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Abstract— Untethered magnetic devices (UMDs) driven by
rotating magnetic fields have been proposed for applications in
minimally invasive medicine. Previous work has explored the
propulsion and guidance of a single UMD using a rotating mag-
net dipole source, and actuation of multiple UMDs has focused
on the use of uniform magnetic fields. This work seeks to extend
the methods for remote actuation using a single magnet dipole
source to generate two rotating magnetic fields with arbitrary
independent rotation axes at any two points with a common
rotation frequency. The solutions found show that there are
multiple positions and rotation axes of the magnet dipole that
can generate these rotating fields. The method is demonstrated
with two screw-type UMDs propelled independently within an
agar gel block using a single permanent-magnet actuator.

I. INTRODUCTION

Robotic technologies have long been attractive for use in
minimally invasive medicine. In addition to robotic surgical
systems that augment surgical skills, there has been fruitful
research in development of microscale and mesoscale in vivo
robotic devices that could locally apply medical interventions
[1], including targeted drug delivery and localized ablation
of tumors. Many of the untethered robotic devices that have
been developed have utilized magnetic fields for propulsion
and guidance, since magnetic methods enable remote op-
eration without the need for on-board power storage. These
untethered magnetic devices (UMDs) have taken on different
forms such as chiral swimmers in fluid [2]–[4], screws in soft
tissue [5]–[7], and capsule endoscopes in the gastrointestinal
tract [8], [9]. We use the term UMD, as opposed to “micro-
robot”, both to indicate that the methods being discussed here
do not require the device to be microscale, and to indicate
that no intelligence is assumed on-board the device.

The use of rotating magnetic fields as a method of
actuation for these and other types of UMD has been
particularly attractive, and has been explored in great detail,
since it utilizes the strength of the magnetic field rather
than the field gradient, which tends to have desirable scaling
properties [10]. Previous work exploring different methods
of generating rotating magnetic fields for remote actuation
includes generating uniform rotating magnetic fields within
sets of Helmholtz coils [5], the dipole field of a single
rotating permanent magnet [11] or a computer-controlled
electromagnetic source [12], or the combined dipole fields
of multiple rotating permanent magnets [13].
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Fig. 1. Examples of four special cases for generation of two independent
rotating magnetic fields using a single rotating magnetic dipole. Box A:
“axial” positions. Box B: “radial” positions. Box C: general case of ω̂1 =
ω̂2. Box D: ω̂1 6= ω̂2 but coplanar with Ω̂.

Mahoney and Abbott [11] have shown that it is possible
to generate a rotating magnetic field about any desired
axis of rotation at any location in space using a single
rotating magnetic dipole located at any other location in
space, with a unique location-specific dipole axis of rotation.
Since the rotating dipole can be placed anywhere in 3-
D space to achieve a given desired rotating-magnetic-field
axis, it may be possible to add up to three additional
constraints to the problem and still find a solution to achieve
the desired rotating-magnetic-field axis. This motivates the
fundamental conjecture explored in this paper: Can a rotating
magnetic field be generated at two different locations with
independent axes of rotation using a single rotating dipole?
Such a capability could enable simultaneous independent
control of two UMDs (Fig. 1). In this paper, we describe
a method to find a set of appropriate locations and rotation
axes of a single rotating magnetic dipole that will generate
independent rotating magnetic fields at any two locations.

Other works have contributed to the area of multidevice
control when using rotating magnetic fields. Methods that
rely on rotating uniform magnetic fields necessitate each
agent to repond differently to the same global signal. Com-
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mon approaches previously used include heterogeneous de-
vice designs that differ in magnetic response to the applied
rotating magnetic fields [14], [15], or that respond differently
within the fluid [16], [17] or soft-tissue [5] environment
in which the UMDs operate. To date, there has been no
approach that has exploited the nonuniformity of the mag-
netic dipole field in generating independent rotating magnetic
fields for remote actuation of multiple UMDs.

II. THEORY

We seek to find the position rm and rotation axis Ω̂ for
a rotating magnet dipole (i.e., an actuator magnet) that will
generate a rotating magnetic field with rotation axis ω̂1 at a
location r1, and that will simultaneously generate a rotating
magnetic field with rotation axis ω̂2 at a location r2. Note
that we use the “hat” notation to designate a unit vector. It
is understood that the period of the two generated rotating
fields will be same as the period of the rotating magnetic
dipole. We will first review the relevant prior results. We
shall then approach our problem statement by first exploring
how previous methods for generating rotating magnetic fields
at a single location using a rotating magnetic dipole may be
used to handle the special case when ω̂1 is equal to ω̂2. We
will then generalize the approach.

A. Review of Relevant Prior Results

Fountain et al. [18] showed that when a magnetic dipole
M {A · m2} is rotated about an axis Ω̂, with M orthogonal
to Ω̂, there are two regions of space in which the magnetic
field generated at a given point also rotates around and
orthogonal to an axis, ω̂, where ω̂ is parallel with Ω̂. The
first region is the line defined by the location of M and
the vector Ω̂, extending on both sides of the rotating dipole,
which were dubbed the “axial” positions (Fig. 1A). In this
region, Ω̂ and ω̂ are parallel and collinear, and oriented in
the same direction (i.e., ω̂ = Ω̂). The second region is the
plane defined by the location of M and the vector Ω̂ (i.e.,
the plane orthogonal to Ω̂), which were dubbed the “radial”
positions (Fig. 1B). In this region, Ω̂ and ω̂ are parallel but
not collinear, and oppositely oriented (i.e., ω̂ = −Ω̂).

Mahoney and Abbott [11] generalized the method de-
scribed in [18] to consider all points in space relative to
the rotating dipole. Given a magnetic dipole moment M,
the magnetic field H {A·m−1} at a point p {m} measured
relative to the position of the magnetic dipole is

H =
1

4π ‖p‖3
(
3p̂p̂T − I

)
M =

1

4π ‖p‖3
HM , (1)

where p̂ is the unit vector in the direction of p, and I is
the 3×3 identity matrix. This is the point-dipole model,
which accurately describes the field generated by a spherical
permanent magnet, and can be a good approximation for the
field generated by well-designed permanent magnets [19] and
electromagnets [12]. If p̂ is given, then for a desired rotating
magnetic field with rotation axis ω̂, the unique required
rotation axis of the dipole can always be calculated as

Ω̂ =
Hω̂

‖Hω̂‖
=

3p̂ · ω̂
‖Hω̂‖

p̂− 1

‖Hω̂‖
ω̂ . (2)

Alternatively, if p̂ and Ω̂ are both given, the resulting axis
of the rotating magnetic field is

ω̂ =
H−1Ω̂

‖H−1Ω̂‖
=

(H− I) Ω̂

‖ (H− I) Ω̂‖
. (3)

Note that ‖p‖ affects the magnitude of H, but does not affect
direction of H, nor does it affect the direction of Ω̂. Another
consequence of (2) is that p̂, ω̂, and Ω̂ are coplanar.

Mahoney and Abbott [11] have also demonstrated that, if
Ω̂ and the desired rotating magnetic field rotation axis ω̂ are
both given, then the required unit-norm position vector p̂ is
found as follows. Let ρ = ω̂ · Ω̂. Then the square of the
projection γ = p̂ · ω̂ is

γ2
± =

ρ2 + 2±
√

8ρ2 + ρ4

6
, (4)

where the choice of γ2
± is chosen based on the sign of ρ:

γ2 =

{
γ2

+ ρ ≥ 0

γ2
− ρ ≤ 0 .

The vector p̂ is then found as

p̂ = |γ|ω̂ +
√

1− |γ|2ω̂⊥ , (5)

where

ω̂⊥ =

(
I− ω̂ω̂T

)
Ω̂∥∥∥(I− ω̂ω̂T) Ω̂
∥∥∥ . (6)

The negative of the solution in (5) is also a valid solution
for p̂, if the direction of Ω̂ can be reversed (which is typical
of systems designed to generate rotating magnetic dipoles).

B. ω̂1 = ω̂2

The prior results of Mahoney and Abbott [11] can be
extrapolated directly for the case when ω̂1 and ω̂2 are equal.
For the case when ω̂1 and ω̂2 are equal, and collinear to
each other and to the displacement vector between them,
d = r2 − r1, then a magnet dipole position rm at any other
point along the same line in space and with a rotation axis
Ω̂ equal to ω̂1 and ω̂2 will generate the desired rotation axes
ω̂1 and ω̂2 at the respective desired locations, as depicted in
Fig. 1A.

For the case when ω̂1 and ω̂2 are equal and orthogonal to
their displacement vector d, then a dipole position rm at any
other point in the plane defined by the normal ω̂1 (or ω̂2)
and containing both the points r1 and r2), and with rotation
axis Ω̂ parallel to ω̂1 and ω̂2 but with opposite orientation,
will generate the desired rotation axes ω̂1 and ω̂2 at the
respective desired locations, as depicted in Fig. 1B.

For the more general case when ω̂1 and ω̂2 are equal,
but are neither parallel nor orthogonal to their displacement
vector d, p̂ is still parallel to d, as depicted in Fig. 1C.
A dipole position rm along the line in space defined by
L(s) = r1 + sd , where s parameterizes points on the line,
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and with the rotation axis Ω̂ found using (2), will generate
the desired rotation axes ω̂1 and ω̂2 at the respective desired
locations. Thus, in this generalization of “axial” and “radial”
positions, in which the three locations r1, r2, and rm are
all collinear, and in which p̂ is parallel to d, the resulting
rotating-magnetic-field axes of rotation will be equal. Note
that, although this solution is a generalization for the case
where ω̂1 = ω̂2, it is overly restrictive in the second special
case described above and depicted in Fig. 1B; in that case,
L(s) only provides a single line in what is actually a plane
of possible solutions.

In the solutions described above, we are left with one
degree of freedom (i.e., sliding rm along the line of solu-
tions) to choose rm based on some additional optimization
criterion. For example, rm can be chosen to avoid collisions
of the magnetic-dipole source with objects in the workspace
(e.g., a patient), and can be chosen based on the desired
magnitude of the rotating magnetic field at the two locations
of interest.

C. ω̂1 6= ω̂2

We now generalize to examine when ω̂1 6= ω̂2. We note
that there are two cases that require consideration: the case
when the three vectors ω̂1, ω̂2, and d are all coplanar, and
the case when they are not.

1) ω̂1, ω̂2, and d coplanar: We begin by considering
a special case where ω̂1 and ω̂2 are not equal but are
coplanar with their displacement vector d. Note that this
also includes the case where ω̂1 and ω̂2 are parallel and
oriented in opposite directions (i.e., ω̂1 = −ω̂2). Neither rm
nor Ω̂ is known in general, however, and lack of knowledge
of rm implies a lack of knowledge of p̂1 and p̂2. From (2),
we know that ω̂1, p̂1, and Ω̂ must be coplanar, and that
ω̂2, p̂2, and Ω̂ must be coplanar, so an assumed Ω̂ that is
also in the plane with ω̂1, ω̂2, and d will enable calculation,
using (4)–(6), of a vector p̂1 for position r1 and a vector p̂2

for position r2. The dipole position, rm, at the intersection
of the line extended from r1 in the direction of −p̂1 and
the line extended from r2 in the direction of −p̂2 with the
assumed rotation axis Ω̂ will generate the desired rotation
axes at the desired positions, as depicted in Fig. 1D. Note
that any assumed Ω̂ that is coplanar with ω̂1 and ω̂2 (i.e.,
in the span of ω̂1 and ω̂2) would have resulted in a valid
position rm for the dipole, so we are left with one degree
of freedom (i.e., rotation of Ω̂ in the plane) to choose Ω̂ to
result in a desirable location of rm based on some additional
optimization criterion.

2) ω̂1, ω̂2, and d not coplanar: Next we consider the
more complicated case where ω̂1 and ω̂2 are not coplanar
with their displacement vector, which is the only fully three-
dimensional case considered so far. In general, neither rm
nor Ω̂ is known, so the search space for a potential solution
is five-dimensional. We will show in this section that the
problem’s physical constraints can be used to reformulate
the search for a solution to a two-dimensional search space,
which can tractably be solved online using existing numerical
techniques.
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Fig. 2. Geometry used in Sec. II-C.2.

From (2), we know that ω̂1, p̂1, and Ω̂ must be coplanar,
and that ω̂2, p̂2, and Ω̂ must be coplanar, but the two planes
need not be the same. Consider the vectors ω̂1, p̂1, and Ω̂
to lie in a plane Π1, and the vectors ω̂2, p̂2, and Ω̂ to lie in
a plane Π2, as depicted in Fig. 2. A plane is defined as the
set of all points r in R3 that satisfy the equation

r · n̂ = rp · n̂ ≡ h , (7)

where n̂ is the plane unit normal, and rp is any known point
on the plane. In order to satisfy both coplanarity constraints,
the vector Ω̂ must exist at the intersection of the two planes
Π1 and Π2. The equation defining the line of intersection is

LΠ1,Π2(λ) = α1n̂1 + α2n̂2 + λ (n̂1 × n̂2) , (8)

where

α1 =
h1 − h2n̂1 · n̂2

1− (n̂1 · n̂2)
2 , α2 =

h2 − h1n̂1 · n̂2

1− (n̂1 · n̂2)
2 , (9)

and λ ∈ R parameterizes a point on the line [20], and Ω̂ is

Ω̂ =
n̂1 × n̂2

‖n̂1 × n̂2‖
, (10)

Note that the negative of the solution in (10) generates
rotating fields about the correct axes, but with the opposite
sense from that desired.

The orientation of a plane is defined by its unit normal. We
can consider each plane Πi as being rotated by some angle
θi about ω̂i from an initial vector n̂0. We know that ω̂1 is
orthogonal to n̂1 since ω̂1 lies in the plane Π1, and similarly
ω̂2 is orthogonal to n̂2. The choice of n̂0 should be mutually
orthogonal to ω̂1 and ω̂2, and since we are considering the
case where ω̂1 6= ω̂2, n̂0 can always be calculated as

n̂0 =
ω̂1 × ω̂2

‖ω̂1 × ω̂2‖
. (11)

4058



Using Rodrigues’ formula [21], a given plane’s normal can
be described as a function of θi:

n̂i = n̂0 + (ω̂i × n̂0) sin θi

+ ω̂i × (ω̂i × n̂0) (1− cos θi) . (12)

Thus, given values of θ1 and θ2, the plane normals can be
found using (12), and Ω̂ can then be found using (10). These
values for θ1 and θ2 will be the two indepedent parameters
that we will use in our numerical search for our solution, so
for the remainder of the analysis we assume that Ω̂, n̂1, and
n̂2 are known.

To find the necessary dipole position rm, we can find
the point of intersection between two lines in space: the
line along p1 (L1) and the line of intersection between
the two planes (LΠ1,Π2

, defined in (8)). Given two non-
coincidental points x1 = r1 and x2 = r1 − p̂1 on L1

and two non-coincidental points x3 = α1n̂1 + α2n̂2 and
x4 = α1n̂1 +α2n̂2 +(n̂1 × n̂2) on LΠ1,Π2

, define the vector
quantities a = x2 − x1, b = x4 − x3, and c = x3 − x1.
From [22], the point of intersection of two non-skew lines
in three-dimensional space as parameterized above is

xi = x1 +

(
(c× b) · (a× b)

‖a× b‖2

)
a . (13)

Substituting the plane equations (7) and other known quan-
tities into (13), the dipole position is calculated as

rm = r1 +

(
d · n̂2

p̂1 · n̂2

)
p̂1 . (14)

The solution process is structured as follows. For a given
set of θ1 and θ2, (12) is used to compute n̂1 and n̂2, (10)
is used to compute Ω̂, (4)–(6) are used to compute p̂1 for
the given ω̂1, and (14) is used to compute rm. Then, since
rm = r2 − p2, the unit vector p̂2 can be found. Using p̂2

and (3), ω̂′2 can be computed at r2, which in general will not
be the same ω̂2 as desired. All that remains is to solve for
the required values of θ1 and θ2 that will give the desired ω̂2

at r2. In general, there may not be a closed-form solution
for θ1 and θ2. In practice, it may be necessary to find the
solutions numerically. Since we use ω̂1 to find p̂1, we know
that we will always generate the desired ω̂1. Therefore, we
define an error term

E (θ1, θ2) = ‖ω̂2 − ω̂′2 (θ1, θ2) ‖ . (15)

Since it is known that the minimum value of E is 0, which
occurs when ω̂2 = ω̂′2, we can use a two-dimensional local
search method such as hill climbing, gradient descent, or
simulated annealing to find values of θi that result in an
error E = 0 [23].

We find that, in this most general case, the positions rm
lie on a closed curve in space, with a unique rotation axis
Ω̂ at each point on the curve. An example of a set of
rm and corresponding Ω̂ for the case of r1 = [4, 1, 2]T,
r2 = [2, 4, 4]T, ω̂1 = [−0.179, 0.248, −0.952]T, and ω̂2 =
[0.231, 0.308, −0.923]T is shown in Fig. 3. Note that this is
the same example depicted in Fig. 2. In practice, one solution

rm and Ω̂ is selected as the optimal solution for some cost
function designed to solve a particular problem. For instance,
rm could be selected to yield equal magnetic field strength
at both desired locations, to affect the net magnetic force on
each of the UMDs as they are actuated by their respective
nonuniform rotating magnetic fields [24], or even to avoid
collisions of the dipole source with obstacles. The location of
rm in Fig. 3 represents a location that is equidistant from r1

and r2; this example shows that one of two possible solutions
was found for such a cost function, based on the initial guess.

D. Solution Algorithm

Alg. 1 describes the complete method to find a valid
solution to generate two independent rotating magnetic fields
with a single rotating dipole. The algorithm does not include
optimizing the solution for a specific application.

Algorithm 1
Given: Positions r1, r1; Desired rotation axes ω̂1, ω̂2

Find: Set of positions rm; rotation axes Ω̂

d← r2 − r1

if ω̂1 = ω̂2 then
if (ω̂1 · d = 0) (Fig. 1B) then

rm ← any r in plane ω̂1 · r− ω̂1 · r1 = 0
Ω̂← −ω̂1

else {(ω̂1 · d 6= 0) (Fig. 1A, C)}
rm ← any point on line L(s) = r1 + sd
p̂1 ← d/‖d‖
Ω̂← use (2) with p̂1

end if
else {ω̂1 6= ω̂2}

if ((ω̂1 × ω̂2) · d = 0) (Fig. 1D) then
Ω̂← any unit vector in span {ω̂1, ω̂2}
p̂1 ← use (4)–(6) with Ω̂, ω̂1

p̂2 ← use (4)–(6) with Ω̂, ω̂2

rm ← r intersection of L1 = r1 − s1p̂1

with L2 = r2 − s2p̂2

else {((ω̂1 × ω̂2) · d 6= 0) (Fig. 2)}
θi ← random sample ∈ [−π, π]
while E ≥ threshold do

n̂0 ← use (11) with ω̂1, ω̂2

n̂i ← use (12) with θi, n̂0

Ω̂← use (10) with n̂i

p̂1 ← use (4)–(6) with Ω̂, ω̂1

rm ← use (14) with r1, d, p̂1, n̂2

p̂2 ← (r2 − rm) /‖r2 − rm‖
ω̂′2 ← use (3) with p̂2, Ω̂
E ← use (15) with ω̂2, ω̂′2
θi ← LOCALSEARCH(θi, E)

end while
end if

end if
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Fig. 3. Example of closed curve of numerically solved positions
rm for the case where r1 = [4, 1, 2]T, r2 = [2, 4, 4]T, ω̂1 =
[−0.179, 0.248, −0.952]T, and ω̂2 = [0.231, 0.308, −0.923]T.

III. EXPERIMENTS

We now seek to experimentally demonstrate the method
in a real application. Since this is only a proof of concept,
we shall consider the control of two magnetic screws within
a block of agar gel as one possible example of the UMDs
to which this method can be applied. Despite the problems
of non-ideal behavior of magnetic screws observed within
agar gel in previous work [6], we choose this application to
avoid the effects of gravity and mitigate magnetic interaction
between the UMDs. Although accurate steering and path-
planning of magnetic screws through soft tissue and phan-
toms like agar gel is still an open problem, if the screws
are operated slow enough and not steered too hard, then
barring local disturbances and errors in initial placement and
orientation, the screws can be driven in an open-loop fashion.

The magnetic screws and agar gel are made in the
same manner as outlined in [7]. Two standard pan-head
No.-0 screws made of 18-8 stainless steel were chosen
for their non-ferromagnetic properties and small size. The
heads are removed and a 1 mm×1 mm×1 mm N50-grade
NdFeB permanent magnet with a magnet dipole moment
of 0.0011 A·m2 is affixed with the magnet dipole orthog-
onal to the screw body axis. The screws, shown in Fig.
4a, are 5.6 mm in length, 1.5 mm in diameter, and with
a thread pitch of 0.32 mm. The screws are placed within
101.6 mm×101.6 mm×25.4 mm blocks of 0.5 wt% agar gel,
shown in Fig. 4b. The screws are placed in position by hand
as close to horizontal as possible.

The screws are actuated using a new device developed in
our lab, the spherical-actuator-magnet manipulator (SAMM),

(a) (b)

(c) (d)
Fig. 4. (a) Two screws used in experiments made of 18-8 stainless steel and
affixed with a 1 mm cubic permament magnet. (b) Screws run in agar gel
cut into 101.6 mm×101.6 mm×25.4 mm blocks. (c) The spherical-actuator-
magnet manipulator (SAMM) employs orthogonally mounted omniwheels
to rotate a spherical permanent magnet about any desired axis, independent
of the position of the magnet [25]. (d) The Yaskawa Motoman MH5 6-
DOF robotic manipulator fitted with the SAMM, in the complete experiment
setup.

which acts as a magnetic end-effector of a Yaskawa Mo-
toman MH5 6-DOF robotic manipulator (Fig. 4c and 4d).
The SAMM comprises a spherical 50.4 mm N42-grade Nd-
FeB permanent magnet with a magnet dipole moment of
71.6 A·m2 that can be rotated about any axis [25]. Within
the workspace of the robot manipulator, we constructed a
simple enclosure that enabled a Canon PowerShot G10 to
record videos from beneath the agar gel block, which was
lit from above by a fluorescent lamp.

Two different simple screw trajectories were designed for
this demonstration: one to separate the screws from an initial
separation of 31.8 mm to 76.2 mm (divergent trajectory),
and one to bring the screws together from a separation of
76.2 mm to 31.8 mm (convergent trajectory). From the set
of rm and Ω̂ found using Alg. 1, the position equidistant
to each screw was selected at each time step. For each
run, the spherical magnet was rotated at a constant speed
of 0.58 Hz, which was chosen sufficiently slow to maintain
synchronization with the screws as they travel in the agar
block.

The resulting experimental runs are shown in the attached
video. The divergent trajectory is shown in Fig. 5a. The
odd behavior observed in the lower screw around the 70 sec
mark is when that screw moved downward (i.e., out of the
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t = 211s

t = 0s

t = 140s
t = 70s

(a)

t = 0s t = 64s t = 128s t = 193s

(b)
Fig. 5. Experimental runs demonstrating proof of concept, also shown in
the attached video. (a) Divergent trajectory. (b) Convergent trajectory.

page) into the agar gel before diverging. This may be due
to local disturbances as the screw traverses the agar, and
may also be due to undesirable, but previously observed,
out-of-plane motion as well as sensitivity to the placement
of the screws relative to the spherical magnet [6]. The
convergent trajectory is shown in Fig. 5b, which more closely
followed the intended open-loop path. As in the divergent
case, it is clear that both screws are being influenced by the
independent rotating magnetic fields beyond what could be
expected using rotating uniform magnet fields for propulsion.

IV. CONCLUSIONS AND FUTURE WORK

This paper has extended and built upon the previous work
in magnetic actuation by proposing a method to generate
two independent rotating magnetic fields using a single mag-
net dipole. We have developed an algorithmic approach to
solving both special cases when the desired axes of rotation
are equal, as well as the general cases when the rotation
axes are not equal. Furthermore, we have demonstrated that
two screws within an agar gel environment can be made to
move apart or be brought together in a purposeful manner.
Future work should include exploring whether an analytical
solution exists, how to optimally choose a solution for a
given problem, and path-planning methods that account for
both UMDs and the magnet actuator.
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