied to the tool, requiring

nonmagnetic forces for system stability. The space of achievable mag-
netic forces is reduced to a 28◦ cone opening toward the dipole source.
Rapid changes in force direction, relative to the tool’s rotational time
constant, will cause the tool to become misaligned with the field and
the applied force to deviate from the desired force.

Field alignment of an unconstrained tool has been exploited previ-
ously for 5-DOF heading and force control [7], [16]. Although it is
not possible to achieve 5-DOF control with a single stationary dipole
source, 3-DOF force control can be achieved. The force applied to an
adjacent magnetic tool from a dipole source when the tool is aligned
with the source’s field is

F =
3μ0‖mt‖
4π‖p‖4

((p̂ · m̂)m − (4(p̂ · m̂)2 + 1)‖m‖p̂)√
3(p̂ · m̂)2 + 1

. (14)

If a ball with a large magnetic susceptibility were used instead of a
permanent magnet, then ‖mt‖ would be a function of the applied field

‖mt‖ =
3Vb‖m‖
4π‖p‖3

√
3 (p̂ · m̂)2 + 1 (15)

where Vb is the volume of the unsaturated magnetized ball.
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Inspection of (14) shows that the force will always be attractive
(i.e., there will always be a component in the −p̂ direction); thus, it is
necessary to have an external restoring force (e.g., gravity) to stabilize
the direction of attraction. By using the projections F · p̂ and F · F,
it is possible to obtain a closed-form solution for the required dipole-
moment to achieve a desired force

m = ± 4π‖p‖4

3μ0‖mt‖

√
3 (p̂ · m̂)2 + 1

(p̂ · m̂)2 ·

(
I −

(
4 (p̂ · m̂)2 + 1

3 (p̂ · m̂)2 + 1

)
p̂p̂T

)
F (16)

where (p̂ · m̂)2 is given by

(p̂ · m̂)2 =
7

(
F̂ · p̂

)2

− 6 ±
(
F̂ · p̂

) √
17

(
F̂ · p̂

)2

− 16

18 − 16
(
F̂ · p̂

)2 . (17)

The magnitude of m is always

‖m‖ =
4π‖p‖4

3μ0‖mt‖
− (F · p̂)√

3 (p̂ · m̂)2 + 1
. (18)

When a solution exists, (16) provides four choices of m that will
apply the same force—two directions, each in the positive or negative
sense. In the special case when F̂ · p̂ = 1, one solution for p̂ · m̂ is
0 corresponding to the force singularity. In this configuration, (16) no
longer yields a solution for the dipole moment; however, there exists
an infinite number of solutions corresponding to dipole moments in the
plane defined by p̂ · m̂ = 0 with a magnitude given by (18).

Together, (17) and (18) define a geometric constraint on what force
directions can be achieved when the tool is aligned with the dipole
field:

F̂ · p̂ ≤ −
√

16

17
. (19)

This constraint requires any applied force to be attractive (i.e., have a
component in the −p̂ direction), and confines an applied force direction
to differ from the p̂ direction by no more than arccos

(√
16/17

)
≈

14◦, and, thus, constrains the workspace of the tool to a 28◦ cone
emanating from the center of the dipole source and directed along the
direction of the restoring force. Without loss of generality, we will
assume for the remainder of this discussion that the restoring force is
gravity, that it acts in the −ẑ Cartesian direction, and that the dipole
source is located at the origin.

To discuss the manipulability of a tool in this framework, it is useful
to switch to a cylindrical coordinate frame where the axis of the cylinder
is aligned with the ẑ-direction, and the radial and circumferential di-
rections describe motion in a horizontal plane below the dipole source.
The location of a tool will be defined by (zẑ, rr̂, φφ̂), but because of
symmetries in the dipole field, only the z and r values will affect the
following discussion. In this framework, the angle θ = arctan (r/z)
will describe where in the conic workspace the tool is operating.

In the achievable workspace, p̂ will always have its largest compo-
nent in the −ẑ-direction (i.e., the restoring force direction), and (19)
further requires the largest component of any achievable force to be in
the +ẑ-direction. Therefore, it is convenient to normalize any applied
horizontal force with the applied vertical force with the understanding
that as the applied vertical force is reduced to zero, any horizontal com-
ponents must also go to zero. Fig. 3 shows how the space of achievable
radial and circumferential forces changes as the tool moves from be-
ing positioned directly under the source (r = 0 ⇔ θ = 0◦ ) to being

Fig. 3. (Top) Manipulability measure of a tool aligned with a source’s dipole
field as a function of angular position inside of the 28◦ conic workspace. The
manipulability is the ratio of minimum to maximum force that can be applied
to the tool in the horizontal plane by the source. (Bottom) Achievable forces at
three locations from the center (θ = 0◦) to the edge (θ = 14◦) of the cone. The
magnitude of these forces are normalized by the applied vertical force; as the
vertical force tends to zero, the horizontal forces must also go to zero. As the tool
moves away from vertical alignment (θ = 0◦), larger forces can be generated
to push it toward θ = 0◦ than to push it toward the edge of the workspace.

positioned at the edge of the conic workspace (r = z/4 ⇔ θ ≈ 14◦).
The manipulability measure in the figure is defined as the minimum
horizontal force (which is always in the positive radial direction) nor-
malized by the maximum horizontal force (which is always in the
negative radial direction). As the tool moves toward the boundary, the
manipulability measure goes to zero because the achievable forces in
both the circumferential and the positive radial directions go to zero.

Unfortunately, the geometric force constraint (19) prevents general
application of (16). To implement a controller with this method, it is
necessary to determine the set of achievable forces and then pick an
achievable force that yields, as close as possible, the response required
by the control system. As before, it is beneficial to split the desired force
into a component parallel to the restoring force and one perpendicular
to the restoring force: F = Fz ẑ + F⊥. For F to be achievable, Fz

must be positive, and ‖F⊥‖ must be small enough to satisfy (19). The
maximum achievable ‖F⊥‖ can be found by finding a positive value
of α, where

F = Fz ẑ + αF̂⊥ (20)

which satisfies (19) at the constraint boundary. This yields a quadratic
equation for α
(

(p̂ · F̂⊥)2 − 16

17

)
α2 + 2Fz ((p̂ · ẑ)(p̂ · F̂⊥))α

+ F 2
z

(
(p̂ · ẑ)2 − 16

17

)
= 0. (21)

Thus, the dipole moment that should be applied given a desired force
and a restoring-force direction requires that F in (16) and (17) be
Fz ẑ + min(‖F⊥‖, α)F̂⊥, where α is the positive real solution to (21).
If a positive and real solution for α exists, and if α ≥ ‖F⊥‖, then the
desired force can be achieved; otherwise, if α < ‖F⊥‖, then the desired
force in the perpendicular direction cannot be achieved and must be
reduced to have a magnitude of α. If no positive solution for α exists,
then it is not possible to apply a force in the positive F̂⊥ direction,
which happens at the edge of the achievable workspace. If no real
solution exists, then it is not possible to achieve Fz ẑ at this location,
which happens if the position is outside of the achievable workspace.

A semiboyant capsule was levitated and driven along a rose curve
using this field-aligned force control approach, as shown in Fig. 4,
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Fig. 4. Semiboyant capsule is levitated and position controlled about a rose
curve using a field-aligned force control approach. The achievable workspace
is confined to the 28◦ cone shown.

using a proportional-derivative controller with visual tracking at a
30-Hz update rate. The orientation of the capsule shows the applied
field direction required at each snapshot to achieve the control forces. If
the manipulated tool were a sphere, the uncontrolled orientation would
not be seen. The capsule has larger tracking error closer to the Omn-
imagnet; this is likely because the assumption that the Omnimagnet’s
field is a pure dipole field has more error close to the Omnimagnet,
with the error reducing with ‖p‖−7 [17]. The tracking error could be
reduced by moving the trajectory farther from the Omnimagnet.

VII. COMMENT ON REFLECTIVE FORCE AND TORQUE

Because the Omnimagnet used in these demonstrations contains a
spherical ferromagnetic core, the permanent magnet used in a magnetic
tool will slightly magnetize the core, causing the permanent magnet to
be slightly attracted to the Omnimagnet even when no power is applied.
Assuming the permanent-magnet tool can be modeled as a point dipole,
which is reasonable for relatively large separation distances [18], the
dipole moment of the soft-magnetic core, mc , due to the permanent
magnet, mt , can be determined by the method provided in [17]

mc =
R3

c

‖p‖3

(
3p̂p̂T − I

)
mt (22)

where Rc is the radius of the core. The torque and force on the magnetic
tool due to the reflection are

TT =
3μ0R

3
c

4π‖p‖6
(p̂ · mt )(mt × p̂) (23)

F = −3μ0R
3
c ‖mt‖2

4π‖p‖7

(
3m̂tm̂

T
t + I

)
p̂. (24)

For perspective, if a 1-cm3 NdFeB grade-N52 magnet, which has a
dipole moment of 1.17 A · m2, is placed at the surface of the outer
coil of an Omnimagnet with the same geometry as the one used in
the experiments, the maximum torque would be 59 ×10−3 mN · m,
and the maximum force would be 5.3 mN (only 7% of its weight).
To account for this coupling, the Omnimagnet’s solenoid currents can
be controlled such that the net dipole moment of the Omnimagnet be-
comes zero by using (1) to calculate the currents required to create
a dipole moment that is the negative of (22) and, then, adding that
quantity to whatever dipole moment is required for the task. This ad-
justment was not necessary in the above demonstrations because of the
relatively low reflective torques and forces at the operation distances
of the demonstrations, and because of the closed-loop controllers used.
However, since the reflective torque and force scales with the square

of the tool’s dipole moment, this effect could become significant for
magnetically stronger tools. Although this analysis assumes a spher-
ical core, the scaling will be similar for dipole sources that contain
nonspherical ferromagnetic elements.

VIII. CONCLUSION

A single stationary electromagnetic dipole source can be used to
manipulate adjacent tools using several methods. If both the position
and heading of the tool are known or sensed, direct force and torque
control methods can be applied. If only position information is avail-
able, in many instances, it is possible to assume the tool will attempt
to align with the applied field, enabling both rotating-field control and
field-aligned force control approaches. Unfortunately, the workspace
for field-aligned force control is fairly limited. Many demonstrations in
this paper are conducted in 2-D workspaces, e.g., ball rolling; however,
the methods developed for manipulation with a single controlled source
are equally applicable to general 3-D workspaces under the provided
assumptions.
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CHAPTER 5

RECOMMENDATIONS FOR 

FUTURE WORK

A single Omnimagnet, with three independent control inputs, is limited to 3-dof con-

trol; multiple Omnimagnets, used in concert, will not share this fundamental limitation.

The ferromagnetic cores in a system of Omnimagnets will magnetically couple all of the

Omnimagnets together. Other electromagnet systems account for this coupling with in

situ calibration or extensive FEA modeling. Unlike the other systems, the coupling in

an Omnimagnet system can be solved analytically because of the unique properties of the

spherical core; namely, the average field experienced by the core is equal to the field at

the center of the core [1]. The magnetization of each Omnimagnet’s core due to all of the

Omnimagnets’ currents can be computed in an analogous way to the methods in Chapter

3 for determining the magnetization of the core initially. This leads to a linear set of

equations that relate how the current density in one coil affects the dipole moment of every

Omnimagnet. Once this mapping is established, it is possible to solve for the net field of

the system given the applied currents. As this is an analytical mapping, it will be possible

to update the model in real-time, allowing for a dynamically reconfigurable system.

A multiple Omnimagnet system will have at least six control inputs, making it po-

tentially capable of controlling the magnetic field gradient at a point independently from

the local field at that point. This will enable 5-dof control of magnetic tools. Once

the system has three or more Omnimagnets, the number of control inputs will exceed

the number of controllable outputs, the system will be overactuated, and there will be

multiple current combinations capable of generating the desired output. This overactuation

can be exploited to minimize different objective functions such as the norm of the dipole

moments, the electrical power consumed, or the coil temperatures. Although each of these

choices will result in the same desired output, the realization of each system may have

different performance characteristics once nonmagnetic constraints are introduced, e.g.,
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current limits, power limits, and thermal limits. It is conceivable that different objective

functions may be desirable while operating in different task modes.

Many magnetic manipulation tasks fundamentally have different stages. In a catheter

ablation task, for example, the ablative end of the catheter must be steered through the

tortuous network of blood vessels before it can be used to thermally ablate the unde-

sirable tissue. These two subtasks, steering and ablation, fundamentally have different

control needs. Steering primarily requires control of the torques applied at the end of

the catheter (to turn right or left at a junction), while ablation primarily requires control

of the forces applied at the end of the catheter (to press firmly into the wall for good

thermal contact). Independently, these two modes of operation will have different optimal

Omnimagnet configurations—one optimized for field control and one optimized for force

control. Moreover, the optimal configuration for each mode of operation will change as

the location and orientation of the catheter changes. Understanding how to reconfigure

a system of Omnimagnets in real-time will provide a magnetic manipulation system that

is more versatile and more efficient than a system that has been designed as a continual

compromise.

Imaging during medical procedures is of equal importance to device manipulation. Many

medical imaging systems, e.g., C-arm fluoroscopy, require line of sight and access to both

sides of the patient. Using a static manipulation system with this imaging technology will

significantly reduce the available imaging options. A dynamically reconfigurable manipula-

tion system, however, could be repositioned during procedures to accommodate the needs

of the imaging system allowing for potentially better imaging and diagnosis.

Because the field can be analyzed analytically, without the need of computationally

expensive FEA simulations, it is possible to rapidly analyze Omnimagnet configurations,

enabling high level real-time task replanning. During a magnetic manipulation task, there

are many sources of uncertainty: e.g., the location and orientation of the tool, the exact field

applied, and the interaction between the tool and the environment. Partially observable

Markov decision processes analysis could be used to optimize not only the control currents

applied to the Omnimagnets, but also the Omnimagnet positions during the procedure and

the imaging orientations, maximizing the probability of success for any given task.

A single, movable, permanent-magnet source has been used to perform 5-dof control

of a semibuoyant capsule [2]. This approach assumes that the dipole moment magnitude

of the source cannot vary, making the system fully constrained (5-dof in actuation input

and output). Using an Omnimagnet to perform similar control tasks would yield an
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additional degree of freedom—the magnitude—making the system overactuated. Currently,

the permanent-magnet system cannot control the strength of the applied field, only its

direction, which makes it unsuitable for control of soft-magnetic end-effectors. Since a

mobile Omnimagnet can have control of its dipole strength, controlling the field magnitude

as well as direction is possible; thus, a single mobile Omnimagnet should be capable of

performing state of the art control of a soft ferromagnetic ellipsoid demonstrated by the

OctoMag system [3], but with fewer control inputs.

Commercially available permanent magnets have approximate dipole-moment densities

of 2 × 106 A/m, whereas the optimal Omnimagnet design, assuming a maximum current

density of 500 A/cm2 (6.5 A in a 16 AWG conductor), has a dipole-moment density of

only 3L × 105 A/m (where L is the edge length of the Omnimagnet). Thus, a permanent

magnet of reasonable size will be 10 to 1000 times stronger than an equivalently sized

Omnimagnet. For this reason, it may be desirable to use large permanent-magnet systems,

or superconducting electromagnetic systems, to produce a strong quasi-static field while a

faster responding Omnimagnet subsystem performs real-time micro adjustment of the field

for control or other purposes.

The above research areas all focus on using the Omnimagnets as a manipulation field

source; however, there is no reason to limit the Omnimagnet to a source device. A multiple

Omnimagnet system will apply forces and torques between each Omnimagnet in the system.

This could be exploited for formation flight systems in minimum gravity environments or

actively controlled end-effectors in tethered operation. If a small Omnimagnet were placed

at the distal end of a catheter, a large permanent magnet, like the Stereotaxis system [4],

could generate a static field, while the Omnimagnet’s dipole moment could be selected to

obtain the desired forces and torques given that field. This approach could increase the

dexterity for steering the catheter and also provide a heat source for ablation procedures.

Many of these applications require knowledge of the relative positions of all of the

Omnimagnets. Omnimagnets are dynamic magnetic field sources, and there is no physical

feature that prevents them from also performing as antennas. It should be possible to

have each Omnimagnet broadcast a high-frequency signal, one that is much faster than the

controlled device’s dynamic response, and simultaneously listen for other Omnimagnet’s

signals in order to determine their relative positions in a similar manner to current magnetic

localization systems. Moreover, it could also be possible to extract the position of the

end-effector based on its electromagnetic effect on this high-frequency network.
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CHAPTER 6

CONCLUSIONS

Using magnetic forces and torques to manipulate medical devices could revolutionize

minimally invasive medicine. Current approaches for this type of magnetic manipulation

system include using permanent magnets, which are dynamically oriented, or electromag-

nets, which are current controlled. Dexterous control with permanent-magnet systems

have successfully used the dipole-field model for magnetic analysis, and electromagnet

systems can be analyzed in a similar way. Unfortunately, the dipole-field model is only

an approximation for most geometries, so understanding this approximation’s limitations

was the first step in the manipulation system design.

The dipole-field model is the first nonzero term in the multipole expansion and becomes

increasingly accurate with increasing distances from the magnet. By minimizing the second

nonzero term (the quadrupole term), it is possible to optimize an arbitrary shape for the

dipole-field model. This optimization was carried out on several commercially available

shapes, including a cylindar, a cuboid, and a washer. It was found that the optimal geometry

for cylinders (both axially and diametrically magnetized) is a diameter-to-length ratio of
√

4/3 and for rectangular-cross-section bars is a cube. By choosing these ratios, the error

associated with the dipole model is reduced compared to nonoptimal geometries as shown

by the trend depicted in Fig. 2.6. The accuracy of the approximation increases faster

with distance for optimal geometries than it does for nonoptimal geometries, and of the

geometries studied for a given distance from the magnet, the cubic magnet has the least

average dipole approximation error.

The multipole expansion can also be applied to electromagnets. As the optimal non-

spherical shape in permanent magnets for a dipole-field model was the cube, a cubic

shape for the electromagnet was chosen. The thickness and lengths of the windings were

optimized to produce a field with no quadrupole moment and to generate equal strength per

applied current in any direction, while the diameter of the core was chosen to maximize the
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strength of the final design. The realized version of the design has an optimal core-radius

to outer-length ratio of 0.57 and can achieve field strengths that are 87% of the unrealizable

theoretical reference. The design was optimized to create a dipole-like field with the error

relative to the dipole model falling to below 5% outside of 1.5 minimum-bounding-sphere

radii from the center. Not only can the device create a rotating dipole field like a permanent

magnet, but it can also control the field strength like a standard electromagnet.

Having constructed an electromagnetic dipole source, object manipulation could be

explored. If both the position and heading of the tool are known or sensed, direct force and

torque control methods can be applied. If only position information is available, in many

instances it is possible to assume the tool will attempt to align with the applied field, en-

abling both rotating-field control and field-aligned force control approaches. Unfortunately,

the workspace for field-aligned force control is fairly limited, which suggests that future

research should examine how multiple dipole sources can be used for control.

The potential for use of multiple dipole sources for control is exciting. The choice of using

a spherical core in the dipole source will enable analytical analysis of the coupled fields and

could lead to the first real-time reconfigurable magnetic manipulation system. Furthermore,

these sources could be used in conjunction with permanent-magnet systems to become the

first hybrid system. This dissertation has presented the design and use of an electromagnetic

device optimized for control approaches based on the dipole-field model, and potentially

provides a foundation for future research into reconfigurable magnetic manipulation.




