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Abstract—This paper presents a three degree-of-freedom (3-
DOF) closed-loop position and 2-DOF open-loop orientation
control method for an untethered mockup magnetic capsule
endoscope in fluid with a single permanent magnet positioned
by a commercial robotic manipulator and a 3-DOF capsule-
position localization system. Using traditional methods known
to roboticists, we study the kinematics of untethered magnetic
manipulation using a single permanent magnet as the end-
effector of a robot manipulator. We present a control method
that maintains 5-DOF control of a magnetic capsule when the
robot manipulator is not near a kinematic singularity, and
seamlessly enables a capsule’s position to be controlled when the
manipulator nears a kinematic singularity by sacrificing control
over the capsule’s orientation. We demonstrate the method’s
robustness to a control rate of 25 Hz, reduced localization rates
down to 30 Hz, and the presence of manipulator singularities. 5-
DOF manipulation of an untethered device has been previously
demonstrated by electromagnetic systems only. This work has
applications for robotic capsule endoscopy of a fluid-distended
stomach.

I. INTRODUCTION

Untethered devices that derive their power from externally
applied magnetic fields have been an active area of research
due to their potential for accessing hard-to-reach areas of
the human body [5, 27]. These devices, which consist of
a magnetic body rigidly attached to a functional structure,
are particularly promising for use in the gastrointestinal (GI)
system, where an untethered magnetic capsule endoscope
could be used to actively image the GI system, making current
gastrointestinal screening procedures faster, safer, and less
invasive [27]. Untethered magnetic devices range in size from
the microscale to the mesoscale and are being applied to sur-
gical tasks in the eye [22], in vasculature [6], and other hard-
to-reach areas of the human body [5]. Untethered magnetic
devices are often viewed as end-effectors to a larger robotic
system that could consist of an arrangement of electromagnets
or a permanent magnet positioned in space.

There exist a variety of methods for employing magnetic
force and/or torque to propel and control untethered magnetic
devices. Irrespective to the form of propulsion, an unteth-
ered device containing a single permanent magnet can be
controlled with at most five degrees-of-freedom (5-DOF),
without additional externally applied nonmagnetic forces or
torques. To date, three electromagnetic systems have been
developed with the ability to perform 5-DOF magnetic manip-
ulation: the OctoMag [22] and Magnetecs [6] systems consist
of eight ferromagnetic-core electromagnets arranged around
a hemisphere and sphere, respectively, directed toward the
manipulation workspace, and a system developed by Olym-
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Fig. 1. The axially magnetized actuator magnet (a) is used to wirelessly
control a mockup capsule endoscope (b), which is shown levitating in a water-
filled tank (c) using a 6-DOF robotic manipulator and vision localization
system. Note the large distance between the actuator magnet and the capsule.

pus and Siemens, consisting of 12 electromagnets through
which a patient is positioned, for the control of a magnetic
capsule endoscope in a fluid-distended stomach [16]. 6-DOF
electromagnetic control of an untethered device containing two
permanent magnets has been demonstrated in [25]. The work
presented in this paper focuses on the control of devices that
contain one permanent magnet.

Compared to electromagnetic actuation systems, permanent-
magnet systems are gaining attention for their ability to gen-
erate magnetic fields that can apply clinically relevant forces
and torques to a magnetic device in a compact form-factor.
Whereas electromagnetic systems can be designed to generate
fields that are easy to control, permanent-magnet systems
(particularly those that employ a single permanent magnet)
have been constrained by the complex geometry of the dipole
field that they produce. In similar work, a permanent magnet
has been positioned both by hand and with a robot manipulator
for the control of an untethered capsule endoscope, but with
4-DOF control (i.e., 2-DOF orientation control and 2-DOF
position control since the endoscope always contacts a tissue
surface) [10, 12, 13, 15, 26]. Permanent-magnet systems
have also been used to actuate untethered devices by rolling
[2, 4, 14, 24, 28] and helical propulsion [4, 17].

In this paper, we present a method for 3-DOF position
and 2-DOF orientation control of a mockup magnetic capsule
endoscope in fluid using a single actuator permanent magnet
positioned above the capsule with a 6-DOF commercial robotic
manipulator, with a target application of stomach capsule



endoscopy (the same as the Olympus-Siemens system). The
magnetic force controls the total force (the sum of forces due
to gravity, buoyancy, and the magnetics) acting on the capsule
and thus the capsule’s position, while the applied magnetic
torque controls the capsule’s heading (i.e., 2-DOF pointing
orientation). The magnetic force and torque are controlled by
adjusting the position and orientation of the actuator magnet,
using the 3-DOF capsule position measured with a localization
system. This paper presents a control strategy that maintains
5-DOF control of an untethered mockup capsule endoscope
when the robot manipulator is not near a kinematic singularity,
and sacrifices control over the capsule’s heading when the
robot manipulator nears a singularity in order to maintain
control over the magnetic capsule’s position. 5-DOF manipula-
tion of an untethered device has been previously demonstrated
by electromagnetic systems only. This work appeared in a
preliminary form in [3].

In this paper, scalars are denoted by lower-case standard font
(e.g., c), vectors are denoted by lower-case bold font (e.g., x),
and matrices are denoted by capital standard font (e.g., M ).
Unit vectors are denoted with the “hat” symbol (e.g., x̂), and
time derivatives are denoted by the “dot” symbol (e.g., ẋ).

II. FORWARD AND DIFFERENTIAL INVERSE KINEMATICS

The capsule endoscope is assumed to contain a permanent
magnet, positioned at the capsule’s center-of-gravity, with its
dipole moment (i.e., the vector from the south to north pole)
denoted by mc ∈ R3 in units A·m2, which is assumed to be
parallel to the capsule’s principle axis. The actuator magnet’s
dipole moment is denoted by ma ∈ R3 and is positioned
by a robotic manipulator with at least 5-DOF; rotation of the
actuator magnet about ma is not needed. The positions of the
actuator and capsule endoscope magnet centers are denoted
by pa ∈ R3 and pc ∈ R3, respectively, in units m.

We assume that the magnetic field h(p, m̂a) ∈ R3 gen-
erated by the actuator magnet can be modeled by the point-
dipole model, which is given by

h(p, m̂a) =
‖ma‖
4π‖p‖3

D(p̂)m̂a, (1)

where p = pc − pa is the vector from the center of the
actuator magnet to the center of the capsule’s magnet (i.e.,
the relative position), D(p̂) = 3p̂p̂T − I , and I ∈ R3×3 is
the identity matrix. Since the magnitudes of ma and mc are
constant (they are the dipole moments of permanent magnets),
we express all functions of ma and mc as functions of m̂a

and m̂c to explicitly indicate that their magnitudes do not vary.
The field lines generated by the point-dipole model are shown
in Fig. 2(a). Equation (1) exactly predicts the field produced
by a spherical magnet and is an approximation for every other
geometry that becomes more accurate with increasing distance
[9]. The geometry of a nonspherical magnet can be adjusted
to make (1) a more accurate approximation in the near-field
[1]. In this section, we assume that the dipole field accurately
models the field of the actuator magnet.

(a) Dipole field lines and normalized magnitude ||h||/||ma|| (mA/m) 

(b) Dipole force lines and normalized magnitude ||fm||/(||ma|| ||mc||) (mN) 
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Fig. 2. Dipole field lines and the normalized actuator field magnitude
‖h‖/‖ma‖ are shown in (a). Magnetic force lines, generated with (6),
assuming the capsule’s moment mc is aligned with the applied dipole field h,
and the resulting normalized magnetic force magnitude ‖fm‖/(‖ma‖‖mc‖),
are shown in (b). When the capsule’s dipole moment is aligned with the
applied magnetic field, the magnetic force tends to be attractive. The color
scale is logarithmic in both plots.

The robot manipulator’s n revolute and prismatic joint
velocities q̇ ∈ Rn are mapped to the actuator magnet’s
spatial ṗa and angular ωa velocities by the robot manipulator
Jacobian matrix JR(q) ∈ R6×n:[

ṗa

ωa

]
= JR(q)q̇. (2)

The point-dipole field (1) is radially symmetric about the
actuator dipole moment and any component of ωa in the
direction of m̂a produces no change in the magnetic field
applied to the capsule. As a result, the robot manipulator
Jacobian JR(q) can be converted into an actuator-magnet
Jacobian matrix JA(q) that maps manipulator joint velocity q̇
to the actuator magnet’s spatial velocity ṗa and the actuator
dipole moment’s directional velocity ˙̂ma = ωa×m̂a, with no
contribution from the component of ωa parallel to m̂a, by[

ṗa

˙̂ma

]
=

[
I 0
0 S(m̂a)

T

]
JR(q)q̇ = JA(q)q̇, (3)

where S(m̂a) ∈ so(3) is the skew-symmetric form of the
cross-product operation. The matrix JA(q) can be used to ap-
proximately map small changes in the manipulator’s joints to
small changes in actuator-magnet position and small changes
in the heading of the actuator magnet’s dipole moment:[

δpa

δm̂a

]
≈ JA(q)δq. (4)



Note that JA(q) is not invertible and is at most rank five.
When the capsule is placed in the magnetic dipole field (1)

generated by the actuator magnet, a magnetic torque τm =
µ0mc × h(p, m̂a) and force fm = µ0(mc · ∇)h(p, m̂a) are
applied to the capsule’s magnet, which are given by

τm(p, m̂a, m̂c) =
µ0‖ma‖‖mc‖

4π‖p‖3
m̂c ×D(p̂)m̂a (5)

fm(p, m̂a, m̂c) =
3µ0‖ma‖‖mc‖

4π‖p‖4
(
m̂am̂T

c

+ m̂cm̂
T
a + (m̂T

cZm̂a)I
)
p̂, (6)

where Z = I − 5p̂p̂T and µ0 = 4π × 10−7 N·A−2 is the
permeability of free-space. The magnetic torque aligns the
capsule’s dipole moment with the applied field, while the
magnetic force pulls the capsule in a direction determined by
the field’s spatial derivatives and the capsule’s dipole moment.

When the magnetic capsule is actuated in fluid at low
speeds, small accelerations, and without contact with other
objects, there is little resistance to change in the capsule’s
heading, which enables the magnetic torque to quickly align
the capsule’s dipole moment with the applied field. In these
conditions, we can assume that the capsule’s dipole moment
is approximately aligned with the applied field for all time:

m̂c(p, m̂a) ≈ ĥ(p, m̂a) = D̂(p̂)m̂a, (7)

and the capsule’s heading can be controlled by adjusting the di-
rection of the magnetic field without controlling the magnetic
torque directly using (5), which would require measurement of
the direction of m̂c (i.e., the capsule’s heading). It also implies
that m̂c can be predicted by (7) using only a measurement
of the position p obtained by a localization system, and that
the magnetic force applied to the magnetic capsule can be
predicted by substituting (7) into (6):

fm(p, m̂a) ≈
3µ0‖ma‖‖mc‖

4π‖p‖4‖D(p̂)m̂a‖

(
m̂am̂T

a

− (1 + 4(m̂T
a p̂)2)I

)
p̂. (8)

Note that 5-DOF magnetic control can be performed without
making the low-speed, small-acceleration, and non-contact
assumptions if a 5-DOF measurement of the capsule’s pose
(i.e., 3-DOF position and 2-DOF orientation of the capsule’s
dipole moment) is available. In this case, the applied magnetic
force fm and the direction of the applied magnetic torque τ̂m
can be controlled independently (the torque magnitude cannot
be controlled independently of the force magnitude). As we
will demonstrate, 5-DOF control can still be achieved using
only 3-DOF measurement of the capsule’s position.

The total force f applied to the capsule consists of the appar-
ent weight fw (sum of the capsule’s weight and buoyant force),
which is constant, and the magnetic force fm. We assume that
the capsule is heavier than its buoyant force, making fw point
in the direction of gravity. In this case, the capsule can be
made to levitate by positioning the actuator magnet above the
capsule, where the attractive magnetic force perfectly balances

the capsule’s apparent weight and the magnitude of the total
applied force f is zero. If the capsule is desired to ascend,
then the actuator magnet is moved closer so that the magnetic
force is larger than the capsule’s apparent weight and the total
applied force is directed upward. If the capsule is desired to
descend, then the actuator magnet is positioned farther away
from the capsule’s levitation position and the total applied
force points down. The maximum downward force that can
be applied is the capsule’s apparent weight fw.

Using (7) and (8), a nonlinear magnetic actuation equation
can be formed that relates the relative position p and the
direction of the actuator magnet m̂a to the total applied force
f and the direction of the applied magnetic field ĥ:[

f

ĥ

]
=

[
fm(p, m̂a) + fw

D̂(p̂)m̂a

]
= F(p, m̂a), (9)

which is purely a function of the actuator magnet’s pose, that
is, the relative position p and the actuator magnet’s dipole
moment direction m̂a, which in turn, are purely specified by
the capsule’s position pc and the robot manipulator’s pose q.

In order to solve the “inverse” problem (i.e., computing
the necessary manipulator pose that will apply a desired total
applied force and an applied magnetic field heading, given the
capsule’s position), the nonlinear actuation equation (9) is first
linearized with the Jacobian matrix JF ∈ R6×6, computed
by differentiating (9) with respect to the relative position p
and the actuator dipole moment m̂a. Linearization produces
the approximate mapping between small changes in relative
position and actuator moment direction to small changes in
the applied force and field heading:[

δf

δĥ

]
≈ JF (p, m̂a)

[
δp
δm̂a

]
(10)

= JF (p, m̂a)

([
δpc

0

]
+

[
−I 0
0 I

] [
δpa

δm̂a

])
, (11)

where (11) results from substituting δp = δpc − δpa into
(10). The relation (11) divides a small change in applied total
force and applied field heading into the result of a small
change in capsule position δpc and a small change in the
actuator magnet’s pose (i.e., the actuator-magnet position δpa

and dipole heading δm̂a), which is related to small changes
in the manipulator’s joints by the Jacobian JA (4).

Substituting (4) into (11) produces the relationship between
small changes in the manipulator’s joints and capsule position
to small changes in applied total force and field heading:[

δf

δĥ

]
≈ JFA(p,q)δq + JF (p, m̂a)

[
δpc

0

]
(12)

JFA(p,q) = JF (p, m̂a)

[
−I 0
0 I

]
JA(q). (13)

The actuator magnet’s dipole moment m̂a does not appear in
the arguments of JFA since m̂a is set by the robot manipu-
lator’s joints q using the manipulator’s forward kinematics.

Equation (12) can be used inside a control loop where small
changes in capsule position δpc are obtained by a capsule



localization system, and δf and δĥ are small desired changes
produced by a controller governing the magnetic capsule’s
pose. In this context, (12) can be rearranged to produce

δd =

[
δf

δĥ

]
− JF (p, m̂a)

[
δpc

0

]
≈ JFA(p,q)δq, (14)

where δd is a desired change in applied force and field
heading resulting only from a change in the manipulator’s
joints. Equation (14) can be inverted to produce the inverse
mapping of desired change in applied force and a change in
field heading to a necessary change in the manipulator’s joints
using the Moore-Penrose pseudoinverse:

δq ≈ JFA(p,q)†δd. (15)

If multiple solutions of (15) are possible (i.e., the manipulator
has more than 5-DOF), then the pseudoinverse solves (15) and
minimizes ‖δq‖. (A generalized pseudoinverse can be applied
for a manipulator where the units of δq are inconsistent [18].)
Given an initial joint configuration q0, (15) can be integrated
in time to produce qt without explicitly solving the inverse
kinematics of the complete manipulator-magnet system [20].
This approach breaks down when the manipulator is near a
kinematic singularity, which we will address later in this paper.

III. ANALYZING THE JACOBIAN JFA(p,q)

For 5-DOF holonomic control, JFA(p,q) must be rank five.
Since JFA(p,q) is the product of JF (p, m̂a) and JA(q),
we will analyze the rank of the Jacobian JF (p, m̂a) and the
Jacobian JA(q) separately. For readability, we will refer to
the Jacobians JFA(p,q), JF (p, m̂a) and JA(q) without their
arguments in the text (i.e., as JFA, JF , and JA).

Prior to analyzing the rank of JF , we first scale the columns
and rows of JF to produce a nondimensional Jacobian J̃F
that approximately maps its preimage, consisting of nondi-
mensional changes in position δp/‖p‖ and changes in actuator
magnet heading δm̂a (already nondimensional), to its image,
consisting of nondimensional changes in force δf/‖fm‖ and
applied field heading δĥ (already nondimensional):

J̃F (p, m̂a) =

[ 1
‖fm‖I 0

0 I

]
JF

[
‖p‖I 0
0 I

]
(16)

where I ∈ R3×3 is the identity matrix.
The nondimensional Jacobian J̃F is produced by post- and

premultiplying JF with a series of elementary matrices, which
guarantees that rank J̃F = rank JF and enables the rank of
JF to be found using the singular value decomposition of J̃F
with unit-consistent singular values, which reveal the rank of
JF . Since the applied field direction ĥ cannot change in a
direction parallel to itself, the smallest singular value σ6 must
be zero. The second smallest singular value σ5 reveals whether
the rank of rank J̃F = 5. Fig. 3 shows σ5 plotted on a plane
in which the actuator dipole moment ma lies. Because the
magnetic field is radially symmetric about the dipole moment
ma, a plot of σ5 on any plane in which ma lies will be
equivalent to Fig. 3. The minimum value taken on by σ5 is
0.123, indicating that J̃F (and thus JF ) is always rank five.
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Fig. 3. The second smallest singular value, σ5, of the normalized magnetic
actuation Jacobian J̃F is plotted (with a logarithmic colorscale) on any plane
in which the actuator dipole moment ma lies. The smallest value taken on
by σ5 is 0.123 and occurs on the line on which the dipole ma lies. The fact
that σ5 > 0 indicates that J̃F (and thus JF ) is always rank five.

The fact that JF is always rank five implies that a single per-
manent magnet in space, irrespective to the robot manipulator
that maneuvers it, can exhibit 5-DOF control over a magnetic
device. The ability of a complete robotic system, including
magnet and manipulator, to exhibit 5-DOF magnetic control
is precluded only by the ability of the robot manipulator to
position the actuator magnet with 3-DOF and the actuator
magnet’s dipole moment with 2-DOF. If the rank of the
Jacobian JA is five, then the robotic system possesses 5-DOF
control over the untethered capsule. If the actuator-magnet
pose required to achieve a desired applied total force and
magnetic field heading places the manipulator into a kinematic
singularity, then 5-DOF magnetic control is lost.

We numerically analyze the configurations of total forces
and field headings that make the manipulator enter a singular-
ity by first nondimensionalizing the Jacobian JA as

J̃A(q) =

[ 1
‖p‖I 0

0 I

]
JA(q), (17)

which can then be substituted, along with J̃F , into (13) for
JF and JA to produce the normalized Jacobian

J̃FA(p,q) = J̃F (p, m̂a)

[
−I 0
0 I

]
J̃A,(q) (18)

which approximately maps change in manipulator joints δq
(already nondimensional) to change in nondimensional applied
force and change in field heading (already nondimensional).

The Moore-Penrose pseudoinverse J̃FA
† is the inverse

mapping that minimizes ‖δq‖ if the robot manipulator is over-
actuated. The largest singular value of J̃FA† (i.e., the recipro-
cal of the smallest nonzero singular value of J̃FA) can be used
to describe the worst case of how a unit-magnitude vector of
nondimensional change in applied force and field heading are
approximately mapped to a magnitude change in manipulator
joints. If the largest singular value approaches infinity, then
the robot manipulator is near a kinematic singularity.

As an example, consider the case where a capsule is desired
to point downward (in the direction of gravity) as it is being
repositioned by an applied magnetic force, and the manipulator
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colorscale, for a scenario where a capsule (positioned as shown) is desired to point downward (m̂c = −ẑ). The singular value plots are generated by placing
the actuator magnet at every position in the ŷ,ẑ and x̂,ẑ planes and directing the actuator magnet’s dipole moment ma according to (19), so that the applied
field at the capsule’s position points the capsule down. The regions outside the reachable workspace of the manipulator are shown in gray. The regions where
the largest singular value exceeds approximately 70 correspond to an actuator magnet pose that place the manipulator near a kinematic singularity. Fifteen
numbered actuator poses are shown in (a) and (b) that correspond to the application of a correspondingly numbered 0.3mN total force acting on the capsule
depicted in the figure. Pose 0 is the equilibrium position where the net applied force is zero. Front and left views of select manipulator configurations for five
of the fifteen poses are shown in (c).

used to maneuver the actuator magnet is a 6-DOF serial
link manipulator. For this example, we have assumed the
capsule, actuator magnet, and manipulator are those used for
the experiments herein and the capsule is placed in a typical
position as illustrated in Fig. 4. In Figs. 4(a) and 4(b), the
manipulator’s workspace has been sliced into x̂,ẑ and ŷ,ẑ
planes. For every possible actuator-magnet position on both
planes, the actuator magnet’s direction m̂a is set so that the
field at the capsule position points in the −ẑ direction. The
solution for m̂a is given by

m̂a = − ̂D−1(p̂)ẑ, (19)

where D−1(p̂) = (D(p̂) − I)/2 admits a unique actuator

magnet pose for every actuator magnet position [4].
The largest singular value of J̃FA† resulting from the robot

manipulator configuration that places the actuator magnet in
every feasible position in the x̂,ẑ and ŷ,ẑ planes and directs
the actuator magnet’s moment according to (19) are shown in
Figs. 4(a) and 4(b). The regions where the manipulator nears
its spherical-wrist kinematic singularity cause the singular
value to become large. The regions outside the manipulator’s
reachable workspace are shown in gray.

Each actuator magnet pose causes a magnetic force to
be applied to the capsule. Fifteen numbered actuator mag-
net poses are illustrated in Figs. 4(a) and 4(b) along with
the resulting correspondingly numbered total force vectors



applied to the capsule. Each force vector denotes a total
force magnitude of ‖f‖ = 0.3mN. The resulting manipulator
poses for select numbered total force vectors are shown in
Fig. 4(c). The pose that balances the applied magnetic force
and the capsule’s apparent weight is labeled as pose “0”.
The manipulator’s physical workspace limits and kinematic
singularities complicate which forces the system can apply. For
example, due to workspace limits of the manipulator, forces
labeled “9,” “10,” and “11” are not achievable, and due to the
manipulator’s wrist singularity, transitions from the capsule
levitation configuration (pose “0”) to a 0.3mN force in the
−x̂ direction (pose “13”) would require the manipulator to
pass through its wrist singularity. Note that the direction of
the actuator magnet’s dipole moment satisfies (19) and applies
a magnetic field in the −ẑ direction at the capsule’s position.

IV. MANAGING MANIPULATOR SINGULARITIES

Managing a manipulator’s motion near kinematic singular-
ities, while applying differential kinematic inversion, is well
studied [20]. We have implemented a strategy that sacrifices
control over the capsule’s heading in order to maintain control
over the magnetic force applied to the capsule (thus its posi-
tion) in the presence of a manipulator singularity. Sacrificing
heading control transforms the complete magnetic manipula-
tion system into one that is kinematically over-actuated.

Given a small desired change in applied field heading δĥd

and a small desired change in applied magnetic force δfd, the
problem of sacrificing heading control, while maintaining con-
trol over the applied magnetic force, is posed as a constrained,
quadratic least-squares problem, of the form

minimize
δq

∥∥∥∥∥∂ĥ

∂q
δq− δĥd

∥∥∥∥∥ (20)

subject to
∂f

∂q
δq = δfd (21)

‖Wδq‖ ≤ r, (22)

which we solve numerically, where the matrices ∂f/∂q ∈
R3×n and ∂ĥ/∂q ∈ R3×n are the top and bottom three rows
of the Jacobian JFA, respectively. The constraint (21) guaran-
tees the desired change in applied force δfd is met (provided
∂f/∂q has full row rank), and the constraint (22) enforces a
maximum bound r on the magnitude of joint motion, weighted
by the invertible matrix W . The cost function (20) attempts
to reduce the error between the desired and actual change in
applied field heading. The weight matrix W can be used to
penalize select joint motions, to homogenize disparate units
of δq, or to keep the magnitude of δq within a “trust-region,”
where the Jacobian JFA is accurate. Note that if the magnitude
constraint (22) is inactive (e.g. if the robot manipulator is
not near a kinematic singularity) and JFA is rank-five, then
the solution to the formulation (20)–(22) is equivalent to the
solution obtained with the pseudoinverse (15).

There are two ways for the formulation (20)–(22) to break
down. The first is if the matrix ∂f/∂q does not have full row
rank and the constraint (21) is not satisfiable. The second is

if the constraints (21) and (22) become mutually exclusive,
which could occur if ∂f/∂q is ill-conditioned, ‖δfd‖ is too
large, or r is too small for the required joint motion δq.

V. EXPERIMENTAL RESULTS & DISCUSSION

The mockup capsule is actuated in a tank of water by an
axially magnetized, grade N42, cylindrical NdFeB magnet
with a height of 31.75mm, a diameter of 31.75mm, and
with a dipole moment of ‖ma‖ = 26.2A·m2, positioned
by a Yaskawa-Motoman MH5 6-DOF robotic manipulator.
The capsule contains a cube NdFeB permanent magnet with
its dipole moment ‖mc‖ = 0.126A·m2 arranged parallel to
the capsule’s principal axis; the remainder of the capsule’s
volume is filled with air. The capsule’s weight is 15.3mN and
the buoyancy force in water is 14.8mN. The position of the
capsule is triangulated by two orthogonal Basler A602FC cam-
eras, which is used with an extended Kalman filter for capsule-
position feedback. Unless otherwise stated, the localization
system’s update frequency is 90Hz. The experimental setup,
consisting of the robot manipulator, vision system, mockup
capsule, and the actuator magnet is shown in Fig. 1.

A PID feedback controller (using the triangulated capsule
position) with a gravity-compensating feedforward term, was
implemented to servo the capsule to any desired position in
the workspace. At every iteration, the PID controller takes as
input a desired capsule position pc,d, an estimated capsule
position p̄c, and an estimated capsule spatial velocity ˙̄pc,
and produces a desired change in applied force δf , which is
then combined with a desired change in applied field heading
δĥd and converted into robot manipulator motion by solving
the constrained least-squares formulation (20)–(22) with an
identity weight matrix W = I ∈ R6×6 unless otherwise noted.
An estimate of the capsule’s heading is obtained from the
measured position using (1), and is controlled in an open-
loop fashion. In this paper, we compute a desired change in
field heading (which is equivalent a desired change in capsule
heading) as the difference between a desired capsule heading
and an estimate of the current capsule heading, which we
assume to be small at each controller iteration. Due to a
limitation of the commercial manipulator control system, the
robot manipulator’s position is updated at 25Hz.

The theory presented herein, as well as our control system,
is demonstrated by controlling the magnetic mockup capsule
along multiple predefined trajectories. Fig. 5(a) shows an im-
age sequence of the capsule following a raster-scan trajectory
where the capsule moves from right to left along a square-
wave path with an amplitude of 25mm and a period of 40mm.
Such a trajectory could be used to perform automated visual
coverage of a surface for inspection tasks. The desired square-
wave trajectory and the actual paths traveled by the capsule
while moving at desired spatial velocities of 2mm/s, 4mm/s,
8mm/s and 16mm/s are shown in Fig. 5(b). In general, the
trajectory tracking performance is good at slow speeds and
worsens with increasing desired spatial velocity. It is important
to note that at high spatial velocities, a fluidic torque can be
generated that may cause the capsule’s dipole moment mc
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Fig. 5. An image sequence of the capsule completing a raster-scan trajectory
(moving from right to left) with a desired capsule spatial velocity of 4mm/s
is shown in (a), along with the approximate path taken by the actuator
magnet. The capsule is oriented in the x̂ direction (toward the camera).
The tracking performance of the control system for desired capsule spatial
velocities ranging from 2mm/s to 16mm/s is shown in (b). With a desired
spatial velocity of 16mm/s, the raster-scan trajectory is completed in 35 s.

to become misaligned with the applied magnetic field h. If
this occurs, then the assumptions of Sec. II are violated and
the actual applied magnetic force may deviate from expected.
This occurs to the capsule when following the square-wave
trajectory with a desired spatial velocity of 16mm/s, causing
the capsule to deviate wildly from desired, which can be
particularly observed in the x̂,ẑ plane.

The vision system used to track the 3-DOF capsule po-
sition is not feasible for clinical use. Existing clinically
relevant localization strategies include RF triangulation [11],
magnetic methods [7, 19, 21, 23], and CT scan or x-ray
fluoroscopy [8]. In the previous experiments, the mockup
capsule’s position was localized at 90Hz by the vision system.
Clinically feasible localization methods may not provide the
capsule’s position at high rates (the method of [7] can perform
3D position-tracking at approximately 50Hz). The ability
to actuate a mockup capsule with reduced 3D localization
update frequencies is demonstrated in Fig. 6, which shows the
mockup capsule performing a remote-center-of-motion (RCM)
maneuver, requiring the capsule’s position to rotate around
(while simultaneously pointing at) a fixed point in space.
The update frequency of the tracking system (including the
extended Kalman filter) was reduced to 60Hz and 30Hz, in
order to simulate the update rate of a more clinically relevant
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Fig. 6. The mockup capsule follows a desired remote-center-of-motion
(RCM) maneuver in (a), with the approximate path taken by the actuator
magnet shown. The position-following performance in the x̂,ẑ and ŷ,ẑ planes,
with the localization system tracking the capsule at 30, 60, and 90Hz, is
shown in (b). The heading-following performance of the mockup capsule
(measured in the ŷ,ẑ plane) is shown in (c). The capsule heading is measured
using the vision system but is controlled in an open-loop fashion.

localization method. Fig. 6(a) shows images of the capsule
performing the RCM maneuver with 90Hz localization rate,
while Fig. 6(b) shows the 3D position-tracking performance
of the capsule for localization rates of 30, 60, and 90Hz. The
average position-tracking error for the localization rates of 30,
60, and 90Hz is 2.8, 2.2, and 2.1mm, respectively, with a
standard deviation of 1.8, 1.2, and 1.0mm, respectively. The
capsule’s heading-tracking performance is shown in Fig. 6(c).
The heading-tracking performance tends to vary less with the
localization frequency. The capsule moves at approximately
2mm/s and completes the RCM maneuver in 62 s.

Fig. 7(a) shows the capsule transitioning from the config-
uration that forces the robot manipulator to enter its wrist
singularity, to a configuration where the capsule points in
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Fig. 7. In (a), the user commands the capsule to rotate from a configuration
that forces the robot manipulator into its wrist singularity, to a configuration
with the capsule pointed in the −ẑ, while maintaining the capsule’s position
in space. Rather than immediately rotating the third joint to accommodate the
desired capsule motion, the control method presented guides the manipulator
to first rotate the capsule about the ẑ axis in order to reduce net manipulator
motion, while maintaining control over the capsule’s position. In (b), the
capsule follows a U-shaped trajectory even with the manipulator near its wrist
singularity, which demonstrates 3-DOF control over the capsule’s position.
The approximate path taken by the actuator magnet is shown in both examples.

the −ẑ direction by rotating the desired capsule direction
10◦ around the −ŷ axis, while simultaneously keeping the
capsule’s position in space stationary. In this example, the
weight matrix W = diag([1, 1, 1, 20, 1, 1]) and the bound
r = 0.04 radians, which penalizes motion in the manipula-
tor’s fourth joint more than the others. In the initial robot
manipulator configuration at time t = 0 s, the desired change
in the capsule direction would require the fourth joint of the
robot manipulator to rapidly rotate π/2 radians. Rather than
rapidly rotating the fourth joint, the constraint ‖Wδq‖ ≤ r
penalizes the fourth joint’s velocity and forces the manipulator
to first rotate the capsule about the ẑ axis (which can be seen
at t = 18 s) before rotating about the ŷ axis as desired. This
demonstrates the ability of the controller to balance desired
changes in the capsule’s configuration that may conflict with
the robot manipulator’s kinematics in a singularity.

Fig. 7(b) shows the mockup capsule following a U-shaped
trajectory, with the desired capsule dipole moment pointing
in the direction that forces the robot manipulator into its
wrist singularity. The robot manipulator’s joint configuration
is nearly in the wrist-singular configuration throughout the

trajectory. In this demonstration, the Jacobian JFA is ill-
conditioned and causes the inverse-kinematics approach using
the psuedoinverse (15) to break down, which would result in
incorrect magnetic forces being applied to the capsule. By
solving the inverse kinematics using the formulation (20)–
(22), control over the applied magnetic force is maintained
(as indicated by the successful completion of the desired
trajectory) but at the sacrifice of the capsule’s heading.

The stability of the mockup capsule under the control of the
methods presented is difficult to study due to the nonlinearity
of the applied magnetic field, nonlinearities resulting from
the constraints of the formulation (20)–(22), and in our case,
velocity limitations of the manipulator. However, provided the
magnetic torque dominates the mockup capsule’s rotational
dynamics and the actuator magnet is quasistatic, the applied
magnetic torque will always stably align the capsule’s dipole
moment with the applied dipole field. In general, robotic
manipulators tend to be bandwidth-limited. In the experiments,
water provided damping that insures stability in the capsule’s
position. Actuating the capsule in air with little damping would
be difficult using a commercial manipulator.

The volume of the actuator magnets plays a role in robust-
ness. Since the applied magnetic force scales as ‖p‖−4, small
changes in the distance ‖p‖ cause a change in the magnetic
force that scales as ‖p‖−5, which becomes large when ‖p‖ is
small. Increasing the size of the actuator and capsule magnets
increases the magnitude of their dipole moments and allows
the capsule to be actuated where ‖p‖ is greater, and the
applied magnetic force is less sensitive to changes in ‖p‖. If
the manipulator has velocity limits, then the actuator-magnet
volume should be selected so that the manipulator’s velocity
is not exceeding when compensating for typical disturbances
in the capsule’s position. Future work should include further
study of stability and robustness.

VI. CONCLUSION

We have presented a method for 3-DOF position and 2-DOF
orientation control of a mockup magnetic capsule endoscope
using a single permanent magnet positioned by a 6-DOF serial-
link manipulator, while only requiring the 3-DOF capsule
position to be measured. We have studied the kinematics of
manipulating an untethered magnetic device using a single
permanent magnet as the end-effector of a robot manipulator,
and introduced a control method that seamlessly sacrifices
control over the capsule’s heading in order to maintain control
over the capsule’s position when the robot manipulator enters
a kinematic singularity. We have demonstrated our method’s
robustness to a control rate of 25Hz, a localization rate of
30Hz, deviation in the applied magnetic field from expected,
and the presence of manipulator singularities. We find that
the manipulator’s kinematic singularities and workspace limi-
tations are the most limiting factors to the methods presented
herein. Although our method has application in magnetic
capsule endoscopy of a fluid-distended stomach, the methods
presented can be applied to magnetic manipulation in general.
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