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Abstract
Human–robot collaborative systems have the potential to dramatically change many aspects of surgery,
manufacturing, hazardous-material handling, and other dextrous tasks. We are particularly interested in
precise manipulation tasks, which are typically performed under an admittance-control regime, where the
controlled velocity of a non-backdrivable robot is proportional to the sensed user-applied force. During fast
movements, there is a noticeable degradation in control precision and prior results have indicated that system
velocity, and not system admittance, is the factor that is most correlated with force control precision. In this
paper, we report evidence that system admittance is more important than velocity in determining the user’s
ability to control applied force and that both factors are less important than the force level itself, and we
provide an explanation as to why prior results might have indicated otherwise. We find the conditions under
which human force control performance is best when operating under admittance control. We also report
the conditions under which human force control on a moving admittance-type device is indistinguishable
from isometric force control, which can be used to design better device controllers.
© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2011
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1. Introduction

Human–robot collaborative systems can take the form of teleoperation systems,
where movement of a master manipulandum is coupled to movement of a remote
slave manipulator, or they can take the form of cooperative systems, where the hu-
man directly interacts with a robotic manipulator. For cooperative tasks requiring
the greatest degree of precision, admittance-type robots are often used, which are
devices that contain a great deal of gearing and inertia such that they appear non-
backdrivable to a human, as well as to many disturbances from the environment [1].
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It is challenging to stably implement precise position control with impedance-type
devices (i.e., backdrivable, low inertia, low friction) because impedance-type con-
trol systems do not sufficiently penalize small disturbances from the environment
and from human tremor. Admittance-type robots are controlled using admittance
control: a human interacts directly with a force sensor mounted to the robot and
the robot is computer-controlled to move in response to the applied force. The most
common and simplest type of admittance control is proportional-velocity control,
where the admittance of the system reduces to a simple gain k, making the velocity
of the robot V linearly proportional to the applied force F :

V = kF. (1)

If perfectly implemented, the control law (1) behaves like a massless viscous
damper, with damping inversely proportional to the gain k. It also behaves similarly
to a ‘programmable damper’ implemented on an impedance-type haptic device;
however, it is possible to stably implement much higher levels of damping with
an admittance-type device, including perfectly rigid systems. An example of an
existing system that uses the control law (1) is the Johns Hopkins University Steady-
Hand Robot [2, 3], which is used for tasks such as the insertion of a tiny needle
into a retinal vein that is smaller than the size of the tremor in the surgeon’s hand.
Another example of a system that uses the control law (1) is the University of Utah
Active Handrest [4], which is a handrest for manual tasks that can be repositioned
intuitively by the user.

Precise tasks are typically performed at low velocities and it seems somewhat
obvious that positioning precision will be maximized in the limit as the admit-
tance gain k is reduced to zero, with positioning precision ultimately bounded by
the position-sensing resolution. However, a very low value of k will result in a
system that is too sluggish, and possibly too fatiguing, to be useful for any real
task. We would like the user to be able to move as fast as possible and still main-
tain maximum precision, but we find that as the admittance gain k is increased,
the system eventually begins to feel uncomfortable and somewhat out of control.
We find that it is difficult for a user to control the level of applied force on the
admittance-type device when the device is too responsive. We believe that human
users are most confident interacting with devices that are somewhat dissipative (as
opposed to only passive), and that there will exist a range of forces and velocities
within which humans optimally interact with devices — considering human ability
to control force, confidence in interaction (e.g., humans may feel most comfortable
interacting with devices that feel natural) and fatigue due to excessive force appli-
cation. Additionally, robust stability analysis of haptic systems typically involves
conservative passivity-based techniques [1], due to the complex exchange of infor-
mation and energy between the human user and the robotic device. If conditions
could be found in which we could guarantee that the human user was unaffected
by the motion of the robotic device, then the human could be treated as an exoge-
nous system input, which would allow less-conservative stability conditions to be
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applied to the robot’s control system. Thus, a better understanding of human force
control during admittance control would help us design better systems for precise
and efficient manipulation.

The purpose of this research is 2-fold: (i) to quantify the effects of velocity (V ),
admittance gain (k) and force level (F ) on human force control ability with visual
and haptic feedback, and (ii) to determine under which conditions human force con-
trol of an admittance-type device is indistinguishable from isometric force control
(i.e., force applied to a stationary sensor), implying that the human’s applied force
is not affected by the movement of the device. Although we are explicitly consider-
ing the ability to precisely control force in this work, we are ultimately interested in
systems in which we are precisely controlling position under direct visual feedback
using the admittance-control law (1). For an admittance-type device operating at
low speeds, the user is always applying force in the direction of motion, so oper-
ation in three-dimensional space can be considered as applying force on a 1-d.o.f.
system at each instant of time. Thus, it is our assertion that our study, which is
conducted on such a 1-d.o.f. system, is extensible to spatial motion.

Several studies have been conducted on human ability to apply force on a static
object. A mean absolute error of 11–15% of the target force value (computed as (7)
herein) was found by Srinivasan and Chen [5] when applying a constant force on a
stationary target in the range of 0.25–1.25 N with no visual feedback. In the same
experiment they found that the error reduced significantly and remained approxi-
mately constant at 0.039 N when visual feedback was provided (3–16%). Allin et
al. [6] found the just noticeable difference (JND) for force to be at 10% for the
index finger for a base force of 2.25 N. Visual feedback was provided to the user
in this experiment. A few studies have been conducted on human force control on
moving objects. Lederman et al. [7] studied the force variability in the normal di-
rection with the subject moving their hand at different velocities (20 and 222 mm/s)
in the tangential direction and under different force levels (user-defined ‘low force’
and ‘medium force’). They found the end-effector, force level, and velocity of the
device to have a statistically significant effect on the mean force values.

In the study most closely related to ours, Wu et al. [8] (prior work of one of the
current authors) studied the effect of velocity and admittance gain on subjects ap-
plying force on a moving robotic device. In two separate experiments, the robotic
device was controlled under admittance control and under velocity control (i.e.,
independent of the applied force), respectively. They determined that the veloc-
ity (V ), and not admittance gain (k), directly affects force control ability. However,
the conclusion of Ref. [8] runs counter to more recent anecdotal experiences in
the authors’ labs, motivating a reconsideration of the findings. In this paper, we
report evidence that, at least for the range of velocities and admittance gains con-
sidered herein, the fundamental conclusion of Ref. [8] does not appear to be correct
for systems running under admittance control and that the admittance gain (k) is
in fact the dominant factor in a human’s ability to precisely control the force ap-
plied to an admittance-type device. A number of choices made during the design of
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the experiment in Ref. [8] could have contributed to its conclusion. First, 50% of
the data obtained were under velocity control, which may not be representative of
performance under proportional-velocity control. Second, in the experiments, the
controllers were turned on after the human subject reached a desired target force,
creating large accelerations at the beginning of each trial that may have affected the
results. With real admittance systems, the velocity would naturally ramp up from
rest as the human makes contact and begins to apply force. In addition, the exper-
iments in Ref. [8] were conducted with only haptic feedback, requiring the subject
to remember a target force value. It is not clear if the discrete event of turning the
controller on and jerking up to speed affected the subjects’ ability to remember
the target force. In real-life systems, some method of visual feedback conveys in-
formation about the amount of applied force, typically the motion of the device.
Research by Jones [9] indicates that the coefficient of variance for finger and elbow
forces to be much lower with both visual and haptic feedback (4%) than when only
haptic feedback (12%) is provided. Visual feedback in Ref. [9] was in the form of
three vertical boxes on a computer screen. The center box was highlighted if the
force applied by the user was within the bounds of the target box, the upper box
was highlighted if force less than the target was applied, and the lower box was
highlighted if force higher than the target force was applied.

The outline of the remainder of this paper is as follows. In Section 2, we describe
the design of our experiment. In Section 3, we include the results of our experiment,
and provide analysis. In Section 4, we provide additional discussion about the im-
plications of the experimental results. We summarize our findings in Section 5.

2. Methods

2.1. Hardware

A 1-d.o.f. robotic device is used to perform the experiment (Fig. 1a). It consists of a
lead-screw-driven linear stage (Servo Systems MLPS-4-10) driven by a DC motor
(Servo Systems 23SMDC-LCSS). Position feedback is given by an optical encoder
mounted on the motor shaft. The lead screw has a pitch of 12.7 mm and the encoder
resolution is 4000 counts/rev after quadrature, which translates to a linear resolution
of 3 µm for the device. A cantilever-type force sensor was developed for the device.
The force sensor has a sensitivity of 0.7 mN per bit (noise below 0.01 N) and is
mounted on the linear stage using a rigid rod. A Sensoray 626 DAQ card is used
for data acquisition. It has a 16-bit ADC that is used to read force data and a 14-bit
DAC which is used to command voltages to the current amplifier (Advanced Motion
Control 12A8), powered by a 24-V linear power supply, which is used to drive the
motor. The voltage-to-current gain of the amplifier is 0.25 A/V. The software for the
device was developed in C++ using the CHAI 3D library [10]. Visual feedback is
provided to the subject on a 0.5-m computer screen that was positioned 0.7 m from
the user. The force readings are sampled at 1 kHz and graphics are displayed at
33 Hz.
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Figure 1. (a) Experimental setup with a subject applying force on a 1-d.o.f. robotic device. (b) Display
on computer screen during the experiment showing the force applied by the subject, the target force
and the green box with width set at 10% of target force.

Figure 2. Control system.

2.2. Control System

A PD-plus-feedforward controller has been implemented for the device (Fig. 2).
Unit-DC-gain digital low-pass filters G1 and G2 with time constants τ1 = 0.001 s
and τ2 = 0.0005 s are used to reduce quantization error and differentiation noise.
The proportional gain Kp is set at 30 V/mm and the derivative gain Kd is set at
0.1 (V · s)/mm for the majority of the experiments. The proportional gain Kp is in-
creased to 60 V/mm for low velocities of 0.1 and 0.2 mm/s to improve tracking.
These gain values were empirically found to give the minimal tracking error for
sinusoidal position trajectories. The controller gains are decided by the target ve-
locity in each trial, which is constant for a given trial. Hence, the controller gains
are fixed for each trial. The feedforward model for the device was experimentally
derived and is given by Kf = 0.06Vd + 2.2(1 − e−3.3Vd) V · s/mm, where Vd is the
desired velocity. This feedforward model is a smooth function that approximates
Coulomb-plus-viscous friction. The inputs for the system are calculated as:

Vd(n) = kF (n) (2)

Xd(n + 1) = Xd(n) + Vd(n)�t. (3)

F(n) is the force applied by the user at sample n. Xd(n) is the desired position of the
device at sample n, which is found by numerically integrating the desired velocity.
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Figure 3. Experimental frequency–response plot for the closed-loop system for sinusoidal trajectories
in Xd(t). For this device characterization experiment, Xd(n) is a sampled version of Xd(t) and Vd(n)

is a sampled version of Vd(t), which is the time derivative of Xd(t). No human is in contact with the
device.

�t is the sampling time of the control system (1 ms). The controlled device is
capable of tracking signals at frequencies below 7 Hz (44 rad/s), which is sufficient
for signals of interest here (Fig. 3).

2.3. Verification of Prior Work

Using our device and a single human subject, we recreated the experiment per-
formed in Wu et al. [8] to determine if the results were repeatable using our device.
The subject had to apply force on a 1-d.o.f. force sensor (Fig. 1a) similar to the
one used in Ref. [8]. Two experiments, one balanced in force (F ) and admittance
gain (k) and the other balanced in force (F ) and velocity (V ), were performed. Our
analysis of variance (ANOVA) showed that both k and F have an effect on the
metric (standard deviation of force for the second half of the trial when the device
is moving, divided by the standard deviation of force for the first half of the trial
when the device is stationary) in the experiment balanced in k and F . For the ex-
periment balanced in V and F , only V has an effect on the metric. These results are
consistent with those obtained in Ref. [8], indicating that it is unlikely that the data
collection or analysis in Ref. [8] were problematic. Rather, the reasons outlined in
Section 1 are the likely causes for their conclusions.

2.4. Experimental Design

Our goal is to conduct experiments that give information specifically about human
force control under the control law (1), rather than about human force control on
moving objects in general. An experiment balanced in velocity (V ) and admittance
gain (k) was designed to test the effect of each factor on human force control pre-
cision. Specifically, we are interested in determining when force control ability is
affected by the movement of the device, as compared to force control on a stationary
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Table 1.
Force (N) values for different values of V (mm/s) and k (mm/(N · s))

V (a) High-speed experiment k V (b) Low-speed experiment k

0.5 0.9 1.6 2.8 5.0 0.1 0.18 0.32 0.56 1.0

0.5 1 0.55 0.31 0.18 0.1 0.1 1 0.55 0.31 0.18 0.1
0.9 1.8 1 0.56 0.32 0.18 0.18 1.8 1 0.56 0.32 0.18
1.6 3.2 1.78 1 0.57 0.32 0.32 3.2 1.78 1 0.57 0.32
2.8 5.6 3.11 1.75 1 0.56 0.56 5.6 3.11 1.75 1 0.56
5.0 10 5.56 3.12 1.79 1 1.0 10 5.56 3.12 1.79 1

device (isometric). The experiment was performed by nine right-handed subjects
using their right index fingers. The subjects were all male, with ages ranging from
22 to 37. Only one of the subjects had prior experience with haptic interfaces.
The experiment has Institutional Review Board approval. Results from pilot stud-
ies showed that V and k at which human force control precision is similar to the
stationary case occurs for very slow moving systems. Also, limitations in the force
sensor restrict the range of values of V and k that can be used. Therefore, in a first
experiment, subjects were tested for target velocity values of V = 0.5, 0.9, 1.6, 2.8
and 5.0 mm/s and admittance gains of k = 0.5, 0.9, 1.6, 2.8 and 5.0 mm/(N · s).
A second experiment was performed with the values of V = 0.1, 0.18, 0.32, 0.56
and 1.0 mm/s and admittance gains of k = 0.1, 0.18, 0.32, 0.56 and 1.0 mm/(N · s).
The target force value to be applied by the subject was calculated using (1). Table 1
shows the target force level for each of the commanded admittance gains to achieve
the desired velocity values. As V and k values have been equally scaled down by a
factor of 5 for the low-speed experiment, the target force values in Table 1a and b
are the same. It can bee seen from Table 1 that each combination of V and k has a
different target force value associated with it.

For each different force value, trials with k = 0 (isometric) are also conducted.
These values are shuffled to generate a random sequence called a block. Eight such
blocks with randomly distributed combinations of V and k are generated for each
subject. Values of target force and admittance gains in a trial are selected according
to these randomly generated blocks for each subject. The purpose of the blocks is
to distribute the eight trials of each combination throughout the total duration of the
experiment, in order to mitigate effects of learning and fatigue.

During the experiments, subjects are instructed to apply force on the force sensor
using their right index finger. Their arm is placed perpendicular to the direction of
motion of the device with their elbow supported on the table as shown in Fig. 1.
Subjects applied force to the left, which is also the direction of motion. Visual
feedback is provided on a computer screen in the form of a vertical grey line at the
center of the screen indicating the target force to be achieved by the subject (see
Fig. 1b). This grey line is surrounded by a green box whose width is set at 10%
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Figure 4. Typical force-versus-time data for stationary (k = 0) and moving systems. Here, a 0.32 N
force is applied by a subject with k = 0 and 5.0, and a 1.78 N force is applied by a subject with k = 0
and 2.8. Horizontal lines indicate the target forces. Only the final 2 s of data are used during analysis.

of the target force value. The width of the green box is 15 mm and the screen is
70 cm from the subject. The force applied by the subject is displayed by a white
vertical line that moves from right to left when force is applied. The force display
is scaled such that the center of the screen corresponds to the target force, the right
edge corresponds to no force and the left edge corresponds to twice the target force.
As the target force is always located at the center of the screen, a subject has no
indication at the beginning of a trial as to what the target force is and must use the
movement of the white vertical line accompanying their applied force in order to
determine the correct force. Subjects are instructed to match the target force and
keep the applied force within the green box to the best of their ability. Each trial
lasts for 4 s. The device begins moving at the instant the subject begins to apply
force, based on (1). However, only the last 2 s of data are analyzed to remove the
effects of the rise time required to achieve the target force, which is also present in
the isometric case. Figure 4 shows typical force-versus-time responses for a subject
pushing at two target forces, each at two different values of k, indicating how the
mean force level applied by the subject changes as a function of movement of the
device. White noise is played through headphones during the experiment to remove
auditory cues. The device is hidden from the subjects by a curtain through which
subjects reach their hand. Subjects could pause the experiment to rest at any time.
The experiment took 50 min, on average, to complete. Before the experiment, each
subject was allowed to interact with the device and experience different force levels
and admittance gains.

3. Results

The second, low-speed experiment was performed to find threshold values for V

and k under which human force control precision is unaffected by movement.
This second experiment was conducted after the discovery that the first experiment
would not be sufficient to answer our questions of interest. The results of the first
experiment (high-speed) are included as the Appendix for the interested reader.
The remainder of this section will focus entirely on the low-speed experiment. The
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Figure 5. (a) Mean and (b) MAD in force across all subjects and trials for different levels of V and k.

data from the high-speed experiment were used in previously published work [11],
where different metrics were used to study the effect of V and k on human force
control precision. The metrics used in Ref. [11] were biased (i.e., not Gaussian), so
the data has been reanalyzed with new metrics in this paper, described below.

�F is the mean of the user’s applied force (for the last 2 s of a given trial), which
may differ from the target force. The mean force applied across subjects and trials
is shown in Fig. 5a. Figure 5b shows the mean absolute deviation (MAD) in force,
which is defined by:

MAD =
∑ |Fx − �F |

N
, (4)

where Fx is the force value at each sampling instant (recorded at 1 kHz) and N is the
number of samples used (again, for the last 2 s of a given trial). MAD is a measure
of the subjects tremor around some mean value. The variance in both mean applied
force and MAD increase with increasing target force, which has been previously
observed in the literature [9]. Figure 5 shows the combined effect of V , k and F

on �F and MAD for all subjects across all trials. It is clear that the variance in mean
force is quite small compared to the variance in MAD; this is an indication that
visual feedback of force allows the subjects to accurately apply the target force, but
the tremor of the subjects around that average (i.e., precision) is not eliminated by
having visual feedback. We would like to isolate and study the effect of V and k on
human force control ability. However, the effect of V and k on mean force and MAD
are small compared to the effect of the target force level itself. Hence, the metrics
used in the study were designed so as to remove the effect of force level on the force
applied by the subject. We have used four metrics to compare force control ability.
Two metrics measure the error in mean force, and the other two measure deviations
in the applied force to capture human tremor and lack of precision around a mean
force.

The first metric to measure error in mean force is the normalized error in mean
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force given by:

Et = �F − Ft

Ft
, (5)

where Ft is the target force to be applied by the subject. The second metric to
measure error in mean force is the normalized difference in mean force between a
given trial and the isometric static population mean at a given target force level:

Es =
�F − �Fip

�Fip
, (6)

where �Fip is the isometric static population mean at a given target force level, which
is the mean force applied in the isometric case (i.e., k = 0), averaged across all sub-
jects and trials for a given target force. Nine subjects were used in the experiment
with eight repetitions for each force level in the isometric case. Hence, �Fip is a
mean of 72 values, indicating what forces subjects actually apply, on average, when
asked to apply a given force isometrically. Et is a measure of the subject’s ability
to maintain a constant target force as compared to the target force and Es is a mea-
sure of the subject’s ability to maintain a constant target force as compared to the
population’s ability to maintain the same target force isometrically.

The first metric used to measure deviations in applied force is the normalized
mean absolute deviation:

MADt = MAD

Ft
, (7)

where MAD is the mean absolute deviation for a trial, defined in (4). MADt is a
particularly relevant metric for analysis of admittance-type systems under the con-
trol law (1): we have choice over the admittance gain k to relate velocity to the
commanded input force, so MADt is effectively a measure of the normalized input
noise that will be observed in the system. The second metric to measure deviations
in applied force is the normalized difference in MAD between a given trial and the
isometric static population mean of MAD:

MADs = MAD − MADip

MADip
, (8)

where MADip is the isometric static population mean of the MAD at a particular
target force level. MADt is a measure of the subject’s tremor at a particular force
level normalized by the target force and MADs is a measure of the subject’s tremor
at a particular force level compared to the population’s tremor in the isometric case
for the same force level. Note that the divisors of MADt and MADs are significantly
different, so we should expect numerical values of these metrics to be significantly
different. A value of zero for the metric Et indicates that the subject can apply
his/her mean force at the target force perfectly, whereas a value of zero for Es
implies that the subject can apply his/her mean force as the population would in the
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isometric case. Similarly, a value of zero for MADs implies that the subject has a
MAD similar to the MAD of the population in the isometric case. A value of zero for
MADt would indicate that there is no variation in the force applied by the subjects
(i.e., no tremor in the applied force), which will never happen in practice. The four
metrics were chosen to explore different aspects of force control ability. We would
expect that, if a given trial was truly indistinguishable from the isometric case, then
it should be indistinguishable using all four metrics. For the purpose of precise
control of admittance-type devices, we believe MADt to be particularly important,
as previously discussed.

To utilize the above metrics, we must first develop an understanding for the ways
that the subjects apply forces isometrically, which provides a measure of force con-
trol ability when the subject is unaffected by the device in any way. Figure 6a shows
the mean force in each trial (�F ) for the isometric case across all subjects and tri-
als, normalized by the target force. A value of 1 for �F/Ft would mean that we are
able to perfectly maintain the target force. We see a tendency to apply forces higher
than the target force at forces below approximately 2 N and to apply forces lower
than the target force at forces higher than 2 N. Figure 6b shows the mean force in
each trial (�F ) for the isometric case across all subjects and trials, normalized by
the isometric population mean (�Fip). This removes the effect of force level from the
metric and results in a mean value of 1 for the isometric case irrespective of the
target force level. We observe that the variability in mean force is relatively high at
forces below 0.5 N. MAD normalized by the target force is also found to be high at
forces below 0.5 N (Fig. 7a). �F/Ft and MAD/Ft remain fairly constant for forces
higher than 2 N (see Figs 6a and 7a). Normalizing MAD by the isometric population
mean removes the effect of force level on the metric (Fig. 7b). Also, the variability
in MAD remains fairly constant after normalizing by MADip. The results reported
in Figs 6a and 7a indicate that we have relatively poor force control at forces below
0.5 N.

Once equipped with an understanding of the subjects’ ability to maintain isomet-
ric forces, a fixed-effect ANOVA model was used to test the main effects of factors
V and k on the four metrics (5)–(8). Figures 8–11 show the same experimental data
set considered with respect to the metrics Et, Es, MADt and MADs, respectively.
Within each figure, four plots are included to show the data for a given metric rep-
resented in four different ways, each of which provides insight to the underlying
behavior.

In Fig. 8 we can see that the metric Et, which is a measure of the subject’s ability
to maintain a constant force as compared to the target force, varies significantly with
V , but depends much less on k for the highest velocities. At the lowest velocities,
Et seems to increase with increasing k.

In Fig. 9, we can see that the metric Es, which is a measure of the subject’s
ability to maintain a constant target force as compared to the population’s ability to
maintain the same target force isometrically, shows a strong dependence on k. Es is
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Figure 6. Mean force for the isometric case normalized by (a) target force and (b) isometric population
mean, for all nine subjects combined.

Figure 7. MAD for the isometric case normalized by (a) target force (i.e., MADt) and (b) isometric
population mean of mean absolute deviations (MADip), for all nine subjects combined.

quite insensitive to both V and the target force level at low values of k, and shows
dependency as k is increased.

In Fig. 10, we can see that MADt, which is a measure of the subject’s tremor at
a particular force level normalized by the target force, depends on both k and V ,
with MADt linearly proportional to k for a constant value of V . Recall that MADt is
essentially a measure of the input noise to our admittance-type device. We observe
an increase in MADt with a decrease in V , as well as with a decrease in target force.
We also see that, if the target force is held constant, then MADt seems to lose its
dependence on k and vary only with V .

In Fig. 11, we see the results for MADs, which is a measure of the subject’s
tremor at a particular force level compared to the population’s tremor in the iso-
metric case for the same force level. The trends observed in this metric are not as
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Figure 8. Experimental results for metric Et for the low-speed experiment, for all nine subjects com-
bined. Et is a measure of the subject’s ability to maintain a constant target force, as a fraction of the
target force and is defined in (5).

pronounced as observed in the other three. The metric seems to depend on both k

and V .
ANOVA on the experiment indicates that both V and k have a main effect on

the metrics Et and MADt (p < 0.01). The ability to accurately apply a target force,
which corresponds to a low value of Et, seems to degrade at very low velocities and
at high velocities (Figs 8 and A1). Also, the user’s tremor normalized by the target
force, MADt, seems to improve with increasing V (Fig. A3). On closer analysis, we
find that both Et and MADt have a strong dependence on the force level. Figures 8d
and 10d show an insensitivity to force and movement for the metrics at forces higher
than 2 N. For target forces of 3.2, 5.6 and 10 N the values of metrics Et and MADt
remain approximately constant for all values of V .

ANOVA for metrics Es and MADs, which quantify subjects’ ability to accurately
apply a target force relative to the population’s performance in the isometric appli-
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Figure 9. Experimental results for metric Es for the low-speed experiment, for all nine subjects com-
bined. Es is a measure of the subject’s ability to maintain a constant target force as compared to the
population’s ability to maintain the same target force and is defined in (6).

cation of the same target force, show that both V and k have a main effect on the
metrics (p < 0.01). As these metrics have been normalized by the isometric pop-
ulation means at each respective target force, the effect of force levels on these
metrics is not as apparent as it was with Et and MADt. The results in Fig. 9 show
that Es degrades rapidly with an increase in k and remains approximately constant
for different values of V . At high values of k, a slight improvement in performance
is seen with increasing V (Fig. A2b). For values of k below 0.32 mm/(N · s) perfor-
mance is within 1% of the isometric case. At k = 0.1 mm/(N · s) the value for Es is
distributed around zero, indicating that Es is similar to the isometric case. Although
MADs seems to have less structure at first, it can be seen that for k = 0.1 mm/(N · s),
MADs is similar to the isometric case (Fig. 11b). MADs seems to be relatively high
for all other values of V and k.
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Figure 10. Experimental results for metric MADt for the low-speed experiment, for all nine subjects
combined. MADt is a measure of the subject’s tremor at a particular force level normalized by the
target force and is defined in (7).

The partial effect sizes for the ANOVA tests performed are given in Table 2. The
partial effect size gives the proportion of variance in the metric accounted for by a
particular factor: η2

k gives the amount of variance in the metric accounted for by k

and η2
V gives the amount of variance in the metric accounted for by V . η2

V is higher
than η2

k in both of the experiments for the metric Et. η2
k is higher than η2

V for metrics
MADt and Es. An examination of the partial effect sizes supports what was observed
in Figs 8–11. One thing that is clear is that, for most of the metrics (excluding
MADt) the variance between individual trials (and likely between subjects) is large
compared to the variance that is explained by k and V .

4. Discussion

From our statistical analysis it can be seen that both admittance gain (k) and velocity
(V ) have an effect on force control precision. From analysis of results presented in



644 M. Nambi et al. / Advanced Robotics 25 (2011) 629–650

Figure 11. Experimental results for metric MADs for the low-speed experiment, for all nine subjects
combined. MADs is a measure of the subject’s tremor at particular force level compared to the popu-
lation’s tremor in the isometric case for the same force level and is defined in (8).

Table 2.
Partial effect sizes for ANOVA tests, with respect to admittance
gain (η2

k
) and velocity (η2

V
), for the low-speed experiment

Et Es MADt MADs

η2
k

0.03 0.10 0.49 0.03

η2
V

0.17 0.007 0.24 0.10

this paper, it appears that the ability to control applied force degrades rapidly as we
increase k for the general population. Wu et al. [8] concluded that only velocity de-
termines human force control precision during admittance control. In this paper we
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have provided compelling evidence that, at least in the velocity range considered
here, both velocity and admittance gain have an effect on force control precision
and that admittance gain has the most pronounced effect. Not all of the tests for
force control performed in Ref. [8] were conducted using the proportional-velocity
control law (1). This could explain the difference in results between the two stud-
ies. Additionally, their experimental procedure involved rapid accelerations, which
do not typically appear in actual admittance-controlled devices, which might have
affected the outcome by either providing cueing or masking to the subjects.

The metrics Es and MADs show that we have performance similar to the iso-
metric case at k = 0.1 mm/(N · s). At higher values of k, force control precision
steadily decreases with increasing k, as seen in Figs 9 and 11. We observe that
at k = 0.1 mm/(N · s) control precision remains constant for different values of V ,
whereas at V = 0.1 mm/s control precision changes with varying k (Figs 8b, 9b,
10b and 11b). Reduced performance is observed in the metric Es at V = 0.18 mm/s
in Fig. 9b. The target force at this point is less than 0.5 N and what we are observing
could be an effect of the high variability of force at such a low force level. Thus, at
k = 0.1 mm/(N · s) it is like we are performing a quasistatic task and performance
seems to be unaffected by movement.

For constant force, k and V are linearly coupled through control law (1). Force
level seems to be a strong effect on metrics Et and MADt (Figs 8c and 10c). We
see a strong dependence on V at low velocities. Low V means low force and we
know that our force control ability is poor at low forces (below 0.5 N, see Fig. 6).
The high partial effect size for V on metric Et could be an effect of low forces
encountered at low velocities, since the ANOVA does not explicitly test for a main
effect of F , as the experiment was not designed to be balanced in F .

Based on the control law (1), we could also conclude that poor force control at
high k and low V is actually a measurement of poor force control at low values
of applied force F . Although we normalized the metrics by the static case at each
force value, in an attempt to control for the effect of changing the applied force
level, it may be the case that when a subject is pushing harder and consequently
has a stiffer finger, the subject is more robust to movement of the system. Based
on the analysis of the data collected, human force control performance is best at
low admittance gains. To obtain precise force control, k should be kept as low as
0.1 mm/(N · s) if possible. However, this will require the application of large forces
over sustained periods to generate useful velocities, which could increase operator
fatigue, which in turn could result in loss of force control precision.

Finally, our results apply directly to force control on admittance-type devices,
but it is not clear from this experiment how these results will extend to precise
trajectory control of admittance-type devices. However, we do have some indica-
tion. Recall that MADt is a measure of normalized input noise to our system. MADt
varies linearly with k and we find MADt is more sensitive to changes in k as velocity
decreases, indicating that k is a better predictor of force control precision than V at
low velocities (and target force is a better predictor than both k and V ). Consider
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a human operator controlling an admittance-type micromanipulation system under
guidance of an optical microscope. If the human attempts to do a slow-moving
(quasistatic) precise positioning task, the micromanipulator’s tremor that is visu-
ally observed (relative to the intentional movements) will essentially be MADt. In
any positioning task, we must reduce the speed to zero and there are two ways to
accomplish this: push softer or reduce k. We have seen that humans have poor force
control at low forces (i.e., they have high MADt at less than 0.5 N), which suggests
the possible use of a deadband to restrict any motion at very low force. However,
it may also be possible to change to a lower fixed k value for low velocities during
high-precision tasks or to implement a nonlinear control law (e.g., the quadratic
law V = kF 2) to attenuate the effect of tremor at low velocities. Both a deadband
and a quadratic controller are being implemented on the University of Utah Active
Handrest [4].

5. Conclusions

In this paper, we have studied the effects of velocity (V ), admittance gain (k)
and force (F ) on human force control ability when using admittance-type devices,
which have applied force as their input signal. We believe that humans feel most
comfortable interacting with devices that have a dissipative dynamic behavior, and
that there exists a range of forces and velocities within which humans optimally
interact with admittance-type devices. We found that the nominal force level is the
most important factor in determining force control precision and human force con-
trol ability is poor at very low forces (below 0.5 N). To maintain a high level of
control over the movement of the device, k should be chosen such that meaningful
interactions require nominal forces larger than 0.5 N. This can be accomplished by
the use of a deadband and/or by varying the effective admittance value to attenuate
the effects of tremor at low force inputs. Once the effect of force was accounted
for, the admittance gain (k) was found to be the second-most important factor in
determining force control precision. At k = 0.1 mm/(N · s), force control precision
was found to be similar to the isometric case (i.e., when the device is stationary).
For this admittance value, the human force input can be regarded as an exogenous
system input, rather than treating the human as a part of the closed-loop feedback
system. This can be used to make higher-performance, less-conservative controller
designs. Even with a small increase in k, force control precision degrades measur-
ably, including during very slow movements that are barely perceived as moving.
For the highest level of precision, low admittance gains are recommended, but it
could result in operator fatigue due to application of large forces. For optimal per-
formance, a tradeoff has to be reached between force control precision and operator
comfort.
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Appendix

Data for the high-speed experiment is shown in this Appendix. Figures A1–A4
show a single experimental data set considered, respectively, for the metrics Et, Es,
MADt and MADs. Within each figure, two plots are included to show the data for a
given metric represented in two different ways, each of which provides insight to the
underlying behavior. Table A1 shows the partial effect sizes for ANOVA tests. This
high-speed experiment was used to inform the design of the low-speed experiment,
which was discussed in detail in Sections 3 and 4. The high-speed experiment was
also conducted as described in Section 2.
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Table A1.
Partial effect sizes for ANOVA tests, with respect to admittance
gain (η2

k
) and velocity (η2

V
), for the high-speed experiment

Et Es MADt MADs

η2
k

0.013 0.392 0.061 0.017

η2
V

0.24 0.052 0.055 0.029

Figure A1. Experimental results for metric Et for the high-speed experiment, for all nine subjects
combined. Et is a measure of the subject’s ability to maintain a constant target force, as a fraction of
the target force and is defined in (5).

Figure A2. Experimental results for metric Es for the high-speed experiment, for all nine subjects
combined. Es is a measure of the subject’s ability to maintain a constant target force as compared to
the population’s ability to maintain the same target force and is defined in (6).
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Figure A3. Experimental results for metric MADt for the high-speed experiment, for all nine subjects
combined. MADt is a measure of the subject’s tremor at a particular force level normalized by the
target force and is defined in (7).

Figure A4. Experimental results for metric MADs for the high-speed experiment, for all nine sub-
jects combined. MADs is a measure of the subject’s tremor at particular force level compared to the
population’s tremor in the isometric case for the same force level and is defined in (8).
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