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Abstract— Previous work in the open-loop behavior of mag-
netically driven screws in soft tissue has focused on the impact
of magnetic field rotation speed and pitch angle, measured
between the field’s rotation axis and the screw’s principle axis,
on the average magnetic torque, both in-plane and out-of-plane.
However, prior work did not rigorously consider the role of
screw geometry and tissue material properties on the resulting
trajectory. This study seeks to develop a plausible empirical
model from experimental measurements in an agar gel tissue
phantom for use in further research and feasibility studies
of magnetic screws for in vivo applications. Non-dimensional
parameters representing rotation speed, pitch angle, screw size,
magnetic strength, and tissue stiffness are varied orthogonally.
Circular trajectories are fitted to the resulting recorded tra-
jectories. Using physical insight and observation of the trends
of the non-dimensional turning radius/curvature, simple models
for each parameter group are proposed. A final empirical model
is then proposed to unify the individual models.

I. INTRODUCTION

There is significant interest in the use of microscale and
mesoscale robotic devices in minimally invasive medicine
[1]. A great deal of research has explored the use of magnet-
ics as a wireless means of control and power transfer. Much
of magnetically driven small-scale robotics has focused on
swimming locomotion within a low-Reynolds-number fluid
environment [2]. However, a large amount of the human
body is inaccessible to swimming robots. It is desirable
to access areas that contain soft tissues, such as the liver,
the brain, the prostate, and the eye. A permanent-magnet
screw or a nonmagnetic screw with an affixed permanent
magnet, with the magnet’s dipole moment orthogonal to the
screw’s rotation axis, can be driven through soft tissue using
a rotating magnetic field. In order to develop reliable motion
planning methods, the locomotion of the screw within the
tissue needs to be well understood.

Researchers at Tohoku University have explored screw-
type machines in fluids and soft tissues in vitro in various
media, including animal tissue. “Magnetic machines” with
spiral body-wrapped features were fabricated and controlled
using rotating magnetic fields in agar gel and bovine meat
[3], [4]. These experiments were limited to straight runs
but showed promise for use in soft-tissue environments.
Possible applications of the spiral-type machines were ex-
plored, including utilizing high-frequency magnetic fields to
induce hyperthermia in an attached ferrite body, as well as
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Fig. 1: Magnetically driven screws operating in soft-tissue
environments could deploy a variety of localized therapies.
(a) A screw capable of traversing the vitreous could deliver
clot-busting enzymes to the retina without necessitating a
vitrectomy. (b) A screw could drive into the center of a tumor
within an organ to deliver hyperthermia or brachytherapy
without causing large-scale tissue deformation.

to transport payload carriers [5]–[7]. The results suggest
that straight-run performance of the machines should not
be significantly hindered by attaching required hardware for
specific targeted therapies. The control of multiple spiral-
type machines was studied with bodies that exhibit different
frictional rotational characteristics [6], [8]. This enabled
the individual control of several machines by varying the
rotational field frequencies about the machines’ individual
step-out frequencies (i.e., the frequencies above which the
screw cannot remain synchronized with the rotating field).
Further refinement of machine design included the addition
of cutting blades at the body tip for traveling in the liver [9]–
[11]. Although some of the studies involved making turns
within agar gel, the problem of executing turns in soft tissue
was formally addressed in [8]. From the theoretical torque
equations and predicted body rolling, an empirical model was
proposed that predicted the average torques on the robot. The
average turning torque was shown to increase to a maximum
when the field’s axis of rotation was pitched to 60◦ from the
screw’s body axis, regardless of screw size parameters. An
empirical relation between average turning radius and pitch
angle showed a minimum turning radius at 60◦ pitch angle,
corresponding to the maximum torque as expected.

Our group has recently extended the exploration of [8]
by studying the effects of pitch angle and speed on the
average turning torque predicted in the model equations
[12]. We found that desired in-plane torque required for a
desired turning maneuver is always coupled with a non-
ideal out-of-plane torque. We found that certain combinations
of speed and pitch angle resulted in the non-ideal torque
dominating, resulting in an unstable screw trajectory, and that
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certain ranges of speed and pitch angle exist that mitigate
this effect. However, that work explored what is a purely
magnetic phenomenon; it did not consider the effect of device
geometry nor specific tissue parameters on turning radius in
the event of a stable turn.

Prior experimental results have been somewhat ad hoc,
and to date it is not possible to answer the question: “For
a given magnetic screw moving through a given soft tissue,
using a given rotating magnetic field, what will the turning
radius of the screw be?” This paper provides an empirical
study that aims to answer this question. Creating such a
model, either empirically or theoretically (although the latter
is challenging, considering the complexity of tissue mechan-
ics), is the first step toward answering two more interesting
and constructive questions: “For a given magnetic screw
moving through a given soft tissue, what rotating magnetic
field should be generated to cause a desired turning radius
of the screw?” and “What is the optimal set of magnetic-
screw parameters for use in a given application in a given
soft-tissue environment?” Our long-term goal is to pursue
the answers to these questions.

In this paper, we begin by conducting dimensional analysis
using the Buckingham Pi theorem [13] to determine a set of
dimensionless parameters that fully characterize magnetic-
screw turning. Using dimensionless variables enables us to
understand how experimental results obtained by us and by
others generalize to a wide range of magnetic screws and
soft tissues not explicitly tested. The dimensional analysis
is followed by a set of experiments to measure the turning
radius (and inversely, the turning curvature) of a set of
magnetic screws moving through agar under a variety of
magnetic-field scenarios. Analysis of this data enables us to
create a simple model that predicts the role of the various
experimental parameters on the turning radius. The results
can be used to inform future studies to characterize the
phenomenon more completely.

The dimensional analysis is presented in Section II. The
experimental procedure is given in Section III, with physical
set-up described in Section III-A, and the method and results
discussed in Section III-B. The empirical model is created
in Section IV.

II. DIMENSIONAL ANALYSIS
We wish to consider the case of a screw with length L

{m} and diameter D {m} being driven in tissue with an
elastic modulus E {Pa= kg·m−1·s−2}. There is affixed a
permanent magnet with a dipole moment of magnitude |m|
{A·m2 =C·s−1·m2}. It is being driven with a magnetic field
with magnitude |B| {T= kg·C−1s−1} rotating at a constant
rate Ω {rad·s−1} below a limiting step-out frequency ωso
{rad·s−1} and being steered by pitching its axis of rotation
at a constant angle ψ {rad} from the screw’s body axis. We
want to characterize the turning radius r {m} made by the
screw trajectory in the tissue.

Using dimensional analysis, the dimensionless turning
radius R, and inversely, the dimensionless curvature C,

R =
r

D
↔ C = D

r
(1)

is a function of four dimensionless parameters. The first is
a dimensionless rotation rate term:

F =
Ω

ωso
, (2)

which encodes the ratio of body rotation speed to the step-
out frequency. The second parameter encodes the ratio of
magnetic torque to tissue stiffness:

M =
|m||B|
D3E

. (3)

The third is the screw’s length-to-diameter ratio:

L =
L

D
, (4)

which encodes the screw geometry. Finally, the last param-
eter is the steering angle ψ, which is already dimensionless.
It should be noted that the four dimensionless independent
groups chosen above are not unique, and other equally valid
sets of four could be chosen. The groupings were chosen to
encode some physically meaningful quantities (as perceived
by the authors).

The Buckingham Pi theorem [13] states that for a given
phenomenon or system, the dimensionless parameter groups
can be expressed as functions of the other independent
groups. Thus the dimensionless curvature can be thought of
as

C = f (F ,M,L, ψ) . (5)

The function in (5) is at most a function in four variables.
The Buckingham Pi theorem does not tell us anything about
the form of the function, or whether every independent group
is important. For this, we turn to experiments.

III. EXPERIMENTS

A. Experimental Setup

The control of the magnetic fields is done using a set of
three nested Helmholtz-coil pairs orthogonally arranged so
that each pair commands a basis vector of the total magnetic
field (Fig. 2a). The coils are wrapped around an acrylic frame
with 14 AWG insulated copper magnet wire. The distance
separating each pair is equal to the coil radius. Although
the details of construction of the coils are given in [14], for
completeness the parameters are listed in Table I. The field
in the center of the coils is approximately uniform. Each
coil pair is controlled using an Advanced Motion Controls
S16A8 PWM amplifier and powered by an Advanced Motion
Controls PS2x300W power supply. The amplifiers are set
to act as current sources given a commanded voltage via a
Sensoray s626 DAQ card connected to a desktop PC. Video
of the coil workspace is captured using a Basler A602FC
camera outfitted with a Computar MLH-10X wide-angle
lens.

The screws are altered brass screws that have the heads
removed (Fig. 2b). Cubic NdFeB N50-grade permanent
magnets of 1 mm on a side with estimated magnet dipole
of 0.0011 A·m2 are epoxied onto the smoothed cut surface
with the dipole orthogonal to the screw’s body axis. The
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Fig. 2: (a) The nested Helmholtz coils and screws used to
conduct experiments. See Table I for parameters. (b) The
four screws used in experiments are made of brass with
an affixed 1 mm cubic permanent magnet. See Table II for
parameters. (c) Blocks of agar gel are held in a tank made
of acrylic and designed with interchangeable pieces that
allow for features to be added such as screw ports. The tank
dimensions maximize the workspace of the screw runs within
the center of the Helmholtz coils.

screw dimensions are given in Table II. Measurements of
the length of the screw include the attached magnet, since
then entire rigid body must rotate within the tissue as the
screw turns.

Agar gel is used as a tissue phantom to allow for computer
vision while mimicking various soft tissues such as ocular
vitreous humor [15], [16], brain tissue [17], and breast tissue
[18]. Agar was previously used for magnetic-screw studies
in [3], [9], [12]. The agar gel is made in two stages: a
boiling stage at approximately double strength, and a dilution
stage to final concentration. The two-stage method was used
to reduce heat load on the refrigeration system and ensure
tighter control on the final concentration. The agar is chilled
in a household refrigerator for 12 hours until set. The agar
gel is then cut into 45 mm×30 mm×15 mm blocks.

To determine the properties of the prepared agar gel,
compression testing was performed across 16 identically pre-
pared 20 mm diameter cylindrical samples on an Instron 5943
mechanical testing system. Each sample was compressed to
5.0% strain with a rate of 2.0 mm/min. This strain and strain
rate were selected based on estimates of the agar strain when
the screw is traveling through at a moderate rate. The mean
elastic modulus was determined to be 2.35±0.65 kPa for the
prepared agar samples.

TABLE I: Parameters of Helmholtz Coils

Coil Radius Width Depth Total Resist. Induct.

Set (mm) Wraps Wraps Wraps (Ω) (mH)

Inner 44 9 7 63 0.5 0.944

Middle 69 9 11 99 0.9 3.78

Outer 98 13 11 143 1.6 12.2

TABLE II: Screw geometric parameters.

Screw Length Pitch Diameter

No. (mm) (mm) (mm)

1 4.0 0.87 1.4

2 4.6 0.87 1.4

3 5.7 0.87 1.4

4 6.6 0.87 1.4

For each run, a block of agar is placed within an acrylic
holding tank (Fig. 2c) fitted with interchangeable sides with
screw ports made using small sections of soft plastic tubing
epoxied into a through-hole drilled to ensure the screw enters
the agar block approximately parallel with horizontal.

B. Methods and Results

1) Methodology: A typical run begins by observing the
step-out frequency within the agar, then selecting a magnetic
field rotation rate at the required fraction of step out. A
human operator observes a real-time video image of the
experiment. As the screw moves along its trajectory, the
operator manually adjusts overlayed parallel lines in the
video to be parallel to the rotation axis of the screw. This
information about the axis is given to the magnetic-field-
generation system so that it can maintain the pitch of the
rotating magnetic field at a constant value with respect to
the screw. Once the screw has reached a surface of the agar
block, the field rotation is stopped by the operator.

The resulting videos are processed using a blob detection
algorithm that identifies the screw using pixel area and
aspect ratio as identifiers and outputs the location of the
center of the bounding rectangle and angle of rotation in
the camera plane. Extraneous blobs are removed and the data
transformed into the world-frame units. Finally, the points of
the trajectory are fit to a least-squares-error in-plane circle
using the Curve Fitting Toolbox in MATLAB (Fig. 3).

The dimensionless groups were varied orthogonally to
explore the turning radius/curvature behavior. This was done
by varying the nominal parameters (L = 4.1, ψ = 0.393, M
= 1.33, F = 0.30) one at a time while holding the other three
parameters constant. The resulting data points are plotted in
Fig. 4 and discussed in Section IV.

2) Sources of Experimental Error: The significant vari-
ability (or noise) in driving and turning screws in tissue
has been observed previously in [3], [4], and is also seen
in the results from this study. This suggests that the agar
gel microstructure may introduce irregularities in the screw
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r = 32.2 mm
R = 0.99722

Fig. 3: The trajectory of Screw No. 3 run at F = 0.25 (i.e.,
25% of step-out frequency), ψ = 0.175 rad (i.e., 10◦), and
|B| = 9.8 mT, in 0.5 wt.% agar gel.

trajectory. Additionally, the agar gel parameters may vary
with temperature; efforts were made to minimize this effect
by keeping unused blocks refrigerated until ready for use.
Gravity acting on the gel can create a hydrostatic pressure
differential in the vertical direction of the blocks, and the
resulting compression could result in changes in parameters
across the block. Since the vertical direction is the direction
of turning, this could result in undesired noise, but experi-
mental runs were conducted quickly after placing the blocks
vertically to minimize this source of error. If the agar and
screw interaction is not entirely linearly elastic (i.e., the static
torque response of the screw in agar gel exhibits viscoelastic
creep or is nonlinear in nature), the dimensionless parameters
would not encapsulate this behavior. Finally, it is possible
that the trajectories are sensitive to the initial rotation of the
screw about its axis, relative to the turning axis. All of the
above effects could contribute to the large amount of variance
within the experimental data.

IV. EMPIRICAL MODEL

A. Dimensionless Rotation Speed Parameter F
Screw No. 3 (L = 4.1) was run with a pitch angle of 20◦

(ψ = 0.35) and a magnetic field magnitude 7.8 mT (M =
1.33). The rotation speeds were varied from 10% to 90% of
measured step-out frequency. The plot of the data is shown
in Fig. 4a.

In [12], it was observed that increasing field rotation speed
resulted in less time-averaged magnetic torque for turning.
Similarly, it was shown that the slower the rotation rate, the
higher the average turning torque. This implies that the R
should increase to a maximum as F increases to 1 (screw
step out) and decrease towards a non-zero minimum as F
decreases to zero (representing quasistatic turning). Based
on the observed trend in Fig. 4a, a simple model that fulfills
these requirements and fits the data is a straight affine line:

R = KF1F +KF2 , (6)

where KF1 and KF2 are constants.

B. Dimensionless Pitch Angle Parameter ψ

Screw No. 3 (L = 4.1) was run at a rotation rate of 30%
of measured step-out frequency (F = 0.30) and a magnetic
field magnitude of 7.8 mT (M = 1.33). The pitch angles were
varied from 0◦ to 70◦. The data plot is shown in Fig. 4b.

In [8] and [12], the maximum average magnetic turning
torque occurs at a pitch angle of 60◦. In [12], undesirable out-
of-plane turning torque increases as pitch angle increases.
Thus there is an upper limit to the effective modeling of in-
plane curvature measurements. This is clearly indicated in
Fig. 4b by the increase in variance above approximately 30◦.
Additionally, if the pitch angle is zero, there should be no
turning and a zero curvature. Finally, since the pitch angle is
a periodic variable, it makes sense to select a trigonometric
function to fit the data. Thus, a simple model that fulfills
these requirements is a sinusoid, specifically one that peaks
at a value of ψ = 60◦:

C = Kψ sin

(
3ψ

2

)
, (7)

where Kψ is a constant.

C. Dimensionless Magnetic Parameter M
Screw No. 3 (L = 4.1) was run at a speed of 30% of

measured step-out frequency (F = 0.30) with a pitch angle
of 20◦ (ψ = 0.35). The magnetic field magnitude is varied
with values {4.9, 5.8, 6.8, 7.8, 8.7, 9.8}mT. The plot of data
is shown in Fig. 4c.

Considering the definition of M in (3), if M were
increased to an arbitrarily large amount, then the magnetic
torque would increase toward infinity, relative to the tissue
stiffness. As long as there is no limit to the amount of torque
applied, it stands to reason that no amount of tissue stiffness
will stop the screw’s motion from nearly instantaneously
tracking the torque input. Thus curvature would be expected
to go to infinity. Additionally, if the tissue stiffness were
to increase such that M goes to zero, the curvature of the
resulting path should go to zero as well. Despite the large
amount of variance in each level, the experimental data in
Fig. 4c seems to exhibit a linear trend. Thus, a simple model
would be a straight line through the origin:

C = KMM , (8)

where KM is a constant.

D. Dimensionless Screw Length Parameter L
The screws shown in Fig. 2b with parameters given in

Table II were each run at a rotation speed of 30% of
measured step-out frequency (F = 0.30), a magnetic field
magitude of 7.8 mT (M = 1.33), and steered with a pitch
angle of 20◦ (ψ = 0.35). The data plot is shown in Fig. 4d.

If the screw is treated as an equivalent cylinder embedded
in material, then as the length increases more material is
distributed along the screw body to resist rotation. Thus, as
L increases toward infinity, R would also be expected to
approach infinity. Similarly, if the length were to decrease or
the diameter increase without bound, then more material in
the radial direction would counter rotation relative to the size
of the screw. In this sense, a value of L = 1 can be thought
of as a null aspect ratio. In practice a value of L < 1 will not
be realizable. The plot of data in Fig. 4d shows a trend that
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Fig. 4: (a) Experimental data for R as F is varied (L = 4.1, ψ = 0.35, M = 1.33, n = 10 points per level). The linear trend
is shown with R2 of 0.9871. (b) Experimental data for C as ψ is varied (L = 4.1, F = 0.30, M = 1.33, n = 12 points per
level). The sinusoidal trend is shown with R2 of 0.8623. (c) Experimental data for C as M is varied (L = 4.1, F = 0.30,
ψ = 0.35, n = 18 points per level, except where otherwise noted). The affine linear trend is shown with R2 of 0.9804. (d)
Experimental data for R as L is varied (M = 1.33, F = 0.30, ψ = 0.35, n = 18 points per level, except where noted). The
exponential trend is shown with R2 of 0.9907. For each plot, the error bars represent the 95% confidence limit on the mean.

appears to be less sensitive in the lower L values. A simple
model that describes the observed trend is an exponential
function:

R = KL1e
L−1 +KL2 , (9)

where KL1 and KL2 are constants.

E. Final Empirical Model

Now that partial models have been identified, we propose
an empirical model that captures the essence of each of the
four partial models:

C =
σ1M sin

(
3ψ
2

)
(FeL−1 + σ2F + σ3eL−1 + σ4)

, (10)

where σ1, σ2, σ3, and σ4 are constants. The model is given in
terms of curvature C because a zero curvature (i.e., a straight
path) is realizable in practice, whereas a zero turning radius
R (i.e., an infinitely tight circle) is not.

The constants Ki in (6)–(9) were fitting parameters for the
specific nondimensional data sets; they are implied functions
of the dimensionless groups, and would be different for
other combinations of values. The constants σi of the final
model are intended to be universal constants that should be
applicable to a wider range of parameters not explicitly tested
in our experiment. The mix of L and F in the denominator
account for interaction effects that could be present, given the
simple models in (6) and (9). For instance, it is expected that
at constant F , the influence of F on L would be contained
in the constants KF1 and KF2 of (6).
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To find the dimensionless constants for the final empiri-
cal model, we used the MATLAB function fminsearch,
which uses the Nelder-Mead simplex search algorithm. The
residuals sum-of-squares error was minimized between the
matched data trends in each set and the final empirical
model for the same values. The constants were found to be
σ1 = 0.478, σ2 = −6.56, σ3 = 0.266, σ4 = 73.7. The
model predictions are plotted alongside the data trends in
Figs. 4a–4d. It can be seen that the final model captures the
trends observed in all four experiments, even though there is
some observed difference.

The empirical model in its presented form can be used to
conduct basic feasibility studies and make better informed
design decisions about the realistic capabilities of magnetic
screws in soft tissue. For example, if the magnetic field
magnitude were to be doubled, the maximum curvature
would also double. Similarly, if the tissue were twice as stiff,
the maximum curvature would be halved. Furthermore, if
the screw length were to be halved, the maximum curvature
would increase by more than a factor of two.

This empirical model has been derived by fitting trends to
experimental data conducted in agar gel as a tissue phantom.
Thus it cannot be said that this model would work for
any soft tissue, but rather, soft tissues that exhibit similar
characteristics to agar gel. The model is proposed as a
plausible relationship among the nondimensional parameters
within the studied region of values. Further refinement of
experimental procedures, which include other tissues and tis-
sue phantoms, and development of numerical finite-element
simulations, will ultimately lend more confidence to the
empirical model. Additional experimental data should be
taken to validate the final model and provide estimates with
higher confidence for the model parameters.

V. CONCLUSIONS
Previous work in studying the trajectories of magnetically

driven screws in soft tissue has focused on the role that
magnetic field rotation rate and pitch angle plays on the
average magnetic torque and turning radius. This paper
sought to find an empirical model from experimental data
collected in agar gel to gain insight on how screw geometry
and tissue properties, in addition to the previously considered
effects, affect turning radius. Dimensionless groups were
formed that represent rotation speed, pitch angle, screw
size, magnetic strength, and tissue stiffness. These groups
were varied orthogonally at different levels, and simple
models were suggested based on observed trends of the
experimental turning radii combined with physical insight
about the expected behavior of the screws in tissue. The
final model is believed to be a plausible representation that
will aid in further experimental studies, physical modeling,
and numerical simulation to ultimately result in an improved
model with a high degree of confidence for magnetic-screw
path planning in soft tissue.
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