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Abstract— It has been shown that when a magnetic dipole,
such as a permanent magnet, is rotated around a fixed axis
such that the dipole is perpendicular to the axis of rotation, the
magnetic field vector at every point in space also rotates around
a fixed axis. In this paper, we reformulate this phenomenon
using linear algebraic techniques, which enables us to find the
necessary dipole rotation axis to make the magnetic field at
any desired point in space rotate about any desired axis. To
date, untethered magnetically actuated tools (e.g., capsule en-
doscopes, rolling spheres, and helical-propeller microswimmers)
controlled with a single rotating permanent magnet have been
constrained to operate in positions where the rotating field
behavior is simple and easy to visualize. We experimentally
demonstrate that the results of this paper can be used to
control a variety of untethered, rotating magnetic devices
in any position even while the rotating permanent magnet
follows trajectories independent of the devices themselves. This
method constitutes a substantial step toward making a great
deal of prior laboratory research regarding rotating magnetic
microrobots and capsule endoscopes clinically feasible.

I. INTRODUCTION

Untethered magnetic devices, such as magnetic micro-
robots [1] and magnetically actuated capsule endoscopes [2],
have become an active area of research because of their
potential impact to minimally invasive medicine. These de-
vices typically consist of a rigidly attached magnetic body on
which magnetic forces and torques are applied by an external
field. Some approaches to actuation utilize magnetic forces
for pulling [3], [4], while others apply torque generated by
rotating magnetic fields to roll on a surface [5]–[7], swim
through a fluid or crawl through a lumen via helical propul-
sion [8]–[12], or screw through soft tissue [13]. Because
these devices can be viewed as simple end-effectors of a
larger robotic system, and they may range in size from the
microscale to the mesoscale, we refer to them herein as
magnetically actuated tools (MATs) without any implied size.

MATs are typically actuated using applied magnetic fields
produced by electromagnets. Such systems often take the
form of orthogonal arrangements of Helmholtz coils, which
generate uniform fields, and Maxwell coils, which generate
uniform field gradients. Because electromagnetic systems are
expensive to scale to the size required for clinical use, re-
searchers are considering actuation using a single permanent
magnet [5]–[9]. Although likely less expensive, actuation
with permanent magnets is significantly more complex due
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Fig. 1. When a dipole magnet with moment M rotates around the axis Ω̂
with M perpendicular to Ω̂, the field vector at any given position rotates
around, and is perpendicular to, a constant axis ω̂. The axis ω̂ at various
positions are illustrated with large blue arrows in (a). Any position on the
Ω̂ axis is denoted to be in an axial position and any position in the plane
spanned by the rotating M is a radial position. Representations of the field
behavior at locations 1 and 2 are detailed in (b). The magnetic field H, at
locations 1 and 2, is illustrated by gray arrows rotating around ω̂.

to nonuniformity of the generated magnetic fields. In the case
of MAT locomotion using rotating applied fields produced
by a single rotating permanent magnet (RPM), the RPM
is typically rotated around an axis Ω̂ such that the RPM’s
dipole moment M is always perpendicular to Ω̂ as depicted
in Fig. 1. To date, MATs have been exclusively operated in
radial or axial positions (relative to the RPM) where the ap-
plied field rotates around an axis parallel to Ω̂ (see Fig. 1(a))
[5]–[9]. The axial and radial positions have been historically
favored for actuation due to their simplicity: the rotation axis
ω̂ of the applied magnetic field in both positions lies parallel
to the RPM axis of rotation, making it easy to visualize
and characterize the coupling between the RPM and the
MAT. Requiring the MAT to be exclusively operated in these
two positions, however, significantly constrains the physical
placement of the RPM. This may become problematic and
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limit usefulness in a clinical setting since the RPM must
move during actuation to avoid collisions with the patient and
other obstacles, and to reposition for better control authority.

It has been shown that when a dipole (e.g., RPM) rotates
such that its moment is always perpendicular to the axis of
rotation, the generated field H at any position in space rotates
around, and is perpendicular to, a constant axis (Fig. 1(a))
with field magnitude described by an ellipse (Fig. 1(b)) [14].
We begin by reformulating this phenomenon in a manner that
readily enables the solution of the inverse problem: finding
the necessary RPM rotation axis Ω̂ given a desired applied
field rotation axis ω̂, for any RPM position relative to the
MAT. The results enable a rotating magnetic field to be
produced around an arbitrary axis ω̂ in space using a single
RPM in any position. We demonstrate the theory presented
in this paper by driving a threaded capsule and rolling a
spherical MAT through a lumen using an RPM positioned
in space by a 6-DOF robotic manipulator. Eliminating the
need to operate rotating MATs solely in the axial or radial
positions is a significant step toward making rotating MATs
actuated by a single RPM clinically realistic.

II. CONTROLLING LOCAL FIELD ROTATION

All vectors described in this paper are expressed in a
common, static coordinate frame, and the “hat” symbol
denotes a vector normalized to unit length. Let the RPM’s
dipole moment M rotate around the axis Ω̂ such that M is
always perpendicular to Ω̂, and the direction of rotation is
found using a right-hand rule. Assuming the magnetic field
generated by the RPM can be accurately modeled with the
point-dipole model [15], the magnetic field H at a position
p relative to the center of the RPM is

H =
1

4π|p|3
(
3p̂p̂T − I

)
M =

1

4π|p|3
HM, (1)

where I is the identity matrix and p̂ is the unit vector in the
direction of p. The matrix H is symmetric and is purely a
function of p̂. Let the vector ω̂ be the desired rotation axis
of the local magnetic field at the position p, where ω̂ is
normal to the plane containing H, such that HT ω̂ = 0 for
all M. Replacing H with (1) in this expression and utilizing
the symmetry of H yields

HT ω̂ =
1

4π|p|3
MTHω̂ = 0. (2)

Because Hω̂ is constant and MT Ω̂ = 0, the solution for
the necessary dipole axis of rotation Ω̂ where Ω̂ is parallel
to Hω̂ is the only solution that satisfies (2) and is invariant
to the rotation of M. Therefore, given ω̂ and p̂, Ω̂ can be
found with

Ω̂ = Ĥω̂. (3)

Because H is constructed using the unit vector p̂, H only
changes with changes in the direction of p̂. This implies
that solutions obtained from (3) are invariant to scaling |p|
by moving the RPM nearer to or farther away from the
MAT, provided that the direction of p remains unchanged.
Naturally, the magnitude of the field will depend on |p|.

It can be easily verified using (1) that the eigenvectors
of H include p̂ and a 2-dimensional eigenspace consisting
of vectors in the plane orthogonal to p̂, with corresponding
eigenvalues λ1 = 2 and λ2,3 = −1, respectively. Because
det(H) = λ1λ2λ3 = 2 for all p, H is always invertible and
there exists exactly one dipole rotation axis Ω̂ to generate a
desired field rotation about the axis ω̂ for any MAT position
p. The forward problem, which gives the local field axis of
rotation ω̂ at the position p given the RPM axis of rotation
Ω̂, is found with

ω̂ = Ĥ−1Ω̂. (4)

An explicit representation of H−1 can be found using

H2 = H+ 2I, (5)

derived using the definition of H in (1) and recognizing that
p̂T p̂ = 1. Multiplying both sides of (5) by H−1 produces
the relation H = I+ 2H−1 and subsequently

H−1 =
1

2
(H− I) (6)

requiring no matrix inversion.
The position p of the MAT relative to the RPM can

be measured using a variety of methods such as computer
vision, medical imaging, or magnetic localization. With p
and the desired applied field rotation axis ω̂ known, the
necessary actuator axis of rotation Ω̂ can be quickly found
by (3). As the MAT or the RPM moves and the direction of
p changes, (3) must be updated by repacking the matrix
H, and a new solution Ω̂ must be produced to maintain
the desired applied field rotation axis at p. Theoretically, a
desired RPM position trajectory can be established a priori
and the necessary Ω̂ can be found during execution given the
position of the RPM and the MAT. In practice, however, the
RPM position trajectory should adapt to the MAT behavior
in order to maintain control authority while simultaneously
avoiding hardware collisions or constraints.

III. CONTROLLING ROTATING MAGNETICALLY
ACTUATED TOOLS

For rotating MATs, a common failure mode that results
in control authority loss occurs when the MAT steps out
of synchronization with the rotating local field. The rotation
frequency above which the applied magnetic torque is too
weak in magnitude to keep the MAT synchronized with the
rotating field is referred to as the “step-out” frequency and is
denoted by |ω|so. If a MAT’s angular velocity is proportional
to the magnetic torque by a linear damping coefficient c
with negligible contribution from inertia, |ω|so is the speed
where the MAT dipole moment m lags the applied field by
90◦, and requires the maximum possible magnetic torque
to maintain synchronization. The maximum magnetic torque
is |τ |max = µ0|m||H| resulting in the step-out frequency
|ω|so = c|τ |max, where µ0 is the permeability of free space.

In rotating uniform magnetic fields, the applied field mag-
nitude and angular velocity remain unchanged regardless of
the MAT position. In rotating nonuniform fields produced by
an RPM, however, the applied field magnitude and angular
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velocity, at any given MAT position p, depend on the orien-
tation of M and p. During RPM rotation, the instantaneous
field magnitude |H| fluctuates in an elliptical fashion, and is
given by

|H| = |M|
4π|p|3

√
1 + 3(M̂T p̂)2 (7)

and the minimum and maximum field magnitudes are

|H|min =
|M|

4π|p|3
(8)

|H|max =
|M|

4π|p|3
√
1 + 3|p̃|2, (9)

where the vector p̃ = (I − Ω̂Ω̂T )p̂ is the projection of p̂
onto the plane perpendicular to Ω̂ (the plane in which M
resides). The maximum field magnitude occurs when M is
parallel to p̃ and the minimum field magnitude occurs when
M is perpendicular to p̃. In the special case of Ω̂ = p̂,
corresponding to the axial positions depicted in Fig. 1(a),
then p̃ = 0 and |H|min = |H|max.

The instantaneous angular velocity of the applied field as
it rotates around ω̂ varies through each RPM cycle as well.
If ω and Ω denote the instantaneous angular velocities of the
local field and the RPM, respectively, then the relationship
between |ω| and |Ω| can be found as

|ω| =
(
|H|min|H|max

|H|2

)
|Ω|. (10)

Because |H| > 0 at all times, it is clear that the maximum
angular velocity of the applied field occurs at the instant
when the magnetic field strength |H| is the weakest.

With the field magnitude varying from |H|min to
|H|max, the maximum magnetic torque (and consequently
the step-out frequency |ω|so) varies from µ0|m||H|min to
µ0|m||H|max through each RPM revolution. Although the
field magnitude cannot be controlled explicitly, |p| can be
adjusted by moving the RPM close enough to the MAT,
without changing the solution for ω̂, such that |H|min, and
thus the minimum step-out frequency, are sufficient for the
desired application. It is also theoretically possible to adjust
|p| dynamically throughout each RPM cycle such that |H|
remains constant even when p is not in an axial position.
Because rotating the field faster than |ω|so causes the MAT to
become unsynchronized with the field, |Ω| should be limited
so that |ω| ≤ |ω|so at all times.

IV. EXPERIMENTAL RESULTS & DISCUSSION

The RPM is positioned with a Yaskawa Motoman MH5
6-DOF robotic manipulator (Fig. 2(a)), and consists of a
cylindrical 25.4mm diameter, 25.4mm long, Grade-N42,
diametrically magnetized (i.e., along the diameter) NdFeB
permanent magnet (Fig. 2(b)) driven by a Maxon 24 V A-
Max DC motor with an Advanced Motion Controls servo
control drive and amplifier. We demonstrate control of rotat-
ing MATs by actuating a rolling spherical device (Fig. 2(c))
and a threaded capsule-shaped device (Fig. 2(d)) similar to
the design in [11], that produces translational motion along

(a)

RPM

Vision
System

(b)

14 mm

26 mm(d)

18 mm

(c)

Fig. 2. The Yaskawa Motoman MH5 6-DOF robotic manipulator (a) is
used to position the RPM (b) for point-dipole calibration and for actuating
a spherical, rolling MAT (c) and a threaded screw MAT (d). The thread
of the screw MAT has a pitch of 7mm and is 1.5mm deep. Both devices
contain a 6.35mm cube Grade-N52 NdFeB magnet.

its principal axis from rotation around the same axis. Both
MATs contain a 6.35mm cubic Grade-N52 NdFeB magnet
positioned at the device’s center-of-gravity, with the dipole
moment oriented perpendicular to the device principal axis in
the case of the threaded capsule. The MATs were constrained
during experimentation in a clear PVC lumen with 22.2mm
inner diameter, lightly lubricated with personal lubricant
jelly. The MAT position was obtained using a stereo vision
system (Fig. 2(a)) consisting of two Basler A602FC cameras
each fitted with a 4.5mm fixed-focal-length lens producing
sub-millimeter tracking accuracy at 30 frames-per-second.

The theory presented in Sec. II and Sec. III assumes that
the RPM’s magnetic field can be accurately predicted with
the point-dipole model (1). The point-dipole model exactly
predicts the field produced by a spherical permanent magnet
and is an approximation for every other geometry that
becomes accurate in the far field region. The magnetic flux
density B of the RPM, where B = µ0H, was measured using
a custom-made three-axis sensor. The sensor is constructed
using three pairs of Allegro A1301 linear Hall-effect sensors
mounted on the six sides of a 7mm cube. Each sensor has a
sensitivity of 25V/T and a range of ±0.1T. The average
measured value of the pair of sensors on two opposing
faces approximates the component of the magnetic field at
the cube’s center in the normal direction to the faces. The
magnitude of the RPM’s dipole moment was found using a
least-squares fit of the point-dipole model to 100 samples of
the flux density measured per millimeter between 30mm and
140mm from the RPM center, resulting in |M| = 12.7A·m2

with R2 = 0.999. The data and the fit are shown in Fig. 3.
The accuracy of the fit and the correctness of the theory

presented in Sec. II was verified by measuring the magnetic
field while rotating the RPM at two arbitrary positions
located 100mm from the RPM center. The positions p1 =
[0, 100, 0]T mm (Fig. 4(a)) and p2 = [81.61, 57.79, 0]T mm
(Fig. 4(b)) are described in the stationary coordinate system
depicted at the top of Fig. 4. Figs. 4(c) and 4(d) show the
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Fig. 3. The point-dipole model was fit to the measured magnetic flux
density of the RPM at increasing distance from the magnet center resulting
in |M| = 12.7A·m2 with R2 = 0.999. 100 samples were taken per
millimeter between 30mm and 140mm from the magnet center.

measured and predicted magnetic fields and axes of rotation
at both positions projected onto the x-z and y-z planes. The
RPM was rotated at a constant angular velocity of 1 rad/s
in both positions. The predicted ω̂, obtained by (4), differed
from the measured ω̂, obtained using principal-component
analysis (the direction of least variance), by 2.94◦ for p1

and 0.73◦ for p2. Fig. 4 clearly shows that the RPM magnetic
field and its axis of rotation is closely predicted by the point-
dipole model with |M| = 12.7A·m2.

To date, rotating MATs have been actuated in axial or
radial positions where the applied field rotation is easy
to visualize and the coupling between the RPM and the
MAT is easy to understand. In the radial position, for
example, the magnetic field rotates around an axis parallel
to that of the RPM, although in the opposite direction.
Actuation of the threaded MAT in the radial position is
demonstrated in Fig. 5(a). While the MAT travels along the
lumen (from right to left), the RPM position is maintained at
p = [0, 0,−125]T mm (in the coordinate system depicted in
Fig. 5) using the stereo vision system. Because the external
thread converts rotation about the capsule’s principal axis to
propulsion parallel to its principal axis, it is intuitive that Ω̂
must be parallel to the y axis to make the threaded MAT
travel along the lumen. In Fig. 5(a), the MAT travels at an
average speed of 3.4mm/s. Rotating MATs actuated in the
radial position can be found in [5]–[9].

The theory presented in Sec. II enables operation of MATs
in nonintuitive ways. Fig. 5(b) shows the threaded MAT
actuated with the RPM position regulated to maintain p =
[0,−72.2,−102]T mm. After substituting the appropriate p
and ω̂ = [0,−1, 0]T into (3), it can be found that the RPM
rotation axis must be Ω̂ = [0, 0, 1]T . The RPM is rotated at
2.5 rad/s and causes the MAT to travel from right to left with
an average speed of 1.5mm/s It is particularly nonintuitive
that the necessary RPM rotation axis is perpendicular to the
desired MAT rotation axis in this position. Note that the
rotation axis of the applied field in an equivalent position is
experimentally measured in Fig. 4(d).

Unlike uniform magnetic fields, nonuniform fields (such
as those produced by the RPM) cause a magnetic force
to be applied to the MAT. In Fig. 5(b), the magnetic force
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Fig. 4. The components of the magnetic flux density B = µ0H
measured and predicted at the positions p1 = [0, 100, 0]T mm (a) and
p2 = [81.61, 57.79, 0]T mm (b) are shown in (c) and (d), respectively.
The predicted ω̂ at p1 and p2 differed from the measured ω̂ by 2.94◦ and
0.73◦, respectively. The custom field sensor used to obtain the data appears
in the lower right corners of (a) and (b).

attracts the MAT in the direction of the RPM and against the
desired motion. The ability to drive the MAT away from the
RPM, albeit slowly, is likely to be an important advancement
toward the control of in vivo devices. Stably driving a MAT
away from a single permanent magnet, when solely applying
magnetic force for actuation, would be challenging because
the magnetic torque tends to align the MAT in configurations
where the magnetic force is always attractive.

For medical applications, a magnetic force too large in
magnitude can potentially cause trauma. Strategies have been
developed to manage attractive magnetic force in the axial [8]
and radial positions [7], though a method generalized to any
position is the subject of future work. Although the attractive
magnetic force must always be managed, it is not necessarily
detrimental. Fig. 5(c) shows the MAT actuated with p =
[0, 72.2,−102]T mm. In this position, a component of the
magnetic force attracts the MAT in the desired direction of
motion, producing an average speed of 4.3mm/s, which is
faster than the average speed in the radial position (Fig. 5(a)),
where the force neither hinders nor helps actuation, and
the position where the RPM trails the MAT (Fig. 5(b)),
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Fig. 5. The threaded capsule MAT is actuated in the (a) radial position with the RPM position regulated to maintain p = [0, 0,−125]T mm (in the
coordinate system depicted above the captured images) where the necessary RPM rotation axis is intuitive. Captured images taken during operation with
(b) the RPM position maintained at p = [0,−72.2,−102]T mm and (c) at p = [0, 72.2,−102]T mm demonstrate the MAT being actuated where the
necessary RPM rotation axis (found by applying (3)) is nonintuitive. In all three examples, |p| = 125mm and the RPM was rotated at a constant speed
of |Ω| = 5 rad/s. The scale drawings above the captured images depict the scene from direct left and front views.

where the force hinders actuation. This demonstrates that
a rotating MAT can be simultaneously pulled, using the
available magnetic force, and driven, using the available
magnetic torque, resulting in faster MAT actuation.

In Fig. 5, the position of the RPM is regulated to maintain
a constant relative position with respect to the MAT. Due to
the presence of obstacles in a clinical setting that an RPM
must avoid, it is unlikely that a MAT will always be actuated
in this manner. The theory presented in Sec. II enables a
MAT to be actuated in any position, which may change
as the MAT or the RPM move in space, provided that the
RPM rotation axis Ω̂ is adjusted according to (3). This is
demonstrated in Fig. 6 which shows the spherical MAT being
actuated while the RPM position (a) remains stationary, and
(b) follows a trajectory independent of the MAT. In both
examples, the RPM position follows the predifined position
trajectory (remaining stationary in the case of (a)) while the
RPM’s instantaneous rotation axis Ω̂ is set according to (3)
using the known RPM position and the instantaneous MAT
position, obtained from the stereo vision system, to update
the instantaneous position vector p. In both examples, ω̂
is maintained at ω̂ = [−1, 0, 0]T (in the same coordinate
system as Fig. 5), and the RPM is rotated at |Ω| = 0.25 rad/s.

Fig. 6(a) shows superimposed still images demonstrating
the MAT being rolled from left to right while the RPM

position remains stationary. In the case of Fig. 6(b), the MAT
rolls from left to right while the RPM follows a rectangular
step trajectory, where the RPM initially travels parallel to the
lumen at 3.16mm/s until it jogs vertically at t = 33 s with a
rate of 9.47mm/s. At t = 44 s, the RPM continues parallel
to the lumen until t = 77 s, when the RPM moves back to its
original height at 9.47mm/s. The RPM then finishes moving
parallel to the lumen at 3.16mm/s. It is easy to imagine this
trajectory being used to avoid an obstacle. In both examples,
the MAT is always in stable control and the RPM is never in
an axial or radial position. Although both RPM trajectories
are arbitrary, they demonstrate MAT actuation that was not
possible using prior methods, which limit the RPM to axial
or radial positions. In practice, RPM position trajectories
should be planned to prevent loss of control authority, take
advantage of available magnetic force, and avoid obstacles.

The RPM’s magnetic field scales homothetically, meaning
that the field of an RPM, whose dimensions have been scaled
by a factor s, measured at the position sp, is the same as that
of an unscaled RPM measured at the position p. This can be
verified using (1). Because the dipole magnetization |M| is
proportional to the RPM’s volume, scaling by s causes the
magnetic dipole to become s3|M|. Operating the MAT at an
equivalently scaled distance away makes p become sp. After
substituting s3|M| and sp into (1), the factor s3 appears

3379



0s

0s

44s

44s 77s

77s 121s

121s

(b)

0s 40s 80s 120s

(a)

Fig. 6. The spherical MAT (Fig. 2(c)) is actuated with the RPM position remaining stationary (a) and following a rectangular step trajectory (b). In both
examples, the RPM position follows the trajectory (or remains stationary) in an open-loop fashion, independent of the MAT position. The orientation of
the RPM’s rotation axis Ω̂ is constantly updated to maintain ω̂ = [−1, 0, 0]T (in the same coordinate system as Fig. 5) by applying (3), using the known
RPM position and the instantaneous MAT position (obtained from the vision system) to update the relative position p. |Ω| = 0.25 rad/s in both cases.

in both the numerator and the denominator and can be
cancelled, making the field of the scaled RPM at equivalently
scaled distances the same as without scaling. It can be shown
that the magnetic force F = µ0(m · ∇)H is amplified
by the scalar 3µ0|M|/4π|p|4 [15]. Substituting s3|M| and
sp into this scalar shows that the magnetic force scales as
s−1. This implies that when the RPM dimensions are scaled
by s and the MAT is operated at an equivalently scaled
distance, the magnetic field (and thus the magnetic torque)
remains the same while the magnetic force is diminished.
This demonstrates that the magnetic fields generated by the
RPM will scale well for clinical use, however, if the magnetic
force is expected to assist actuation (as demonstrated in
Fig. 5(c)), then diminishing the force may be undesireable.
Fully understanding the magnetic force and how it should
best be applied or managed is the subject of future work.

V. CONCLUSION

It has been shown that when a magnetic dipole, such as
a permanent magnet, is rotated around a fixed axis such
that the dipole is perpendicular to the axis of rotation, the
magnetic field vector at every point in space also rotates
around a fixed axis. We have reformulated and applied this
property to actuate untethered, rotating magnetic devices
confined to a lumen. To date, rotating MATs operated using
a single RPM have been actuated in positions where the
magnetic field behavior is simple and easy to visualize.
Constraining the RPM to these positions may preclude the
use of RPM actuation in clinical settings due to the presence
of obstacles. The method presented herein, however, allows
a rotating MAT to be operated in any position, which we
experimentally demonstrate by driving a spherical rolling
MAT and a threaded capsule MAT with the RPM positioned
arbitrarily in space but with the RPM orientation determined
in a closed-loop fashion by the MAT position. Eliminating
the need for MATs to be constrained to simple positions is
a significant step toward making rotating MATs actuated by
a single RPM clinically feasible.
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