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Where to look next: gaze control
for humanoid walking

Autonomous navigation of a walking robot requires
close coordination of perception and locomotion,
i.e. perception must be controlled to assure that the
humanoid is always provided the largest possible
amount of task-relevant information about the walk-
ing scenario. Though perception-guided robot navi-
gation has been an active research topic for decades,
navigation strategies reported were primarily de-
signed for wheeled robots. This was due to the un-
satisfactory state of legged robots at the time. In the
meantime, major problems of mechanical design and
stabilization of humanoids have been solved and
aspects of perception-based biped locomotion have
recently attracted interest. Obviously, a key issue in
attaining autonomous locomotion is the develop-
ment of new navigation strategies, or the adapta-
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tion of existing ones to the peculiar properties of
legged robots.

For a humanoid to execute a given locomotion
task, the guidance system must generate appropri-
ate step sequences allowing the robot to navigate
and reach the specified goal position in spite of
obstacles in the walking trail (see Figure 1). Infor-
mation about these obstacles is provided by an
active vision system including a gaze control
scheme. This selects the orientation of the sensor
so that the relevant objects of the scene are kept
within the sensor’s limited field of view. Here, we
propose a modular task-oriented and situation-de-
pendent gaze control architecture (see Figure 2),

Continues on page 3.
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Figure 1. Humanoid navigation separated into self-localization and obstacle-avoidance tasks. The biped robot is

shown in a prototypical scenario with objects and landmarks.
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Editorial

Integrative perspectives: the cognitive robot,
the cognitive environment and the cognitive brain

Welcome to this issue of the R&MP news-
letter. When preparing these editorials, I like
to read through the articles for the issue at
my leisure noting phrases or keywords that
highlight key aspects of each. When done I
then look for patterns that relate the articles
to each other and to the wider robotics and
machine perception enterprise. The current
issue illustrates this process very nicely.
On first scan there are seven articles on
very different topics. On a second scan one
can see some similarities. For example, the
articles by Tian, Li & Chen, and Seara &
Schmidt, all work with computer vision; the
first for the recognition of facial expressions;
the second for robot navigation, specifically
for a walking robot; the third for building a
model of an object or scene. The paper by
Mundhenk et al could be included as it in-
corporates visual analysis for identifying
salient visual features in a room populated
with cameras. The articles by Haidacher &
Hirzinger and Okamura & Abbott could be
collocated under the topic of manipulation;
the first is concerned with techniques for
guiding a human operator during a mini-
mally invasive surgical operation while the

second is concerned with retrieving the pose
of an object held in a gripper. The article by
Lewis et al is much more 'technology', fo-
cusing on devices that incorporate visual
intelligence.

If we look a little harder, focusing on in-
tegrative perspectives rather than compara-
tive features, an interesting pattern emerges.
The articles by Seara & Schmidt and Li &
Chen incorporate different perspectives on
the world. In the first the perceiver, the
'walking' robot, is moving through an ob-
ject, namely the environment, whereas in the
second the perceiver is circling the object;
the relative position of the perceiver and
object are transposed. In the paper by
Mundhenk et al, in contrast, the perceiver
is embedded within the object, the room,
with many simultaneous viewpoints. The
three papers collectively contrast the cog-
nitive robot with the cognitive environment;
the intelligent robot versus embedded ro-
botic intelligence.

Contrasting perspectives can also be
founding in the article by Haidacher &
Hirzinger, where a grasped object can be
viewed from the perspective of the robot's

fingers or the physical object; the two per-
spectives are combined to provide the
object's posture relative to the hand.
Okamura & Abbot include a perspective that
is one removed from this, namely of the arm
that carries a grasped object, but in support
of the human operator; or rather, the cogni-
tive brain. The ability to understand facial
expressions, the topic of Tian's paper, is a
basic capability that benefits humans, and
will surely benefit the cognitive robot and
environment as they attempt to understand
and interact with humans. Finally, the ar-
ticle by Lewis et al rather nicely offers tech-
nology that can support the cognitive robot,
the cognitive environment, and the cogni-
tive brain.

It is rewarding to see and discover pat-
terns. I recommend that you read through
all of the articles and see for yourself what
patterns emerge. The effort will help to
broaden and deepen your understanding of
robotics and machine perception.

Dr Gerard McKee
Technical Group Chair
The University of Reading, UK.
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Where to look next: gaze control for humanoid walking

Continued from cover.

composed of three major modules: (I) Infor-
mation Management, (I1) Task-Specific Gaze
Evaluation, and (IIT) Decision Scheme.'?

Our investigations consider an information-
management scheme, shown in Figure 2(I), that
registers and administers the uncertainties as-
sociated with the different processes involved
in perception-based locomotion.! A coupled,
hybrid EKF (computer module) is employed
for information/uncertainty management.
Based on this scheme, a description of the ac-
cumulated information, combined with the un-
certainties in the measurements, provides a ba-
sis for the task-oriented gathering of the rel-
evant information, i.e. task-specific gaze evalu-
ation (see Figure 2(II)).

The proposed approach towards information
quantification is based on Shannon’s informa-
tion theory, which states that information is a
measure of the decrement of uncertainty. Since
information must be redefined in the context
of biped walking, the information content of a
view situation is herein defined as a measure
of the degree to which perception under these
terms is capable of reducing relevant task-de-
pendent uncertainties. For the formal descrip-
tion of which uncertainties are related to a spe-
cific task, the term incertitude is proposed.
High-precision estimates are not required
throughout the locomotion process, i.e. not all
uncertainties have to be minimized simulta-
neously (even if that would be desirable if pos-
sible). Depending on the task, some uncertain-
ties may become critical and others irrelevant.
The term incertitude indicates which uncertain-
ties, i.e. estimates and measurements, are di-
rectly involved in the current task and must
therefore be considered as relevant or critical.

With the concepts defined here, we have de-
veloped a biologically-inspired approach to pre-
dictive gaze control for an active vision sys-
tem based on the maximization of the predicted
visual information. This general approach takes
into account the accumulated available infor-
mation about both the scene and current task
to predict the optimal pose of the visual sensor
for a future view situation. An optimal sensor
pose is found by selecting the state of maxi-
mum predicted information content among a
set of predicted states.

One of the main goals while navigating is to
follow a planned path and arrive at a desired
location without getting lost. This means that
the uncertainties related to self-localization
must be kept small. These describe the posi-
tion of the robot in the world. In order to achieve
a precise knowledge about the robot’s location,
the perception system must focus on objects
whose position in the world is precisely known,
i.e. landmarks. The second main goal of safe
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Figure 2. Shown is the humanoid Johnnie (Institute of Applied Mechanics, Technische Universitét
Miinchen) and the modular gaze-control scheme for vision-based humanoid navigation.

locomotion is avoiding collisions with ob-
stacles. Given a local path through a scenario
with different objects, there exist several points
on this path with a high risk of collision with
respect to a certain obstacle. The goal of the
gaze controller is to minimize the risk of colli-
sion in these critical points.

The next step in fulfilling the requirements
of autonomous locomotion is finding some
means to combine the two goals. This is
achieved by defining an optimal decision strat-
egy, shown in Figure 2(I1I), based here on util-
ity theory—i.e. where to look next—in order
to optimally fulfill both navigation tasks de-
pending on the current situation. The decision
maker is facing an action/selection dilemma
(here, the selection of view direction) with two
different types of objective. The analysis of the
action/selection problem showed clearly that
one agent—the use of only one utility func-
tion—that could be optimal in a specific situa-
tion, could actually lead to risky states in an-
other scenario. To safeguard the flexibility of
the decision maker, the principal objective is
to find some kind of suboptimal behavior that
could assure a safe and satisfactory view di-
rection choice in a wide range of situations and
scenarios. For the decision process, a winner-
selection society is proposed.

The developed gaze-control scheme has been
validated by its integration into a guidance sys-
tem for visually-guided biped robots. This sys-
tem comprises, in addition to the gaze control-
ler, appropriate scene analysis algorithms and
a step-sequence planning module that trans-

forms the gathered information into a step se-
quence guaranteeing the safe locomotion of the
humanoid. The performance of the proposed
guidance architecture has been demonstrated
in several experimental campaigns with differ-
ent locomotion platforms. Together with this
guidance system, the humanoid robot Johnnie
(shown in Figure 2), was able to perform vi-
sion-guided navigation: following a pre-
planned path including curves, avoiding ob-
stacles by walking around or stepping over
them, finding and walking towards a goal po-
sition, and even climbing stairs.

J. F. Seara and G. Schmidt

Institute of Automatic Control Engineering
ISAC Group

Technische Universitdt Miinchen

Munich, Germany

E-mail: javier.fermandez.seara@ei.tum.de
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Automatic facial-expression analysis systems

Facial expression is one of the
most powerful, natural, and imme-
diate means for human beings to
communicate their emotions and
intentions. An automatic facial-ex-
pression analysis (AFEA) system
includes both measurement of fa-
cial motion and recognition of ex-
pression. The general approach to
such systems consists of three
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features, an edge detector is ap-
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steps (see Figure 1): face acquisi-
tion, facial-feature extraction and
representation, and facial-expres-
sion recognition. We will discuss
these in the following sections.

Face acquisition

This processing stage involves au-
tomatically finding the face region
for the input images or sequences.
It can be designed to detect a face
in each frame or just in the first
frame and then track the face
through the remainder of the video
sequence. Head finding, head
tracking, and pose estimation can
all be applied to a facial-expres-
sion analysis system in order to
handle large head motion.

We developed a 2D-image-
based method of detecting head
position and pose. The head de-
tection uses the smoothed silhou-
ette of the foreground object as
segmented using background sub-
traction and computing the nega-
tive curvature minima points of
the silhouette. After the head has
been located, the head image is
converted to grayscale, histogram equalized,
and resized to the estimated resolution. Then,
athree-layer neural network is employed to es-
timate the head pose. Currently our system out-
puts three head poses: frontal or near frontal
view, side view or profile, and others (such as
back of the head or occluded face).

Facial feature extraction

and representation

After the face has been located, the next step is
to extract and represent the facial changes
caused by facial expressions. In facial feature
extraction for expression analysis, there are
mainly two types of approaches: geometric-
feature- and appearance-based methods. The
geometric facial features present the shape and
locations of facial components (including
mouth, eyes, brows, nose etc.). The facial com-
ponents or facial feature points are extracted
to form a feature vector that represents the face
geometry. In appearance-based methods, im-

Figure 1. Basic structure of a facial-expression analysis system.
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age filters (such as Gabor wavelets) are applied
to either the whole face or specific regions in a
face image to extract a feature vector. Depend-
ing on the different facial-feature extraction
methods, the effects of in-plane head rotation
and different scales of the faces can be elimi-
nated, either by face normalization before the
feature extraction or by feature representation
before the step of expression recognition.

In our system, two types of facial features—
location and shape—are extracted only for the
face in the frontal or near-frontal view. In to-
tal, six location features are extracted for ex-
pression analysis. They are eye centers, eye-
brow inner endpoints, and corners of the mouth.
After extracting these, the face can be normal-
ized to a canonical face size based on two of
the features, i.e., the eye-separation after the
line connecting two eyes (eye-line) is rotated
to horizontal. The extracted features are trans-
formed into five parameters for expression rec-
ognition. These parameters are the distances

Figure 2. An example of head detection, feature extraction, and expression
recognition.

plied to the normalized face to get
an edge map. This is divided into
3%3 zones. The size of the zones
is selected to be half of the dis-
tance between the eyes. The
mouth-shape features are com-
puted from zonal shape histo-
grams of the edges in the mouth
region, and are represented as a
feature vector of 12 components.

Facial expression recognition
Facial expression recognition is
the last stage of AFEA systems
to identify facial changes as fa-
cial action coding system action
units' or prototypical emotional
expressions. We used a neural-
network-based recognizer. The
inputs to the network were the
five location features and the 12-
zone components of shape fea-
tures of the mouth. The outputs
were a set of prototypical emo-
tional expressions: neutral, smile,
angry, surprise, fear, sad, and dis-
gust. Figure 2 shows an example
of the detected heads, extracted
facial features, and recognized ex-
pressions? on ICVS-PETS (IEEE workshops on
Performance Evaluation of Tracking and Sur-
veillance) datasets which were provided by
FGnet project.

Ying-Li Tian

Exploratory Computer Vision Group
IBM T. J. Watson Research Center
Yorktown Heights, USA

E-mail: yltian@us.ibm.com
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An intelligent room based on the operation of the brain

Understanding of the human brain
has recently lead to exciting ad-
vances in computer vision. For in-
stance, knowing how neurons in
visual cortex extract features from
a visual scene has allowed ad-
vances in scene analysis' and face
recognition/tracking.? This comes
as no surprise since the challenges
of scene understanding, visual
analysis, and action creation in the
real world have been efficiently
addressed by the human brain. The
primary difficulty has been the
limitations on our understanding,
but recent advances in brain imag-
ing, micro-cellular recording, and
neurochemistry have pushed these
back.

Our aim has been to exploit these
new insights as they become avail-
able for real-world applications.
Our current goal is the realization
of a smart room that can use mul-
tiple cameras and distributed com-
putation in a way that is behavior-
ally flexible and robust in the same
way that biological organisms are.
For instance, by exploiting biologi-
cal models of saliency (which
guides visual attention) we can
limit the scope of visual search
such that performance is not strictly
bound to any specific domain: this
is because we do not create hard
constraints or heuristics. As such,
saliency can be applied to outdoor,
room, and other scenes with differ-
ent content and arrangement of ob-
jects without the need for a priori
constraints. That is, we can limit
the amount of input analyzed in a
general biological manner, which
allows us to apply more sophisti-
cated algorithms in post process-
ing. The visual saliency program
can then produce sets of visual fea-
tures. This is because, while ana-
lyzing the scene, it has to find what
the image features are in order to
determine saliency. This then al-
lows for fast rudimentary object
identification.?

The saliency code itself is run, load-bal-
anced, on several Beowulf nodes (Figure 1).
Since only a few processes are CPU intensive,
this allows us to use the nodes for additional
purposes.* For instance, cameras can be hooked
up to individual nodes, which then act as sepa-
rate agents: each CPU then acts as both an in-
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Figure 1. Shown is a basic schematic of the smart room, which we currently
call the iRoom. Six robotic cameras work together to gather visual input and
feed it into a Beowulf cluster for image processing. Each camera is
connected to its controlling CPU by firewire for video and category 5 cable
that carries servo control and power. High speed ethernet bonding connects
the CPUs, which need not even be in the same room to work together.
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Figure 2. The figure (modified from Reference 5) illustrates current under-
standing about how the human brain processes visual information to create
action. A dorsal stream (top of the brain) extracts features of objects using
CIPS (caudal Intraparietal Sulcus) and AIP (Anterior-intra Parietal area), while
a ventral stream (bottom of the brain) performs object identification through
IT (Inferotemporal cortex). These centers then act reciprocally with PFC (Pre-
frontal Cortex) to modulate scene understanding and action selection.

across the cluster.

dividual, and as part of a whole in analyzing a
room scene. For instance, each node has a no-
tion of what it wants to track, but it gains in-
formation about what it wants to track by dis-
tributing the workload of visual processing

The future goals of our project revolve

around understanding how to extend
the capabilities of our intelligent
room using brain-operating prin-
ciples (BOPs) involving perception,
action, and recognition. For instance
the human brain performs the act of
recognition in many different stages,
some of which seem to run in paral-
lel. For example, recognition of fea-
tures for object affordances (which
might tell us how to grasp an object
with our hands) seems to run in par-
allel with recognition of the object
itself (Figure 2). However, the act of
visual saliency that comes before
these processes seems to perform the
task of reducing a visual scene to a
smaller area of attention, thus, sa-
liency seems to have the property of
serializing some visual data. In gen-
eral, we believe such knowledge,
along with other data, should give us
insight into practical solutions for vi-
sion, action, and scene understand-
ing. We might, for instance, create
two parallel processes for vision with
one based upon feature-affordance
extraction and another upon recog-
nition. However, the input to such
systems may only come from a single
saliency pipeline.

Additionally, it is not only impor-
tant to recognize objects, but to re-
act to and understand them. For in-
stance, not only might I see a man,
but also I might see a man at the pho-
tocopier. Is this person supposed to
be there, and how do I in fact know
that a man is standing at the photo-
copier? Humans perform such com-
plex analyses by taking in object and
agent (the person) identification from
temporal cortex areas of the brain.
Identification is then combined with
understanding about how the world
works—in the parietal areas of the
brain—and context in the hippocam-
pal area. Pre-frontal cortex and sur-
rounding areas help us to then com-
bine world information into a story-
board and make both conscious and
sub-conscious decisions about how
to react to our world. So, for instance,

building a system that can react to complex
scenes may be aided by our knowledge of how
the pre-frontal cortex interacts with other parts
of the brain to collect information about the
world and how it reciprocates by initializing

Continues on page 9.
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Active visual sensing for robotic perception planning

A robot often needs to perceive its
environment to obtain models of the
objects around it. Examples include
robotic grasping/manipulation, ob-
jectrecognition, inspection, and con-
struction of a model of the environ-
ment. To reconstruct a complete and
accurate 3D model of an object, two
fundamental issues must be ad-
dressed. The first is how to acquire
the 3D data accurately and effi-
ciently enough to reconstruct the
object surfaces. Currently, laser
range finders/scanners are widely
used as active visual sensors for such
data acquisition in industrial appli-
cations. However, due to the me-
chanical scanning involved, the ac-
quisition speed is limited. To in-
crease efficiency, we have devel-
oped an active vision system based
on pattern projections.'?

The second issue to be addressed
is how to determine viewpoints,’
with their corresponding sensing pa-
rameters for each visual sensing ac-
tion such that all the needed infor-
mation about the object surface can
be acquired in an optimal way. This
kind of robotic perception planning
can be used both known environ- ]
ments (inspection*) and unknown .
environments (modeling).
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An active vision system
Our active vision system consists of a light-
pattern projector and a CCD camera, as illus-
trated in Figure 1. A projector is used to illu-
minate the scene to be measured with a pattern
of light, e.g. a number of stripe planes. Each of
the stripes intersecting with the scene produces
adeformed curve of its light plane in 3D space,
the pattern of which is detected via a camera.
The scene can then be reconstructed in the im-
age processing. The pattern projector is as-
sumed to be pre-calibrated offline, whereas
both the intrinsic and extrinsic parameters of
the camera can be changed or even totally un-
known at the beginning of a reconstruction task.
This allows un-calibrated reconstruction of the
3D models and makes the vision system self-
adapt to the environment in which it must work.
Although the pre-calibrated projector may
seems to be a limitation, it is acceptable from
an engineering point of view, in that such cali-
bration may be expected. In many practical ro-
botic applications, it is the camera and its rela-
tive pose that needs to be adjusted online most
often: assuming a calibrated projector allows
more such camera parameters to be changed
and calibrated as needed.

Figure 1. Structure of the active vision system.
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Figure 2. A robot equipped with an active vision sensor.

Perception planning
in known environments
Due to the limited field of view of most cam-
eras, a vision sensor can only sample a portion
of an object from a single viewpoint (see Fig-
ure 2). As a result, multiple images need to be
taken from different vantage points and inte-
grated to enable all features of interest to be
sensed by the robot. It is thus of critical impor-
tance to determine the viewpoints with its view-
ing pose, as well as the corresponding visual-
sensing parameters, to achieve full automation
and high efficiency in a robotic perception task.
In many practical applications—robotic assem-
bly, inspection, object recognition—the
object’s geometry and a rough estimate of its
pose are available. This is a robotic perception-
planning problem in known environments.
‘When multiple features need to be observed
and multiple viewpoints planned, the minimum
number of viewpoints needs to be determined.
To achieve high efficiency and quality, the op-
timal spatial distribution of the viewpoints
should be determined too. In our research, we
developed a method for planning model-based
perception tasks, with optimal viewpoint dis-

Figure 3. A perception-planning strategy.

tribution, sensing parameters, and sensing se-
quence. The procedures in a typical perception-
planning task include the following: inputting
the object’s geometric information from a
model database; specifying the vision tasks;
generating a plan with the fewest viewpoints;
searching for a shortest path for robot execu-
tion; and outputting the sensing plan with the
viewing pose and corresponding sensing con-
figuration at each view. Each viewpoint should
satisfy multiple constraints due to the physical
and optical properties of the sensor, scene oc-
clusion, and robot reachability in the environ-
ment. Our method provides a stable and com-
plete solution for model-based perception tasks,
including viewpoint decision, constraint satis-
faction, optimization of viewpoint distribution,
planning of robot operation sequence. All these
techniques are integrated into the software we

Continues on page 9.
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Position sensors for robotic-hand grasping

For many years now, robots have been used to
perform tedious work in industrial environ-
ments: they do this more precisely than we
could, and without fatigue. Consequently, in
the last few years, researchers have striven to
develop robots that can also perform jobs out-
side the well-structured, predictable industrial
environment, e.g. as domestic assistants. In
contrast to situations in manufacturing environ-
ments, it is not desirable to adjust the home to
the particular technical needs of the robot. Also,
such a machine—in order to be useful—would
have to adapt to each new job it has to per-
form. Since its working environment was de-
signed for humans, one obvious approach to
the design of a robot assistant is to mimic both
human anatomy and skills.

At the Institute of Robotics and
Mechatronics at the German Aerospace Cen-
ter (DLR) three generations of lightweight arms
and two generations of dexterous robotic hands
have been built (see Figure 1). While develop-
ing these anthropomorphic robotic devices, size
and weight had to be traded-off against the
machine’s ability to feel and explore the envi-
ronment using numerous different sensors. Due
to size constraints, this was especially true for
the robotic hand. As a result, during this pro-
cess, we examined several different approaches
to substituting information from some sensors
using the advanced evaluation of other.

In particular, when delicately grasping and
manipulating an object with several fingers of
arobotic hand, we require the location of those
points at which the individual fingers touch the

Figure 1. The DLR Hand Il and Light-Weight Arm Ill playing the piano.

object. There are two general ways of describ-
ing these points. First, from the perspective of
the hand, when the position of some reference
point on each finger is known from e.g. joint-
angle measurements, the contact point can be
described as a two-dimensional coordinate on
the surface of the finger. For a spherical fin-
gertip this could be, for example, longitude and
latitude. Second—from the perspective of the
object—when the position of a given reference
point at the object is known, again the contact
points can be described as two-dimensional
coordinates, this time on the surface of the ob-
ject. In the first case, the coordinates could be
measured using tactile sensors.! In the latter
case, an external camera could be used. In both,
however, to save space and effort, algorithms
were developed to substitute new sensors with
the intelligent use of existing sensors.

The contact points of the fingers can be com-
puted from their constrained motion when they
cooperatively grasp and move an object:* the
fingers have to maintain stable contact and are
hence restricted in their mobility. For example,
a spherical fingertip can only roll along a pla-
nar surface in two directions in the presence of
sufficient friction. A sliding motion would
break this contact, in a similar way to a lift off
the surface or a twist around the surface nor-
mal. Mathematical models of contact have been
established and can be used to describe these
constraints.® Also, the motion itself depends on
the location of the contact point. A hand with
several fingers makes contact at several loca-
tions simultaneously. The motion of all these

can be detected using the position sensors usu-
ally available in robotic hands. Observing sev-
eral directions of motion constitutes an over-
determined system of equations for the object
velocity. Using a least-squares approach allows
those contact points at the fingers to be found
that best match the measurements of motion
and the constraints of mobility through con-
tact.

The determination of the location of the con-
tact points on the object is related to the com-
putation of the position and orientation of the
object itself. In a multi-fingered grasp, the lo-
cations of contact from the perspective of the
fingers can be computed using the algorithm
described above. The geometry of the surface
of a fingertip is usually known from design.
Hence, with knowledge of the contact points
on the surface of the fingertip, the direction
normal to the surface at this particular point
can also be determined. Position and normal
of the point of contact can be compared to a
geometrical model of the surface of an object.
Although numerous possibilities to describe the
surface of an object are available, an approxi-
mation with polygons is most suitable in this
case: polygonal descriptions are widely used,
easy to obtain, can describe any kind of object,
do not need to include unimportant parts of the
object, and best describe what can be detected
by contact (namely position and normal of that
particular polygon). A complete comparison,
however, would be of combinatorial order. By

Continues on page 10.

Figure 2. Detection of the location of a grasped object.
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Neuromorphic color processing

Why color? |
Color carries useful in-
formation about the

world around us. In a Bl | R

natural environment it
might help us pick out i
danger—as in the case
of a colorful but poison-
ous snake or insect—or
signal a source of food
such as berries or fruit in
a tree. Red, the color of
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Our stand-alone chip inte-
grates color sensing, color-
space transformation,
histo-gramming, and histo-
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device. This device runs at
better frame rates, uses
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siderably smaller, and is far
less expensive than tech-

blood, raises one’s L gomate, oy Tt niques involving conven-
})elz?jdtls)reassi’llgelgﬁfell?zg Eolimrim g [ R S e gon?11CMOSl lmages and
sense of awareness. This ™ t - HIIENNNNENREREN = vi/gl . ﬁgnﬁ' progfzssn;lg.
. K X | [, Fj Thrassheiol Taat € call this chip the
ideais not lost on the de- el | | M} Dl o 240 D ColorCam.!
signers of traffic signs. e T =i
Thi hanism, which I £ 1 T | ]
evgivfg‘}(fﬁ:?in‘ﬁ;&_ — ! || o FiloA [=T= - golorCam overfvnlelw .
e P =) e — & B Epf n ovgrwe}\:fo_ the 1r§t
ral situations, has been "=} ] T T 1 generation chip 1s shown in
ppialied on by mr, =~ 2| |-G 1333]  Tomlhecm oo
outb .int i}t/ion and em- | 2 — | | l -?g'g use HStl%%negilop leCC
}1. }it ltl ot - lEl.l {':.:ullll s | l = B uses ;GBX. 1pll)(;) im-
pirical testing that color- i b= | | 1 , g = E ager. pixel informa-
ful objects can altera  __, i W |_| {,l_..m- .] A ] { | <] .-E " tion flowing from the sen-
consumer’s preference | s # L= | 1 i - sor is normalized and then

to buy certain items, and
can also assist in prod-
uct branding and the es-
tablishment of a product
identity.

Color is used to identify players in sports
teams or citizens of a country through their
national flag. It is used in dress to appear at-
tractive, in homes to lead to a more aestheti-
cally pleasing environment. Color can be used
to find an item of clothing heaped together with
others in a pile. Hyper color sensitivity, i.e. the
ability to identify more than the normal three
spectral bands (as in the visual system of
shrimp), can be used to break camouflage. In
short, the color content of the environment is
an important quality that is separate from shape
and form. From the perspective of the brain,
color processing is performed by specialized
cells and regions. The ability to sense, perceive,
and use color information is important in a wide
range of the activities performed by intelligent
beings.

Understanding the environment

The identification of a single color alone in a
scene is a non-trivial problem that is not
soluable under all lighting conditions. Some re-
searchers have looked at ways of finessing the
problem of color identification over varying il-
lumination. One approach is to normalize col-
ors by the aggregate color content of an image.
Another is to assume that all light sources illu-
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Figure 1. Overview of the ColorCam chip.

minating a surface are black-body radiators.
This can lead to certain assumptions about form
of the spectral distribution of illumination. A
trivial and robust approach is simply to pro-
vide the ambient illumination as well.

Using this simple idea, Iguana Robotics has
developed a device called the ColorStick.
About the size of a fat pen or small flashlight,
it provides multi-spectral illumination to a sur-
face. Interestingly, the device classifies the sur-
face into color, or even color families, and re-
ports the color via sound (a voice shouting
“Green!”), a light screen or even, potentially, a
haptic display for the blind. This device will
find use as a toy, for children learning color. It
will also find a use for the hundreds of mil-
lions blind, colorblind, and aesthetically-im-
paired people in the world who would like to
dress themselves in a color-coordinated way.
It can also be used by home decorators to match
colors in their home versus fabrics they may
purchase on-line.

We are currently developing a stand-along
chip that will implement the sensing and pro-
cessing in a single, neuromorphic device. Com-
bining colors and counting the relative ratio of
the color content of items adds a new dimen-
sion to vision sensing, and color-histogram-
based object recognition is a well-known tech-

the hue and saturation con-

tent of the pixel are found.

Hue-angle computation re-

quires a division. This was
accomplished using a circuit with a look-up
table.

If the pixel saturation exceeds a preset thresh-
old, the hue value of the pixel is counted. If it
does not reach the given threshold it is thrown
away. The information is then accumulated in
36 counters that divide the hue space, uniformly
or non-uniformly, into 36 regions. Once accu-
mulation of pixel information is achieved over
a region of interest, a sum-of-absolute-differ-
ences circuit finds a minimum match over a
set of stored templates.

Currently, we are working on a 3rd genera-
tion device that will address, on chip, problems
of scaling, light-source color changes, and other
issues. We anticipate sampling the device by
the end of 2004.

M. Anthony Lewis, Ralph Etienne-
Cummings, and Philiand Pouliquen
Iguana Robotics, Inc. Urbana, IL
E-mail: tlewis @iguana-robotics.com
http://www.iguana-robotics.com/
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An intelligent room based on the operation of the brain

Continued from page 5.

actions.

It is thus a challenge to understand the brain
in great enough detail to apply what has been
discussed to real world tasks. However, given
the success by us and others at applying les-
sons learned from the brain to computational
systems, we believe that this is an entirely fruit-
ful approach. Additionally, thought the brain
is a highly complex system, it is the only work-
ing model we have that seems to solve the prob-
lems of action and perception.

T. Nathan Mundhenk, Laurent Itti, and
Michael A. Arbib

Computer Science Department

University of Southern California

Los Angeles, California, USA

E-mail: Mundhenk @usc.edu
http://ilab.usc.edu
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Active visual sensing for robotic perception planning

Continued from page 6.
developed: the Viewpoint Planner.

Perception planning

in unknown environments

For unknown environments, since the number
of viewpoints and their viewing pose cannot
be determined prior to data acquisition, the
perception task normally consists of iterative
cycles of viewpoint planning, data acquisition,
registration, and view integration. In this re-
search, we developed an information-entropy-
based viewpoint-planning method for the per-
ception-planning task. An information criterion
is developed for selecting the model structure.
Based on the selected model, we use informa-
tion entropy as the uncertainty measure of the
model, and analyze the uncertainty to predict
the information gain for new viewpoints to be
taken. As aresult, we can obtain the prediction
of the information gain about the object.

The information gain is then mapped to the
view space. The view that has the maximal in-
formation gain about the object is then selected
as the next best viewpoint. The viewpoint plan-
ning procedure is illustrated in Figure 3. The
implementation of the method is based on the
same setup as shown in Figure 2. The percep-
tion process consists of a sequence of four re-
peated steps: acquiring data of the object sur-
face from a viewpoint, registering the acquired
data, integrating the new data with the partial
model, and determining the next viewpoint. At
each view, we choose a new viewpoint that has

maximum information gain. Then the robot
moves to the new viewpoint and takes another
measurement to update the object model until
the terminating condition is met (determined
by a criterion from the information gain) and a
complete model is obtained.

Y.F.Liand H. Y. Chen

Department of Manufacturing Engineering
and Engineering Management

City University of Hong Kong, China
E-mail: meyfli@cityu.edu.hk
http://personal.cityu.edu.hk/~meyfli/
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Virtual fixtures for
telemanipulation:
control and application

Continued from page 12.

tual wall stiffness is given the simple function:
k <min(2b/T, /D).

Application to MIS

There are several important considerations for
practical application of force feedback and vir-
tual fixtures in robot-assisted minimally inva-
sive surgery, all of which are subjects on on-
going work.

1. Degrees of freedom of force feedback
It is impractical to expect that robotic MIS
tools can sense forces and torques in all de-
grees of freedom, especially when the tools
are disposable.

2. Appropriate virtual-fixture geometry
The geometry can be selected by the surgeon,
through computer vision recognition and/or
modeling of tissue deformation.

3. Tuning of virtual fixture assistance
We are exploring methods for automatic tun-
ing of virtual-fixture strength based on hid-
den-Markov-model recognition of operator
motions.

4. Uncertainty in robot position relative to
anatomical structures due to unmodeled
dynamics
Robot design, modeling and control ap-
proaches are required to place accurate vir-
tual fixtures.

Allison M. Okamura and Jake J. Abbott
Department of Mechanical Engineering
Engineering Research Center for Computer-
Integrated Surgical Systems and Technolo-
gies

The Johns Hopkins University

Baltimore, USA

E-mail: aokamura@jhu.edu
http://haptics.me.juh.edu
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Calendar

Eighth International Conference on
Cognitive and Neural Systems
19-22 May

Boston, Massachusetts USA
http://www.cns.bu.edu/meetings/

International Conference on

Design Computing and Cognition (DCC'04).
19-21 July

Cambridge, MA USA

http://www.arch.usyd.edu.au/kedc/conferences/
dcc04/

ICINCO 2004—International Conference on
Informatics in Control, Automation, and
Robotics.

25-28 August

Setobal, Portugal

http://www.icinco.org

Brain Inspired Cognitive Systems—
BICS2004

29 August-1 September

Scotland, UK

Including:

 First International ICSC Symposium on
Cognitive Neuro Science (CNS 2004)

¢ Second International ICSC Symposium on
Biologically Inspired Systems (BIS 2004)

¢ Third International ICSC Symposium on
Neural Computation (NC'2004)

http://www.icsc-naiso.org/conferences/
bics2004/program.html

2004

IEEE SMC 2004

International Conference on
Systems, Man, and Cybernetics
10-13 October

The Hague, The Netherlands
http://www.ieeesmc2004.tudelft.nl/

OpticsEast
25-28 October @
Philadelphia, PA
OpticsEast has three (3) conferences scheduled as
part of the program on Robotics Technologies and
Architectures:
* Intelligent Robots and Computer Vision XXII:
Algorithms, Techniques,
and Active Vision
¢ Mobile Robots XVII
* Sensor Fusion and Decentralized Control
in Robotic Systems V
http://www.spie.org/conferences/calls/o4/oe/

For More Information Contact
SPIE « PO Box 10, Bellingham, WA 98227-0010
Tel: +1 360 676 3290 * +1 360 647 1445
Email: spie@spie.org « Web: www.spie.org

Position sensors for
robotic-hand grasping
Continued from page 7.

using appropriate pre-selection methods* that
filter out infeasible combinations of poly-
gons—because their mutual distance does not
fit the measurements, for example—the search
can be performed quickly. Inherently, the po-
sition of the object makes available the con-
tact polygons on the object and hence the loca-
tion of the contact from the perspective of the
object (see Figure 2).

Steffen Haidacher and Gerd Hirzinger
Institute of Robotics and Mechatronics
German Aerospace Center

Wessling, Germany

E-mail: Steffen.Haidacher@dlr.de
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News, events, and articles

Special issues

e A brief summary of the proposed topic;

* The reason why it is of current interest;

reviewed by the Technical Group Chair.

Contributing to the Robotics and Machine Perception Newsletter

If there are things you'd like to see us cover in the newsletter, please let our Technical Editor,
Sunny Bains, know by the deadline indicated on the right. She can be reached at
sunny @spie.org. Before submitting an article, please check out our full submission guidelines at:

http://www-sunnybains.com/newslet-html

Proposals for topical issues are welcomed and should include:

e Abrief resume{acute e!} of the proposed guest editor.

Special issue proposals should be submitted (by the deadline) to Sunny Bains and will be

Upcoming deadlines

30 April 2004: Special issue
proposals.

7 May 2004: Ideas for articles
you'd like to write (or read).

July 9 2004: Calendar items for
the 12 months starting September
2004.
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Virtual fixtures for telemanipulation: control and applica-
tion in robot-assisted minimally-invasive surgery

Telemanipulation is the direct human
control of a robotic manipulator, where
the operator and the manipulator are at
different locations. Robot-assisted mini-
mally invasive surgery (MIS), in which
robotic tools are inserted into the patient
via small ports, allows a surgeon in-
creased accuracy, dexterity, and visual-
ization over traditional MIS. In bilateral
telemanipulation systems, the human
operator manipulates a haptic (force-
feedback) interface that sends position
commands to a remote robot, and inter-
action forces between the robot and the
environment are displayed to the opera-
tor. The performance of a telemanipu-
lation system is typically judged by three
criteria: stability, tracking, and transpar-
ency.! In addition to traditional
telemanipulation, we are interested in the
application of virtual fixtures for opera-
tor assistance in MIS tasks. A virtual fix-
ture is a constraint, implemented in soft-
ware, that attempts to force a robot’s
movement along desired paths or pre-
vent a robot from moving into forbid-
den regions.” The potential benefit of vir-
tual fixtures is safer and faster operation:
they attempt to capitalize on the accu-
racy of robotic systems, while maintain-
ing a degree of operator control.

Soft Environment

J. #y

f.(t)

Foree Sensor i@

-\
Figure 1. A one-degree-of-freedom telemanipulation testbed, used to

compare virtual fixture algorithms implemented on various underlying
telemanipulation control laws.

lation systems are of the impedance
type, a pseudo-admittance control sys-
tem was designed to allow this type of
virtual fixture without the use of a force
sensor.’ Forbidden-region virtual fix-
tures can be implemented with virtual
springs, or through motion scaling. Pre-
dicting the passivity of the virtual
spring method is described in the fol-
lowing section. The motion-scaling
type attenuates or rejects inputs from
the haptic interface at the remote ro-
bot. We have found experimentally that
such operator assistance is most effi-
cient when the operator receives some
haptic feedback regarding the location
and strength of the virtual fixture.

Virtual fixture passivity

For impedance-controlled telemanipu-
lation systems, stability problems arise
from the combination of discrete and
continuous system elements.* This is a
well-known problem in the design of
@ virtual environments, where “virtual

Friction

Types of virtual fixtures
The goals of traditional telemanipulator ~ *=

design all revolve around giving the user
the highest possible control over the
slave. In contrast, the goal of a virtual
fixture is to remove some control from
the user. Because these goals generally
conflict with one another, it is not obvi-
ous how to best implement virtual fix-
tures on a telemanipulation system. We have
considered two types: guidance and forbidden-
region virtual fixtures.

The guidance variety are designed to work
with admittance control systems, where the

I !
ZOH bl C(z) le—ol—— 2 -
Discrete L
Controller ~ Juantization

Figure 2. System model for a virtual-wall controller, including discrete
and continuous elements.

velocity of the manipulator is proportional to
the force applied by the human operator. A
guidance virtual fixture can be implemented by
simply rejecting the force inputs in certain di-
rections.? Since typical bilateral-telemanipu-

walls” constructed from spring mod-
els are used to create haptic objects. We
have developed a sufficient condition
for virtual wall passivity that accounts
for quantization effects resulting from
measuring position with optical encod-
ers, and also assumes nothing about the
bandwidth of the human operator. We
consider a one-degree-of-freedom hap-
tic interface, modeled as a mass with
coulomb (f) and viscous (b) friction,
controlled as shown in Figure 2. The
virtual wall is implemented on a digi-
tal computer with a fixed and known
sampling rate, 7, and the position sen-
sor has resolution D. Using energy con-
servation arguments, as well as techniques from
optimal control, an explicit upper bound on vir-

Continues on page 9.
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