
ADVANCED METHODS FOR CONTROLLING

UNTETHERED MAGNETIC DEVICES USING

ROTATING MAGNETIC FIELDS

by

Arthur W. Mahoney Jr.

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

August 2014



Copyright c© Arthur W. Mahoney Jr. 2014

All Rights Reserved



T h e  U n i v e r s i t y  o f  U t a h  G r a d u a t e  S c h o o l  

 

 

 

STATEMENT OF DISSERTATION APPROVAL 
 

 

 

The dissertation of Arthur W. Mahoney Jr. 

has been approved by the following supervisory committee members: 

 

Jake J. Abbott , Chair 4/30/2014 

 
Date Approved 

John M. Hollerbach , Member 4/30/2014 

 
Date Approved 

Jur P. van den Berg , Member 5/28/2014 

 
Date Approved 

William R. Provancher , Member 4/30/2014 

 
Date Approved 

Stephen A. Mascaro , Member 4/30/2014 

 
Date Approved 

 

and by Ross T. Whitaker , Chair/Dean of  

the Department/College/School of Computing 

 

and by David B. Kieda, Dean of The Graduate School. 

 

 



ABSTRACT

This dissertation presents results documenting advancements on the control of unteth-

ered magnetic devices, such as magnetic “microrobots” and magnetically actuated capsule

endoscopes, motivated by problems in minimally invasive medicine. This dissertation

focuses on applying rotating magnetic fields for magnetic manipulation. The contribu-

tions include advancements in the way that helical microswimmers (devices that mimic

the propulsion of bacterial flagella) are controlled in the presence of gravitational forces,

advancements in ways that groups of untethered magnetic devices can be differentiated and

semi-independently controlled, advancements in the way that untethered magnetic device

can be controlled with a single rotating permanent magnet, and an improved understanding

in the nature of the magnetic force applied to an untethered device by a rotating magnet.
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CHAPTER 1

INTRODUCTION

Untethered magnetic devices, such as magnetic “microrobots” [1] and magnetically

actuated capsule endoscopes [2], have become an active area of research because of their

potential impact to minimally invasive medicine. These devices typically consist of a rigidly

attached magnetic body on which magnetic forces and torques are applied by an external

field. These devices can be viewed as end-effectors of a larger robotic system, and they may

range in size from the microscale to the mesoscale.

Let the magnetic field be denoted by the vector h ∈ R3 A/m and let the vector m ∈
R3 A·m2 be the magnetic device’s dipole moment (the product of magnetization of the

device’s magnetic body and the volume of the magnetic body). The magnetic torque applied

to the dipole moment m is related to the applied magnetic field h at the position of the

device’s magnetic body:

τ = µ0m× h, (1.1)

where µ0 = 4π × 10−7 N·A−2 is the permeability of free-space. The magnetic force applied

to the dipole moment m is related to the spatial derivative of the applied magnetic field at

the position of the device’s magnetic body:

f = µ0(m · ∇)h. (1.2)

In general, with increasing distance d from the magnetic source, the magnitude of the

applied field (and thus the magnetic torque) tends to decrease as d−3, and the gradient

of the magnetic field (and thus the magnetic force) tends to decrease as d−4. For clinical

applications, where the distance between the magnetic field source and the untethered

magnetic device may be large, this scaling indicates that propulsion methods that employ

magnetic torque may be preferable to methods that employ magnetic force [3]. Untethered

device propulsion strategies making use of magnetic torque include those that employ rolling

[4]–[10], helical propulsion [9]–[19], resonant behavior [20], [21], stick-slip locomotion [22],

and screw propulsion through tissue [23], [24]. In order to generate continuous propulsion, all
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of these techniques make use of continuously rotating magnetic fields. Rotating magnetic

fields are generally created in one of two ways: 1) a sinusoidal electrical current flowing

through an arrangement of electromagnets and 2) with a rotating permanent magnet.

1.1 Controlling Untethered Magnetic Devices with
Electromagnets

Electromagnetic systems generate magnetic fields using the physical phenomenon known

by Ampere’s Law, which relates the current flowing through an oriented contour to the

magnetic field flowing through the contour’s boundary. Electromagnets are particularly

attractive for magnetic manipulation because the magnitude of the magnetic field produced

by an electromagnet is proportional to the magnitude of the current flowing through the

electromagnet, which makes an electromagnet’s field easy to control. Additionally, an

electromagnet’s geometry can be designed to specifically tailor the generated magnetic fields

for particular tasks. A common electromagnet arrangement is the Helmholtz configuration,

which produces uniform magnetic fields in the center of the Helmholtz system, where

magnetic devices are actuated. Uniform magnetic fields apply no magnetic force to an

untethered device, only magnetic torque, which greatly simplifies control.

Helmholtz systems are particularly well suited for bench-top manipulation applications

where a large workspace is not needed. One such application for which Helmholtz systems

have been almost exclusively employed is for the control of helical microswimmers, which

mimic bacterial flagellar propulsion, in three-dimensional fluidic volumes for microscale

manipulation tasks. Typical experimental setups contain a microscope looking downward

into the center of the electromagnet system where a microscope slide is placed that contains

a microscale swimmer and the objects for manipulation (e.g., biological cells). Helical

microswimmers have been demonstrated to be quite useful for both contact and noncontact

(using fluidic flow) manipulation [25]–[27]. Helical microswimmers tend to sink under

their own weight, making three-dimensional control difficult, particularly when observed

through a microscope from the top down. Consequently, helical microswimmers have been

nearly exclusively limited to manipulation on the two-dimensional surface of the microscope

slide for simplicity. The necessary rotating field inputs that cause a microswimmer to

travel at a desired three-dimensional spatial velocity is difficult to determine intuitively.

Chapter 2 describes a published open-loop method for controlling the spatial velocity of

helical microswimmers in uniform magnetic fields with the presence of gravity [16]. The

approach enables intuitive three-dimensional control of helical swimmers, eliminating the

need to restrict their operation to the two-dimensional surface of a microscope slide.
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If one untethered magnetic device is useful for manipulating objects at the microscale,

then a group of untethered magnetic devices must be better! A grand challenge for magnetic

manipulation systems is the ability to perform manipulation using multiple, independently

controllable magnetic devices in concert (note that the micromanipulation community

generally refers to untethered magnetic devices as “microrobots”) [28]. Such control is

difficult in the uniform magnetic field generated by a Helmholtz system because each

microrobot experiences the same actuating signal. Differentiating the individual response

of microrobots in a group is an active area of research. Chapter 3 details a published method

for exploiting the behavior of rotating magnetic microrobots when actuated above their

step-out frequencies (the maximum field rotation frequency where a microrobot’s rotation

remains synchronized with the rotating field) to add an additional dimension of microrobot

differentiation to multimicrorobot systems [19]. The behavior of rotating microrobots above

their step-out frequency is difficult to intuit. Consequently, prior work has assumed that

microrobots should always be actuated beneath their step-out frequency.

1.2 Controlling Untethered Magnetic Devices with
Permanent Magnets

The second, but less common, method for generating a rotating magnetic field is with

a rotating permanent magnet. Permanent magnets maintain a persistent dipole-shaped

magnetic field due the fixed alignment of the magnet’s internal microcrystalline structure

(which is set during the manufacturing process). Compared to electromagnets, permanent-

magnet systems are able to produce stronger magnetic fields in smaller form-factors without

consuming power. However, control with a rotating permanent magnet is more difficult

than with electromagnets because the behavior of the rotating dipole field is difficult to

visualize. As a result, all prior work has followed simple approaches that operate untethered

magnetic device in regions where the behavior of the rotating dipole field is simple and easy

to understand. Chapter 4 present published analysis of rotating dipole-field behavior and a

method for controlling the rotation axis of a rotating permanent magnet so that an untethered

magnetic device can be controlled in any position [10]. That is, control of a magnetic device

is no longer limited to regions where the rotating field behavior is easy to understand.

The magnetic force applied to an untethered magnetic device by a rotating permanent

magnet has not been well understood. In fact, it has generally been accepted that the

magnetic force is always attractive in nature. However, I have found that by adjusting the

angular velocity of the rotating permanent magnet, the applied magnetic force can actually

be manipulated to point in a lateral direction (i.e., neither attractive nor repulsive). Chapter
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5 describes a published study that describes this phenomenon and exploits it to contribute to

the propulsion of a rolling magnetic device (in concert with the applied magnetic torque) and

to limit the attractive force for safety [8]. Prior work has not fully exploited the available

magnetic force to contribute to propulsion of an untethered magnetic device alongside the

contribution of the applied magnetic torque. The ability to simultaneously utilize the

available magnetic torque and force for propulsion and the ability to limit the magnetic

force for safety, is particularly useful for clinical applications, where a magnetic device may

be called upon to operate in a high friction environment (e.g., the small intestine) with the

rotating actuator permanent magnet positioned far from the untethered device.

Chapter 6 presents a discussion of future possibilities for magnetic manipulation, and

finally, concluding statements are presented in Chapter 7.
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CHAPTER 2

VELOCITY CONTROL WITH GRAVITY

COMPENSATION FOR MAGNETIC

HELICAL MICROSWIMMERS

The paper that follows was published in the special issue “Cordless Technology for

Milli/Micro/Nano Robots” of the journal Advanced Robotics and is reprinted here with

permission. The paper introduces a 6-DOF model of helical-microswimmer motion and

applies it toward solving for the necessary rotation axis and rotation speed of the applied

rotating magnet field to achieve a desired 3-DOF swimmer spatial velocity. In prior work,

the magnetic field’s rotation axis and speed was adjusted manually, making 3-DOF control

over a microswimmer’s velocity difficult, particularly since man-made swimmers tend to sink

under their own weight and are generally observed from the top down using a microscope.

The open-loop approach presented in this paper takes a desired 3-DOF swimmer spatial

velocity from the user, which is a much more intuitive input than controlling field rotation

axis and speed (even if there is error in the open-loop model).

A. W. Mahoney, J. C. Sarrazin, E. Bamberg, and J. J. Abbott, “Velocity Control with

Gravity Compensation for Magnetic Helical Microswimmers,” Adv. Robot., vol. 25, no. 8,

pp. 1007–1028, 2011.
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Abstract
Magnetic helical microswimmers, which swim using a method inspired by the propulsion of bacterial flag-
ella, are promising for use as untethered micromanipulators and as medical microrobots. Man-made devices
are typically heavier than their fluid environment and consequently sink due to their own weight. To date,
methods to compensate for gravitational effects have been ad hoc. In this paper, we present an open-loop
algorithm for velocity control with gravity compensation for magnetic helical microswimmers that enables
a human operator or automated controller to command desired velocity intuitively, rather than directly con-
trolling the microswimmer’s orientation and rotation speed. We provide experimental verification of the
method.
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1. Introduction

Untethered biomedical microrobots are a topic of considerable research. Micro-
robots have the potential to radically transform many medical procedures by operat-
ing in hard-to-reach locations of the body, performing tasks such as targeted therapy
(e.g., drug delivery, hyperthermia), tissue removal (e.g., ablation) and remote sens-
ing, and the bodies of the microrobots themselves may be used as maneuverable
structures (e.g., stents, tissue scaffolding) [1]. Microrobots have also already been
demonstrated as useful tools for untethered manipulation at the microscale, both on
planar surfaces [2, 3] and in three-dimensional fluidic environments [4, 5]. Un-

* To whom correspondence should be addressed. E-mail: art.mahoney@utah.edu

© Koninklijke Brill NV, Leiden and The Robotics Society of Japan, 2011 DOI:10.1163/016918611X568620
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tethered microrobots stand to impact a broad range of fields, but we must first
understand their locomotion and how to effectively control them wirelessly.

The environment in which a microrobot operates is significantly different than
that of macroscale robots as we know them. In particular, microrobots typically
operate in fluids at the low-Reynolds-number regime, where viscous drag signif-
icantly dominates over inertia [6]. In this environment, propulsion and actuation
can be challenging, and although there are a number of ways for a microrobot to
be wirelessly propelled, one method of particular interest is helical propulsion —
a swimming method inspired by the propulsion of bacterial flagella — using torque
produced from the rotation of an externally applied magnetic field [4, 7, 8]. It
has been shown that magnetic helical swimming performs well compared to other
methods of magnetic propulsion as the size of the microrobot scales down [9]. Mi-
crorobots that are propelled in this manner are typically simple devices consisting
of a magnetic body rigidly attached to a chiral structure resembling a cork screw
or wood screw. The community now has a good basic understanding of the ways
in which magnetic helical microswimmers can be controlled and researchers have
begun to tackle some of the non-idealities that manifest themselves during experi-
mentation [10].

One such non-ideality is the microrobot sinking due to its own weight. Mag-
netic control of helical microswimmers has typically started from the assumption
that the microswimmers behave similarly to bacteria, which are approximately neu-
trally buoyant, and the microswimmer is simply pointed in the direction of desired
velocity, as depicted in Fig. 1a. When swimming under an optical microscope, the
microswimmer typically lies near the horizontal plane, such that it can be easily
observed and controlled. However, man-made microswimmers are typically heav-
ier than their fluid medium and they sink down, albeit slowly, due to their own
weight, resulting in a velocity that is not aligned with the thrust direction of the
microswimmer (Fig. 1b and d), thus making the microswimmer attain a desired ve-
locity is not as simple as merely pointing the microrobot in the desired direction. To
counteract this downward drift and keep the microswimmer at a desired focal plane,
researchers have pitched the microswimmer up in an ad hoc manner, as shown in
Fig. 1c, with the goal of keeping the long axis of the microswimmer close to the hor-
izontal plane such that observation through the microscope is relatively unchanged.
In Ref. [4], for example, the authors report that their microswimmers require a com-
pensation pitch of approximately 10◦–20◦, with the necessary pitch being inversely
proportional to the microswimmer’s rotation speed. As we will show herein, there
is a unique combination of pitch angle and rotation speed (modulo 180◦ change
in pitch) to achieve the desired velocity of the microswimmer, whether or not the
desired velocity lies in the horizontal plane, and this combination of pitch angle
and rotation speed is not intuitive to a human operator. In this paper, we describe
a velocity-control-plus-gravity-compensation algorithm that calculates the correct
pitch angle and rotation speed to achieve the commanded velocity with results like
those shown in Fig. 1e, making teleoperation much more intuitive.
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(a) Neutrally buoyant swimmer (b) Heavy swimmer (c) Gravity compensation

(d) Experiment without gravity compensation (e) Experiment with gravity compensation

Figure 1. (a) Natural flagellated bacteria are nearly neutrally buoyant. (b) Man-made swimmers are
denser than water, causing them to drift downward under their weight. (c) To compensate for this
drift, the microswimmer must be commanded to swim at a unique pitch angle and rotation speed.
(d and e) Composite images from scaled experiments where the swimmer is commanded to move
horizontally with a constant velocity, without and with the proposed gravity-compensation algorithm,
demonstrating the behaviors described in (b) and (c), respectively. Gravity points downward in the
images.

Considering the command input of magnetic helical microswimmer to be spa-
tial velocity rather than manual control of pitch and rotation speed has not been
done previously. It may be more appropriate to think of microswimmers as tiny
helicopters as opposed to bacteria. Rather than the default configuration of the mi-
croswimmer being in the horizontal plane, it should be pointed vertically such that
the thrust of the microswimmer is directly counteracting gravity. From this vertical
configuration, the microrobot can move up or down simply by changing the rotation
speed. To make lateral movements, the microswimmer pitches away from vertical,
and again there is a unique combination of pitch angle and rotation speed to achieve
the desired velocity.

To accurately command a velocity to our microswimmer that is not aligned with
the microswimmer’s central axis requires a model of the microswimmer that goes
beyond the simple 2-d.o.f. model that has been used in prior work; in Section 2
we develop a full 6-d.o.f. model for helical microswimmers. In Section 3 we de-
velop an algorithm that calculates the microswimmer orientation and rotation speed
needed to achieve a desired spatial velocity. We experimentally verify the algorithm
in Section 4, using a scaled magnetic swimmer propelled by the rotating uniform
magnetic field of an electromagnetic system consisting of nested Helmholtz coils.
Finally, in Section 5 we provide some additional discussion and interpretation of
our algorithm and experimental results.
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2. The 6-d.o.f. Helical Microswimmer Model

The swimming properties of magnetic helical microswimmers are well understood
for motion along the microswimmer’s central axis [6, 9, 11]. In a low-Reynolds-
number regime, the applied nonfluidic torque and force, τ and f , acting along the
microswimmer’s central axis are linearly related to the translational velocity and
angular velocity, v and ω, also along the microswimmer’s central axis. This is ex-
pressed in the form of the widely used system of equations:[

f

τ

]
=

[
a b

b c

][
v

ω

]
, (1)

where a, b and c are scalars that depend upon the geometry of the microswimmer
and the properties of the fluid in which it swims. This 2-d.o.f. axial model has
been used with good success to study the feasibility of helical swimming [9, 11]
and to characterize basic swimming properties [12]; however, it does not provide
sufficient information to understand how a helical microswimmer behaves in full
6-d.o.f. motion.

In this section, we extend (1) from 2 to 6 d.o.f. using resistive force theory (RFT)
and spatial transformations, including effects caused by rigidly fixing a spherical
magnetic head to the end of a helix. Making the assumption that the fluidic forces
acting on the helix and the head are independent from each other, we first determine
the fluidic force and torque acting purely on the helix, fh and τ h, using RFT, and
then the fluidic force and torque acting solely on the spherical magnet head, fm and
τm (this assumption has been used in other work to obtain a good approximations
of the fluidic properties of rigid helices in the low Reynolds regime [9, 13]). Thus,
the total force and torque acting on the microswimmer is the sum of the forces and
torques acting on the helix and the spherical head: f = fh + fm and τ = τ h + τm, re-
spectively. Although we only consider helices of right-handed chirality, the results
derived in this section can be obtained for left-handed helices using the same meth-
ods. A similar 6-d.o.f. model was presented in Ref. [13] for the study of cellular
flagella motility where the helical flagella rotates opposite the direction of the cell
body.

RFT is a simple approach used to determine the forces caused by velocity on an
infinitesimally small length of helix [14, 15]. RFT takes the velocity vs of one of
these small segments of the helix, decomposes the velocity into components parallel
and perpendicular to the segment, and relates them to parallel and perpendicular
drag forces acting on the segment with the differential forces:

df⊥s = ξ⊥v⊥s ds (2)

df‖s = ξ‖v‖s ds, (3)

where ξ⊥ and ξ‖ are scalar drag coefficients, which have a number of empirical ap-
proximations (e.g., Ref. [15]). Integrating these differential forces along the length
of the helix provides the fluidic forces acting on the helix (fh) induced by a spe-
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Figure 2. A helical microswimmer consisting of spherical magnetic body of radius rm attached to a
right-handed helix with pitch θ and radius rh. The coordinate frame of the microswimmer’s helix (de-
noted by h) is oriented with xh along the central axis of the helix with the origin Oh of the right-handed
coordinate system at the center of the helix.

cific movement of the helix. To perform this integration in three dimensions, we
first need to define the coordinate frames for the helix and for a given differen-
tial segment. Let the geometry of the helix be defined with pitch θ and radius
rh, and let the helix coordinate frame (denoted by h) lie with the xh axis parallel
to the central axis of the helix, and the yh and zh axis be arranged as in Fig. 2.
The origin of this coordinate system is located at the center of the helix, denoted
by Oh. For ease of integration, we will describe the helix using a cylindrical co-
ordinate system parameterized by the polar angle φ. The matrix that will rotate
vectors written in a given segment coordinate frame (denoted by s) to the helix
frame is hRs(φ) = Rx(φ)Ry(−θ), where hRs ∈ SO(3) denotes a rotation matrix
from frame s to frame h, and Rx(φ) ∈ SO(3) denotes a rotation matrix about axis x
by φ rad [16]. We can write the vector from Oh to the origin of each segment frame
with respect to φ in the form:

hp(φ) =
[ rφ

tan(θ)
r cos(φ) r sin(φ)

]T
, (4)

where hp denotes the vector p represented in frame h. At each of these points, the
xs axis of the segment frame lies parallel to the helix segment, and both ys and zs lie
perpendicular to the helix segment, with ys pointing radially away from the central
axis of the microswimmer’s helix. This leads us to express the differential relat-
ing velocity to force in three dimensions with respect to the frame of an arbitrary
segment along the helix in the segment frame as:

sdfs = s�svs ds, (5)

where:

s� =
[

ξ‖ 0 0
0 ξ⊥ 0
0 0 ξ⊥

]
, (6)

and sfs and svs are the force and velocity of the segment expressed in the segment’s
own frame. The relationship between velocity and forces in the segment frame can
be expressed in the helix frame as:

hdfs = h�(φ)hvs ds, (7)
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where:

h�(φ) = hRs(φ)s�sRh(φ). (8)

As the helix is swimming, the velocity vs of an infinitesimally small segment
of helix (parameterized by φ with position described by p(φ)) can be decomposed
into the sum of the microswimmer’s translational velocity v and the velocity caused
by an arbitrary helix rotation ω:

vs = v + ω × p(φ) = v − p(φ) × ω. (9)

This can be expressed in the helix frame as:

hvs = hv − S{hp(φ)}hω = hv + S{hp(φ)}Thω, (10)

where S{k} packs the vector k = [k1 k2 k3]T into the skew-symmetric matrix,
representing the cross-product operation:

S{k} =
[ 0 −k3 k2

k3 0 −k1
−k2 k1 0

]
. (11)

Substituting (10) into (7) results in:

hdfs = h�(φ)hv ds + h�(φ)S{hp(φ)}Thω ds. (12)

A similar differential expression relating fluidic torque to translational and angular
velocities of the helix can also be derived. Each force acting on an infinitesimally
small segment of helix induces a subsequent torque about the helix origin. The rela-
tionship between the torque and force at an arbitrary helix segment, parameterized
by φ, can be expressed in the helix frame as:

hdτ s = hp(φ) × hdfs = S{hp(φ)}h dfs . (13)

Here, we make an assumption that is common when using RFT: that the drag torque
on the helix due to a given segment is due to the translational velocity of the segment
as it slices through the fluid and that the torque due to the small segment’s rotation
is negligible. This assumption significantly simplifies calculations and should be
valid provided that the cross-section of the segment is small compared to the overall
radius of the helix.

The total fluidic force and torque on the helix are found by integrating the forces
and torques on the segments along the total length of the helix:

fh =
∫

dfs, τ h =
∫

dτ s . (14)

For both (12) and (13) the helix was parameterized using the polar angle φ. There-
fore, the force and torque will be obtained by integrating both differentials with
respect to φ. Substituting (12) into (13), replacing ds with rh dφ/ sin(θ) and in-
tegrating φ from −πn to πn produces two integral equations for an n-turn helix
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centered at Oh:

hfh =
(

rh

sin(θ)

∫ πn

−πn

h�(φ)dφ

)
hv

+
(

rh

sin(θ)

∫ πn

−πn

h�(φ)S{hp(φ)}T dφ

)
hω (15)

hτ h =
(

rh

sin(θ)

∫ πn

−πn

S{hp(φ)}h�(φ)dφ

)
hv

+
(

rh

sin(θ)

∫ πn

−πn

S{hp(φ)}h�(φ)S{hp(φ)}T dφ

)
hω. (16)

Evaluating all four matrix integrals results in two equations relating force and
torque to translational velocity and angular velocity around Oh:[

hfh
hτ h

]
=

[
hAh

hBh
hBT

h
hCh

][ hv
hω

]
, (17)

where:

hAh =
[

ah11 0 0
0 ah22 0
0 0 ah22

]
, hBh =

[
bh11 0 bh13

0 bh22 0
0 0 bh33

]

(18)
hCh =

[
ch11 0 ch13

0 ch22 0
ch13 0 ch33

]
,

and:

ah11 = 2πnrh(ξ‖ cos2(θ) + ξ⊥ sin2(θ))

sin(θ)
(19)

ah22 = πnrh(ξ⊥ + ξ⊥ cos2(θ) + ξ‖ sin2(θ))

sin(θ)
(20)

bh11 = 2πnr2
h (ξ‖ − ξ⊥) cos(θ) (21)

bh13 = −2πnr2
h (ξ‖ − ξ⊥) cos(θ)

tan(θ)
(22)

bh22 = −3πnr2
h (ξ‖ − ξ⊥) cos(θ)

2
(23)

bh33 = −πnr2
h (ξ‖ − ξ⊥) cos(θ)

2
(24)

ch11 = 2πnr3
h (ξ⊥ cos2(θ) + ξ‖ sin2(θ))

sin(θ)
(25)

ch13 = −2πnr3
h (ξ⊥ cos2(θ) + ξ‖ sin2(θ))

sin(θ) tan(θ)
(26)
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ch22 = 2πnr3
h (ξ‖ cos2(θ) + ξ⊥ sin2(θ) − ξ⊥/2)

sin(θ)
(27)

+ πnr3
h (ξ‖ cos2(θ) − ξ⊥ sin2(θ) − ξ⊥)

2 tan2(θ) sin(θ)

+ (πnrh)
3(ξ‖ cos2(θ) − ξ⊥ sin2(θ) + ξ⊥)

3 tan2(θ) sin(θ)
(28)

ch33 = πnr3
hξ⊥

sin(θ)
− πnr3

h (ξ⊥ cos2(θ) + ξ‖ sin2(θ) − ξ⊥)

2 tan2(θ) sin(θ)
(29)

+ (πnrh)
3(ξ⊥ cos2(θ) + ξ‖ sin2(θ) + ξ⊥)

3 tan2(θ) sin(θ)
. (30)

As the microswimmer rotates about Oh, the spherical magnetic head of radius
rm fixed to the helix exerts fluidic forces and torques on the microswimmer that
we assume to be independent from those caused by the helix. Let k be the vector
from the center of the helix Oh to the center of the magnetic head Om as shown in
Fig. 2. Given that the translational and rotational drag coefficients in Stokes flow of
viscosity η are ξvm = 6πηrm and ξωm = 8πηr3

m, respectively [17], the drag force
acting on the head is the product of the translational drag coefficient and the head’s
velocity. Arbitrary movement of the microswimmer produces a magnet velocity,
expressed in the helix frame, of

hvm = hv + hω × hk = hv − hk × hω = hv + S{hk}Thω, (31)

which corresponds to a force on the magnet:

hfm = ξvm
hv + ξvmS{hk}Thω. (32)

The drag torque caused by the spherical head is a result of the force acting at the
moment arm k as well as the drag caused by the rotation of the head itself. This can
be expressed in the form hτm = hk × hfm + ξωm

hω, with hfm from (32). Replac-
ing the cross-product operator with its corresponding skew-symmetric matrix and
grouping like terms produces:

hτm = ξvmS{hk}hv + (
ξvmS{hk}S{hk}T + ξωmI

)hω, (33)

where I is the identity matrix. If we let the matrices:

hAm = ξvmI, hBm = ξvmS{hk}T

(34)hCm = ξvmS{hk}S{hk}T + ξωmI,

then the total force hf = hfh + hfm and torque hτ = hτ h + hτm acting on the mi-
croswimmer are: [

hf
hτ

]
=

[
hA hB

hBT hC

][
hv
hω

]
, (35)
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where hA = hAh + hAm, hB = hBh + hBm and hC = hCh + hCm:

hA =
[

a11 0 0
0 a22 0
0 0 a22

]
=

[
ah11 + ξvm 0 0

0 ah22 + ξvm 0
0 0 ah22 + ξvm

]
(36)

hB =
[

b11 0 b13
0 b22 b23
0 −b23 b33

]
=

[
bh11 0 bh13

0 bh22 ξvm|k|
0 −ξvm|k| bh33

]
(37)

hC =
[

c11 0 c13
0 c22 0

c13 0 c33

]

=
[

ch11 + ξωm 0 ch13
0 ch22 + ξvm|k|2 + ξωm 0

ch13 0 ch33 + ξvm|k|2 + ξωm

]
. (38)

Equation (35) is the 6 d.o.f. equivalent of (1). Note that f and τ do not represent
viscous drag associated with the microswimmer’s total velocity v and ω. Rather,
they represent non-fluidic force and torque — in this paper, force due to gravity and
torque due to magnetism — corresponding to a given microswimmer velocity (i.e.,
the force and torque required to overcome viscous drag for a given microswimmer
velocity). Now that we are equipped with a 6-d.o.f. helical microswimmer model,
we are ready to develop the control algorithm that enables intuitive control over the
microswimmer’s velocity, as opposed to directly controlling the microswimmer’s
orientation and rotation speed.

3. Algorithm for Velocity Control with Gravity Compensation

To compensate for the drift caused by an applied force on the microswimmer, it is
necessary to find the direction that it must point, xh, and at what speed it must rotate,
�, to achieve a desired spatial velocity, wv, where w indicates the stationary world
frame. In this paper, the microswimmer’s weight is the sole applied non-fluidic
force, represented by a vector mg, where m is the mass of the microswimmer and
g is the acceleration of gravity, and the ‘downward’ direction is defined with the
unit vector ĝ = g/‖g‖. As can be seen from the off-diagonal terms in the hB and
hC matrices of Section 2, the result of steering the microswimmer (i.e., rotating the
swimmer around the yh or zh axis) can produce complex forces and torques act-
ing on the microswimmer aside from those produced by weight. Despite this fact,
previous research has shown that magnetic helical microswimmers can be turned
effectively by adjusting the axis around which the applied magnetic field rotates
[4, 12]. Although there is evidence that commanding steering maneuvers that are
too rapid can lead to loss of control, we make the assumption herein that the mi-
croswimmer can be turned continuously to a desired pitch angle away from vertical
fast enough such that the microswimmer’s transient behavior is negligible.

In this section, we present a steady-state solution to the velocity problem, and use
it to produce a control algorithm that takes a desired velocity as its input and outputs
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the direction the microswimmer must be pointed and how fast it must be rotating
to attain the desired velocity at steady state. We denote the pointing direction by
x̃ and the rotation speed by �. In the context of command inputs using magnetic
fields, x̃ is also the axis around which the magnetic field should rotate, such that the
magnetic field is always perpendicular to x̃ and � is the rate of rotation.

If the stationary world frame is aligned with the microswimmer’s workspace in
an intuitive manner, the control inputs would best be expressed in this frame. To
avoid requiring vectors to be converted back and forth between the world frame
and the microswimmer’s coordinate frame (i.e., frame h, which rotates), any equa-
tions used to generate the necessary pitch and angular velocity would also best be
represented in the world frame. From the 6-d.o.f. model derived in Section 2, the
portion of (35) that is of particular interested to us is:

hf = hAhv + hBhω, (39)

which relates the microswimmer’s velocity to applied non-fluidic forces and angular
velocity of the microswimmer. As hA is clearly invertible, the desired velocity can
be solved for in (39) to produce:

hv = (hA−1)hf + (−hA−1hB)hω = hDhf + hEhω, (40)

where:

hD =
[

d11 0 0
0 d22 0
0 0 d22

]
, hE =

[
e11 0 e13
0 e22 e23
0 −e23 e33

]
, (41)

all expressed in the microswimmer’s helix frame. Using wRh, (40) can be written
in the world frame:

wv = wDwf + wEwω, (42)

using similarity transformations:

wv = wRh
hv, wf = wRh

hf
(43)wD = wRh

hDhRw, wE = wRh
hEhRw.

Constructing hRw requires the orientation of the robot as it rotates to be detected.
In practice, it is difficult to sense the orientation of the robot about its central axis as
it rotates during propulsion (e.g., using computer vision). To make best use of (42)
for anything aside from the trivial cases where the microswimmer is being com-
manded to move vertically, we will express (42) in a manner that does not require
the orientation of the microswimmer about its central axis to be known.

Since weight is the sole non-fluidic force acting upon the microrobot, the in-
put force f to (39) is mg. The desired velocity, v, can be broken into vertical and
horizontal components, respectively:

vver = (v · ĝ)ĝ (44)

vhor = v − vver. (45)

17

amahoney
Rectangle



A. W. Mahoney et al. / Advanced Robotics 25 (2011) 1007–1028 1017

If ‖vhor‖ = 0, then the microswimmer is being commanded to move vertically:
either straight up, straight down or a stationary hover. This is the trivial case
where (39) effectively becomes equivalent to its 2-d.o.f. counterpart from (1), mak-
ing the solution for x̃ and � straightforward:

x̃ = −ĝ (46)

� = ‖v‖ + d11‖f‖
e11

. (47)

If ‖vhor‖ �= 0, the solution is more complicated. Using ĝ, we will construct a
new coordinate frame associated with the microswimmer that does not rotate when
the microswimmer rotates about its central axis and we will express (42) in this
frame. This coordinate system (denoted by p) will be constructed such that the
basis vectors are eigenvectors of wD or wE. As the eigenvectors of wD or wE are
aligned with the principle directions of the microswimmer, we will refer to this
frame as the ‘principle’ coordinate frame. Let the basis of this coordinate frame be
defined as:

xp = (xh · v)xh

|xh · v| (48)

yp = xp × g
‖xp × g‖ (49)

zp = xp × yp. (50)

The principle frame is depicted in Fig. 3a. Expressing (42) in the principle coor-
dinate frame transforms the problem of finding the necessary pitch and angular
velocity into one that is relatively easy to solve and, as will be seen, is invariant to
rotations of the microswimmer about its central axis. The representation of (42) in
terms of the principle frame can be found by determining the representation of its
terms, wDwf and wEwω, individually.

If we make the assumption that the swimmer is at steady state as discussed ear-
lier, then we know wω = �wx̃ = �wxp and wxp is parallel to wxh (i.e., wxp = wxh or

(a) (b)

Figure 3. (a) Definition of the principle frame, angles and forces. (b) Construction of x̃.
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wxp = −wxh). It can be easily verified that hxh is an eigenvector of hE correspond-
ing to the eigenvalue e11. The similarity transformations of (43) do not affect the
eigenvalues of matrices and only rotate the eigenvectors with the wRh transforma-
tion, implying that e11 is an eigenvalue of wE and its corresponding eigenvector is
wxh, and due to their parallelism, wxp is also a corresponding eigenvector. Thus, the
expression of wEwω using the principle frame basis vectors can be easily found:

wEwω = wE�wxp = e11�
wxp. (51)

Recasting the wDwf term of (42) is performed in a similar manner. It is also easily
verified that hD has two eigenvalues: d11 and d22. The d11 eigenvalue has the cor-
responding eigenvector hxh and an eigenspace spanned by {hyh,

hzh} corresponds
to the eigenvalue d22. Any vector that is a linear combination of hyh and hzh will
be scaled by the eigenvalue d22. Again, eigenvalues are preserved under similar-
ity transformations, so the subsequent eigenvalues and eigenvectors of wD are d11
corresponding to wxh and d22 corresponding to any vector found in the span of
{wyh,

wzh}. The force wf acting on the microswimmer can be broken into two com-
ponent vectors with one parallel to the eigenvector wxh, which is aligned with the
central axis of the helix, and the other perpendicular (i.e., in the span of syh and
szh):

wf = (
(f · xh)

wxh
) + (

(f · yh)
wyh + (f · zh)

wzh
) = wf‖h + sf⊥h. (52)

Both wf and wf‖h are unaffected by the spinning of the microswimmer about the
wxh axis, implying that wf⊥h remains unchanged as well. Using this fact, and be-
cause both wyp and wzp are in the span of {wyh,

wzh}, wf⊥h can be written as linear
combinations of wyp and wzp. In fact, as can be seen from Fig. 3, no component of
wf⊥h lies in the direction of wyp, making wf⊥h = (f · zp)

wzp. This implies that wf⊥h
is an eigenvector corresponding to eigenvalue d22 and, along with the fact that wf‖h
is an eigenvector corresponding to eigenvalue d11, leads us to write the wDwf term
of (42) using the principle frame basis:

wDwf = wDwf‖h + wDwf⊥h = d11
wf‖h + d22

wf⊥h

= d11(f · xp)
wxp + d22(f · zp)

wzp. (53)

Combining (51) and (53) produces (42) written using the basis vectors of the prin-
ciple frame:

wv = d11(f · xp)
wxp + d22(f · zp)

wzp + e11�
wxp. (54)

As (f · zp)
wzp = wf⊥h is invariant to the microswimmer’s propulsive rotation and

the swimmer rotates around the wxp axis, neither of the terms in (54) are affected
by the rotation of the swimmer about its central axis.

Since the horizontal component of the desired velocity vhor is nonzero, we can
denote the angle of v measured from the vertical axis of the world frame by α =
tan−1(‖vhor‖/‖vver‖). To compensate for weight, the microswimmer will need to
be pitched upward by some angle above v as shown in Fig. 3. Let this angle be
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denoted by 
 . Taking (54) and projecting it first onto the wxp axis and then the wzp
axis produces two scalar equations of the form:

(v · xp) = d11(f · xp) + e11� (55)

(v · zp) = d22(f · zp). (56)

The angle 
 can be computed from (56) by recognizing from Fig. 2 that (v · zp) =
−‖v‖ sin(
) and (f · zp) = ‖f‖ sin(
 − α), producing:

−‖v‖ sin(
) = d22‖f‖ sin(
 − α). (57)

By utilizing the identity sin(
 − α) = sin(
) cos(α) − cos(
) sin(α) and then
grouping terms, we can solve for 
 resulting in:


 = tan−1
(

d22‖f‖ sin(α)

‖v‖ + d22‖f‖ cos(α)

)
, (58)

where the values for ‖v‖, ‖f‖, d22 and α are all known. Using α and 
 , the solution
x̃ can be reconstructed by defining an intermediate vector ṽ = ṽhor + ṽver composed
of its horizontal and vertical components, respectively, where ṽhor = vhor and ṽver =
−‖ṽhor‖ tan(π/2 − α + 
)ĝ. The solution x̃, then is computed as:

x̃ = ṽ
‖ṽ‖ . (59)

The construction of x̃ is depicted in Fig. 3b. Once 
 has been determined, � can
be found from (55) after recognizing that (v · xp) = ‖v‖ cos(
) and (f · xp) =
−‖f‖ cos(
 − α):

� = ‖v‖ cos(
) + d11‖f‖ cos(
 − α)

e11
. (60)

To summarize the control algorithm, the commanded velocity v is decom-
posed into vertical and horizontal components using (44) and (45), respectively.
If ‖vhor‖ = 0, then (46) and (47) are used to solve for x̃ and �, respectively. Other-
wise, (59) and (60) are used. The magnetic field should then be perpendicular to and
rotated about the axis x̃ with a rotation speed of � rad/s to achieve the commanded
velocity.

4. Experimental Verification

4.1. Experimental Setup

The experimental setup used to generate the controlled magnetic fields is shown
in Fig. 4. The system consists of three nested sets of Helmholtz coils. Each set of
Helmholtz coils generates a magnetic field that is optimally uniform in the center
of the workspace, which is aligned with the axis of the coils and which varies lin-
early with the electrical current flowing through wire. Each set of Helmholtz coils
is connected in series, such that a single current is used to power set. The three
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Figure 4. Experimental setup.

Table 1.
Parameters of Helmholtz coil electromagnets

Coil Coil radius No. wraps No. wraps No. wraps Resistance Inductance
set (mm) (width) (depth) (total) (�) (mH)

Inner 44 9 7 63 0.5 0.944
Middle 69 9 11 99 0.9 3.78
Outer 98 13 11 143 1.6 12.2

The radius, number of wraps wide, number of wraps deep and total wraps are reported per indi-
vidual coil, whereas the resistance and inductance are reported for each pair. All coils are wrapped
with 14 AWG insulated copper magnet wire (1.628 mm diameter). The separation of the coils in a
Helmholtz pair is equal to the radius of the coils in the pair.

sets are arranged orthogonally such that the magnetic field vector can be assigned
arbitrarily, with each Helmholtz pair corresponding to one basis direction of the
field vector. The details of the Helmholtz coils can be found in Table 1. Each set
of Helmholtz coils is driven by an Advanced Motion Controls S16A8 PWM ana-
log servo drive, capable of 8 A continuous current and 16 A peak current. The
S16A8 is designed to drive three-phase brushless motors with sinusoidal current
profiles, which is similar to the task of generating rotating magnetic fields required
herein. The three S16A8 drives are powered by a single Advanced Motion Controls
PS2x300W power supply. Analog communication between the PC and the drives is
accomplished with a Sensoray 626 Analog and Digital I/O card. The relationship
between the generated magnetic field and the commanded current was calibrated in
the center of the workspace using a Hirst GM08 gaussmeter. A 25 mm × 25 mm
square-cross-section vial with a length of 50 mm is located in the common center of
the Helmholtz coils. A Basler A602FC camera fitted with a Computar MLH-10X
macro zoom lens has a lateral view of the contents of the vial, which is backlit by a
Coherent Cold Cathode ML-0405 Backlight Panel that gives high-contrast images.
The entire system is cooled from above with a desk fan in a temperature-controlled
room in order to maintain an approximately constant viscosity of the swimmer’s
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environment. The system is controlled with a PC containing a 1.2-GHz dual-core
processor and 2 GB of RAM running with Linux.

4.2. Fabrication of the Magnetic Helical Swimmer

The helical swimmer pictured in Fig. 5 was fabricated from Nitinol tubing with an
outer diameter of 1.0 mm and inner diameter of 0.68 mm using micro wire electrical
discharge machining (WEDM). The WEDM machine was designed and built at the
University of Utah to utilize small-diameter wires ranging from 50 to 100 µm [18].
For the helical cut shown in Fig. 5a, the machine was equipped with a rotary axis
(A-axis) with its axis of rotation perpendicular to the EDM wire. In order to achieve
a pitch of 1 mm and a helix ribbon width of 0.2 mm, the 100-µm wire first penetrated
the tube to a depth of 0.15 mm below the axis of rotation (y-axis). The helix was
then cut in a single sweep by synchronizing the horizontal linear motion (x-axis)
with the rotation of the A-axis. Using a 100-µm brass wire at 250 V open-circuit
voltage and a 5.5-nF capacitor, the EDM cuts for the helical swimmer including
a cylindrical cut for attaching the magnet took approximately 1 h. The geometry
of the helix was chosen to approximate the geometry of the microswimmers in
Ref. [4].

As can been seen in Fig. 5a and b, a hemicylindrical pocket was machined into
the ‘head’ of the helix. After fabricating the helix, a 1-mm long, 0.75-mm diame-
ter axially magnetized cylindrical permanent magnet (nickel-plated NdFeB Grade
N50 from SuperMagnetMan) was seated into the pocket using epoxy, such that the
magnetization (i.e., dipole axis) of the magnet is perpendicular to the central axis
of the helix.

The helical swimmer fabricated herein is approximately the size that could be
used in a number of in vivo medical applications [1]. However, we are primarily
interested in applying our results to the type of microswimmers that have been de-
signed for use as untethered micromanipulators under an optical microscope. In
this regard, our helical swimmer is a scaled model of the microswimmers that have
been created. We use corn syrup as our fluid medium herein, whereas microswim-
mers would typically swim in water or a fluid with properties similar to water. To

(a) (b) (c)

Figure 5. (a) Helical swimmer machined from 1-mm outer diameter Nitinol tubing using micro elec-
trical discharge machining to produce a 5-mm long helix with 3.5 turns in a single sweep. (b) Scanning
electron micrograph of the fabricated helix. (c) Helical swimmer on a human fingertip.
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understand for what size of microswimmer our results directly apply, we consider
matching of Reynolds number:

Re = ρmicLmicVmic

ηmic
= ρmodLmodVmod

ηmod
, (61)

where ‘mod’ denotes our model and ‘mic’ denotes the equivalent microscale swim-
mer in water. We are interested in finding the length scale of a microswimmer that
corresponds to our experimental results. For our characteristic length we will con-
sider the radius of the helix: rh. For our characteristic velocity we will consider the
velocity of a segment of the helix moving through the fluid: rh�. The achievable
rotation speed � is invariant to scaling, due to the fact that magnetic torque scales
with volume, which is proportional to length cubed, and rotational viscous drag
also scales as length cubed (see model of Section 2). The result is a relation that
describes the radius of the microswimmer that matches our experimental results:

rh,mic =
√(

ρmodηmic

ρmicηmod

)
r2

h,mod. (62)

Our model swims in corn syrup, which has a viscosity of approximately ηmod =
2500 cps, compared to ηmic = 1 cps for water. The density of corn syrup is ap-
proximately ρmod = 1.36 g/ml, compared to ρmic = 1 g/ml for water. The radius of
our helical swimmer is rh,mod = 420 µm. Thus, the experimental results from our
helical swimmer in corn syrup will correspond directly to a microswimmer with a
radius rh,mic = 9.8 µm swimming in water, which is reasonably close to the 1.5-µm
radius of the microswimmers of Ref. [4] and which places our results squarely into
the low-Reynolds-number regime of interest.

4.3. Characterization of the Magnetic Helical Swimmer

Since (58) and (60) require only d11, d22 and e11, only the two terms in hA and
the b11 term from hB need to be determined. Rather than explicitly calculating
these parameters using the derived equations, (19)–(30), we experimentally mea-
sured the necessary parameters using a method similar to that described in Ref. [12]
using (35) with known non-fluidic force (gravitational force in this case). The mass
of the robot was measured to be 8.9 mg, resulting in a gravitational force acting
on the swimmer of −8.7 × 10−5 N. Using this force, the a11 and a22 terms of
hA were calculated by measuring the velocity of the swimmer as it sinks in the
fluid at room temperature, first oriented vertically to obtain a11 and then horizon-
tally to obtain a22. As the swimmer sinks, a static magnetic field was applied to
enforce ω = 0, making (35) a relation between f and v. With v measured and
ω = 0, a11 = 0.42 N · s/m and a22 = 4.4 N · s/m were found. To find the b11 co-
efficient, rather than applying a static field to force ω = 0, the microswimmer
was oriented vertically and made to rotate fast enough so the forward propulsion
in the upward direction balanced the gravitational force downward. At this point
of equilibrium, ω is known and v = 0, turning (35) into a relation between ap-
plied force and rotation speed along the xh axis. Experimentally, the rotational
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speed necessary to balance the gravitational force was found to be 2.23 Hz making
b11 = −3.9 × 10−5 N · s. Since d11 = 1/a11, d22 = 1/a22 and e11 = −b11/a11, then
we calculate the necessary parameters as: d11 = 2.4 N−1 · m/s, d22 = 0.23 N−1 · m/s
and e11 = 9.3 × 10−5 m.

4.4. Experimental Results

A variety of experiments were performed to study how the helical swimmer dis-
cussed in Sections 4.2 behaves under open-loop velocity control. Each experiment
was performed with the swimmer submerged in a 50 × 20 × 20-mm rectangular
tank of corn syrup arranged in the center of the Helmholtz coils.

Presenting the user with control over the microswimmer’s velocity in the world
frame is an intuitive method to direct the swimmer. Without the algorithm presented
in Section 3, performing simple maneuvers requires non-intuitive control over the
direction to point the swimmer and how fast to rotate it. In the experiment shown
in Fig. 6, the user held the vertical velocity at zero and manually adjusted the de-
sired velocity in the horizontal direction to make the swimmer go from a stationary
hover, ramp up to a constant horizontal velocity of 0.35 mm/s and then return to
hover. Although it is intuitive that the swimmer must turn in the direction of the
desired velocity and increase its rotation speed, the exact pitch angle from verti-
cal and the rotation speed of the swimmer required to execute this maneuver are
not immediately obvious to a human operator. With each change in input from the
user, the control algorithm immediately adjusts the axis around which the magnetic
field rotates and its rotational speed. The algorithm naively neglects the transient
response of the swimmer to the changes in output. During the transient response,
the robot sinks as seen in Fig. 6a between the swimmer at time 1 and 54 s. This is
discussed further in Section 5.

The algorithm is not only designed to maintain a constant elevation by keeping
‖vver‖ = 0. Figure 7a and b shows the resulting trajectories after commanding the
swimmer to attain a velocity of 0.1 mm/s pitched 30◦ above horizontal and 30◦
below horizontal, respectively. The results show the swimmer moves in a straight
trajectory approximately as commanded, achieving desired velocities of 0.12 mm/s
20◦ above horizontal and 0.17 mm/s 17◦ below the horizontal for the respective
cases.

We found while performing the experiments that the steady-state behavior of
the microswimmer is sensitive to changes in the viscosity of the corn syrup. The
effect of fluid viscosity on fluidic characteristics can be understood by examining
the terms of the hA and hB matrices. The ξ‖, ξ⊥ and ξωm coefficients that appear
in each term of hA and hB are linearly scaled by the viscosity of the medium (η)
[15], making hA and hB themselves also linearly related to viscosity. The matrix
hD and hE from which the control equations were derived are not related to vis-
cosity in this manner, however. As hD = hA−1, hD (and subsequently its terms)
is inversely proportional to viscosity. Analyzing the matrix hE = −hA−1hB shows
that because hA−1 is inversely proportional to viscosity and hB is proportional to
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(a) Trajectory composition (b) Horizontal velocity vs. time

(c) Pitch angle vs. time (d) Rotation speed (�) vs. time

Figure 6. Experimental results of a human operator commanding a hovering swimmer to accelerate up
to a constant horizontal velocity and then decelerate back to hover while imparting no vertical motion.
(a) Composite image sequence. (b) Manually commanded horizontal velocity. The human operator
updates the desired velocity in 0.5-mm/s steps, up to a velocity of 0.35 mm/s. The outputs to control
the swimmer — the pitch angle of x̃ (c) and the rotation speed � (d) — are computed by the algorithm
and are not intuitive to the human operator even for simple maneuvers such as this.

(a) Ascent under velocity control (b) Descent under velocity control

Figure 7. Composite experimental image sequences showing resulting trajectories after commanding
the swimmer to attain a velocity of (a) 0.1 mm/s angled 30◦ above horizontal and (b) 0.1 mm/s angled
30◦ below horizontal. These results show a velocity error of 33% error in direction and 22% error in
magnitude for (a). For (b), the results show a velocity error of 43% error in direction and 75% error in
magnitude. Detailed discussion of these errors are presented in Section 4.4.
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Figure 8. Composite experimental image sequence demonstrating that the algorithm seamlessly con-
trols maneuvers such as this ‘U-turn’ while maintaining a constant forward velocity.

viscosity, their net effect cancels and hE itself is invariant to changes in viscosity.
The error shown in Fig. 7 is likely attributable to a change in fluid viscosity caused
by fluctuation in ambient temperature after the swimming properties were char-
acterized using methods discussed in the preceding section, as well as changes in
the distance between the swimmer and the walls of the container. Simple sensitivity
analysis when commanding the swimmer to obtain a velocity of 30◦ above horizon-
tal at 0.1 mm/s (as is the case shown in Fig. 7a) shows that altering the parameters
d11 and d22 (near the values obtained in Section 4.3) by overpredicting viscosity
by 15% induces the microrobot to swim at an angle 10% less than desired above
horizontal and with magnitude 17% less than desired. Underpredicting viscosity
by 15% causes the microrobot to swim at an angle 10% more than desired above
horizontal with magnitude 23% greater than desired. Additionally, we have found
that the sensitivity to error in viscosity increases when operating in fluids with less
viscosity than that used in this paper. Although potentially large, these disturbances
can be compensated for by the human operator if he/she perceives that the swim-
mer is not moving as desired, since correction in the velocity commands are more
intuitive to the human than corrections in pitch and rotation speed.

The algorithm presented in this paper is not limited to maneuvers where the
swimmer is primarily oriented vertically, like those in the preceding experiments.
The algorithm can determine the necessary control outputs given any spatial veloc-
ity. Figure 8, for example, shows the trajectory of the swimmer under control of
the algorithm for a maneuver where the user initially commands the swimmer to
move horizontally and then rotates the velocity 180◦ returning back to horizontal
velocity opposite that at the start (as if performing a ‘U-turn’ in a car), while main-
taining constant velocity magnitude. As can be seen in Fig. 8, the algorithm handles
maneuvers such as these seamlessly.

5. Discussion

There are a number of assumptions built into the algorithm presented herein. (i) We
assume that the microswimmer is always rotating in sync with the applied field,
implying that the commanded rotation speed � is not above the step-out frequency
of the microswimmer. The step-out frequency is well understood when swimming
parallel to the central axis, but the effect of steering maneuvers on step-out is not
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well understood. (ii) We assume the microswimmer is swimming stably, mean-
ing that, in addition to rotating in sync with the magnetic field, the central axis of
the microswimmer xh is asymptotically converging on the field’s rotation axis x̃.
During rapid steering maneuvers at high �, microswimmers have been shown to
go unstable, essentially requiring a kind of system reset. These first two assump-
tions are highly related. (iii) If the microswimmer’s transient response to steering
commands is too slow (i.e., the microswimmer’s central axis xh takes too long
to converge on x̃), the microswimmer may ascend or descend unintentionally as
it turns, resulting in an error in velocity until it reaches steady state. Using a
smooth desired-velocity trajectory with limits on acceleration will mitigate unin-
tended consequences of the microswimmer’s transient behavior by ensuring that
the microswimmer is never asked to make rapid changes in its pitch. This acceler-
ation cap will also mitigate potential instability. (iv) We assumed a microswimmer
with a spherical permanent magnet, but our fabricated swimmer, as well as previ-
ously published microswimmers, have different magnet geometries and some have
utilized soft magnetic materials. With regard to magnet geometry, it is known that
viscous drag coefficients are insensitive to small changes in geometry in Stokes
flow. With regard to the use of soft magnetic material, this difference is inconse-
quential if we satisfy the above assumptions of stable swimming below step-out.

Since the presented algorithm is open loop and subject to modeling errors, it will
be subject to errors and drift, but the drift should be slower than without the algo-
rithm, providing the human operator with time to correct for perceived errors in the
microswimmer’s motion. In addition, the correction required by the operator will
be straightforward compared to the prior method, since directly commanding veloc-
ity in the workspace is intuitive (e.g., if the microswimmer has undesired sinking,
simply command it to move upward). It will also be straightforward to incorporate
the algorithm presented herein into a closed-loop position or velocity control sys-
tem using sensor feedback, such as the image from an optical microscope. This is
likely to only require only the 3-d.o.f. position of the microswimmer or even just
focus information. During the course of our experiments, we found that the perfor-
mance of the algorithm is particularly sensitive to the viscosity of the fluid, which
is affected by its temperature, as well as surface effects from the container, which
are widely known to be important in a low-Reynolds-number regime. As discussed
above, both of these factors could be accounted for in an intuitive manner by the
human operator, but both factors also motivate the potential benefits of closing a
control loop using visual feedback.

6. Conclusions

We have developed a 6-d.o.f. model for helical microswimmers in a low-Reynolds-
number regime. Using this model, we derived a simple open-loop controller that
allows a human user to directly command a desired velocity to magnetic helical
microswimmers. The method incorporates a gravity-compensation routine that pre-
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vents the microswimmer from sinking due to its own weight. The method is more
intuitive than controlling the orientation and rotation speed of the microswimmer
directly, which is the method utilized in prior works. We found good agreement
between experimental results and predictions.
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CHAPTER 3

BEHAVIOR OF ROTATING MAGNETIC

MICROROBOTS ABOVE THE STEP-

OUT FREQUENCY WITH APPLI-

CATION TO CONTROL OF

MULTI-MICROROBOT

SYSTEMS

For all rotating untethered magnetic devices, there exists an applied field rotation

frequency above which the generated magnetic torque is not strong enough to keep the

magnetic device rotating synchronously with the applied field. This frequency is referred

to as the “step-out” frequency (alternatively, it has also been referred to as the “cut-off”

frequency). When the magnetic device is operated with the field rotating above the step-out

frequency, the magnetic device’s velocity rapidly declines and, to the eye, looks as if it is

rotating chaotically. As a result, it has been assumed that rotating magnetic devices should

always be operated so that they synchronously rotate with the applied field. In fact, the

behavior of the magnetic device, above the step-out frequency, is not chaotic, and I have

found that there are properties of the magnetic device’s decline in velocity that can be

exploited for the control of multimicrorobot systems. This is described in the following

paper that was published in the journal Applied Physics Letters. The experimental data

shown in Fig. 3(a) was provided by K. E. Peyer and B. J. Nelson from the Institute of

Robotics and Intelligent Systems, ETH Zurich.

Reprinted with permission from A. W. Mahoney, N. D. Nelson, K. E. Peyer, B. J. Nelson,

and J. J. Abbott, “Behavior of rotating magnetic microrobots above the step-out frequency

with application to control of multi-microrobot systems,” Appl. Phys. Lett., vol. 104, no.

144101, pp. 31–34, 2014. Copyright 2014, AIP Publishing LLC.
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This paper studies the behavior of rotating magnetic microrobots, constructed with a permanent

magnet or a soft ferromagnet, when the applied magnetic field rotates faster than a microrobot’s

step-out frequency (the frequency requiring the entire available magnetic torque to maintain

synchronous rotation). A microrobot’s velocity dramatically declines when operated above the

step-out frequency. As a result, it has generally been assumed that microrobots should be operated

beneath their step-out frequency. In this paper, we report and demonstrate properties of a

microrobot’s behavior above the step-out frequency that will be useful for the design and control of

multi-microrobot systems. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4870768]

Untethered magnetic microrobots show promise for a

variety of applications including minimally invasive medi-

cine1 and manipulation.2 Magnetic microrobots are generally

simple devices actuated by externally applied magnetic fields

that exert some combination of magnetic force and torque

upon the microrobot.

This paper studies microrobots whose primary form of

locomotion converts magnetic torque into propulsion using a

continuously rotating magnetic field. This includes microro-

bots that roll or propel via an attached rigid chiral structure

(e.g., a helix or screw). When the applied magnetic field

rotates sufficiently slowly, the microrobots synchronously

rotate with the field. There exists a field rotation frequency,

however, above which the applied magnetic torque is not

strong enough to keep the microrobot synchronized with the

field. This frequency is the “step-out” frequency.3 The step-

out frequency depends on the microrobot’s magnetization,

friction, and the field strength. When operated above the step-

out frequency, the microrobot’s velocity rapidly declines.

The ability to control multi-microrobot systems is desira-

ble for manipulation applications.2 Most existing multi-

microrobot systems are actuated by uniform magnetic fields

where each microrobot experiences the same actuating signal,

making true independent control difficult. Control methods

for multi-microrobot systems exist when each microrobot

responds differently to the actuating signal.4 Common techni-

ques include designing each microrobot to convert a rotating

magnetic field into spatial motion at different rates, and vary-

ing the step-out frequency between microrobots so that one

loses synchronization with the rotating field before another,

enabling semi-selective binary control.3 In this paper, we

present properties of a microrobot’s decline in velocity,

above step-out, that enables the velocity of individuals in a

multi-microrobot system to be designed to selectively

respond uniformly to the rotating field (where the microrobot

rotation velocities are the same), respond heterogeneously

where some microrobots have lost synchronization and others

have not (where the ratio of the microrobot rotation velocities

is large as demonstrated by Ishiyama et al.3), or respond het-

erogeneously with all microrobots having lost synchroniza-

tion (where the ratio of the microrobot rotation velocities

approaches a pre-designed constant). The phenomenon we

present can be exploited by control-theoretic techniques,4 or

it can add an additional level of microrobot differentiation to

existing multi-microrobot control strategies such as address-

able microrobot methods, which have been demonstrated to

be well-suited for positioning and manipulation tasks.2

When a microrobot with dipole moment m 2 R3 A m2 is

placed in a magnetic field h 2 R3 A=m, a magnetic torque

sh ¼ l0m� h will be applied, where l0 ¼ 4p� 10�7 T m=A.

For a permanent-magnet microrobot, the dipole moment is

fixed with respect to the microrobot’s geometry. For a microro-

bot with a soft-magnetic body of volume v that can be approxi-

mated as an ellipsoid, the dipole moment varies with the

applied magnetic field according to m � vXh, where X 2
R3�3 is the apparent susceptibility matrix. When expressed in

a coordinate system with axes aligned to the principal direc-

tions of the approximating ellipsoid, then X can take on the

form

X ¼ diag
v

1þ nav
;

v
1þ nrv

;
v

1þ nrv

� �
; (1)

where na and nr are the demagnetization factors in the direc-

tions of the major and minor ellipse axes (so that na < nr),

respectively, and v is the susceptibility of the material.5

When the applied magnetic fields are sufficiently strong,

then the moment becomes saturated so that kmk ¼ msat and

m aligns to minimize the total magnetic energy. Let hsat be

the field magnitude required to saturate the microrobot’s

magnetic body.

In this paper, we assume a simple 1-degree-of-freedom

(DOF) model where the magnetic microrobot’s angular veloc-

ity xm 2 R3 rad=s and the applied magnetic torque sh are par-

allel to the microrobot’s principal axis, and the microrobot’s

dipole moment m and the applied field h are perpendicular to,

0003-6951/2014/104(14)/144101/4/$30.00 VC 2014 AIP Publishing LLC104, 144101-1

APPLIED PHYSICS LETTERS 104, 144101 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

155.98.11.184 On: Mon, 07 Apr 2014 15:26:25

31



and rotate around, the same principal axis (see Fig. 1). The

magnetic field’s angular velocity is denoted as xh 2 R3 rad=s,

which we assume to be constant. In low-Reynolds-number

regimes, a microrobot’s spatial velocity is generally assumed

to be proportional to its rotational frequency. The magnitudes

of the magnetic torque, the microrobot’s angular velocity, and

the magnetic field’s angular velocity are denoted by sh; xm,

and xh, respectively. Although the 1-DOF assumption is not

true in general for helical microrobots, whose chiral asymme-

try causes precession particularly at slow rotation speeds, the

model tends to be a good approximation.

We also assume the applied magnetic field is uniform

(i.e., no magnetic force is applied) and the microrobot oper-

ates in low-Reynolds-number regime fluids, where inertia is

negligible and the microrobot’s angular velocity is propor-

tional to the applied magnetic torque by a viscous drag coef-

ficient c, which varies with surface friction, fluid viscosity,

and microrobot geometry. Under these assumptions, a per-

manent- and soft-magnetic microrobot’s angular velocity

can be modeled as

xm ¼
1

c
sh ¼

xso sinðaÞ; permanent magnet

xso sinð2aÞ; soft magnet;

(
(2)

where a is the angle illustrated in Fig. 1. The soft-magnetic

microrobot’s angular velocity in (2) is accurate when either

well below or above saturation.5 The scalar xso is the maxi-

mum angular velocity achievable (when sh is maximized at

a ¼ p=2 rad and a ¼ p=4 rad for a permanent- and soft-

magnetic microrobot, respectively).

For a permanent magnet, the step-out frequency is

xso ¼ l0kmkkhk=c; (3)

which is linear with khk and the microrobot’s dipole moment

kmk, which depends on the remanent magnetization and vol-

ume v of the magnetic body.

The step-out frequency of a soft-magnetic microrobot

changes between the magnetic saturation regimes and is

xso ¼

l0

c

jna � nrj
2nanr

vkhk2; when khk � hsat

l0

c

jna � nrj
2

vm2
sat; when khk � hsat;

8>>><
>>>:

(4)

which increases quadratically with khk below saturation, but

is limited by the saturated moment msat of the magnetic body

above saturation. The step-out frequency varies with the

soft-magnetic body’s geometry through the demagnetization

factors, na and nr, and is proportional to the soft-magnetic

body’s volume v. Between the two magnetization regimes, the

step-out frequency falls between the frequencies given in (4).

The average microrobot angular velocity �xm, as a func-

tion of the field rotating frequency xh, has been solved in

closed-form for both rotating permanent magnets6–8 and fer-

romagnetic ellipsoids.9 In both cases, �xm is found as

�xm ¼
xh; when xh � xso

xh � xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xso=xhð Þ2

q
; when xh > xso:

(
(5)

Equation (5) can be used to study the effects of scaling

an individual microrobot’s step-out frequency or the compar-

ative difference between microrobots in a group with varying

step-out frequencies. Fig. 2(a) shows the scaled average

microrobot angular velocity �xm=xso of four hypothetical

microrobots. The first microrobot (the “baseline”) has a step-

out frequency of xso and is the curve labeled A. The remain-

ing three curves labeled B, C, and D show the scaled average

angular velocity for three other microrobots whose step-out

frequencies are scaled by a factor s (i.e., sxso) with s¼ 2, 3,

and 4, respectively. The step-out frequency of the other

microrobots could be scaled by increasing the microrobot’s

magnet volume by a factor of 2, 3, and 4, respectively.

The comparative effect of scaling a microrobot’s step-

out frequency is illustrated in Fig. 2(b), which shows the ra-

tio R(s) of each scaled microrobot’s average rotation fre-

quency to that of the baseline microrobot at the same

frequency. For scaled field frequencies beneath the baseline

step-out frequency ðxh=xso � 1Þ, the ratio R(s)¼ 1. When

the baseline microrobot reaches step-out, R(s) increases. The

maximum value of R(s) occurs at the step-out frequency of

the scaled microrobot, which produces

RmaxðsÞ ¼
1

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=sð Þ2

q ¼
s!1

2s2: (6)

FIG. 1. This figure illustrates the 1-DOF model used herein. For permanent-

magnet microrobots [(a) and (c)], a measures the angle between the applied

field h and the microrobot’s dipole moment m. For soft-magnetic microro-

bots [(b) and (d)], a measures the angle between the applied field h and the

major axis of the magnetic body.

FIG. 2. (a) The scaled average microrobot rotation frequency �xm=xso for

four hypothetical microrobots as a function of the scaled field rotation fre-

quency xh=xso, where xso is the step-out frequency of the “baseline” micro-

robot (with s¼ 1 and labeled A). The plots labeled B, C, and D are for three

microrobots with the step-out frequency scaled from the baseline by factors

s¼ 2, 3, and 4, respectively. (b) The ratio R(s) of the scaled average micro-

robot rotation frequencies.
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The maximum of R(s) could be useful in the context of

multi-microrobot control if it is desired that two sets of

microrobots (denoted as set A and B) have the ability to

alternate between a mode where all microrobots rotate at the

same frequency, and a mode where set A rotates a factor of

Rmax faster than set B, selected by the magnetic field rotation

frequency. In this example, the smallest factor s that the

step-out frequency of the microrobots in set A should be

scaled to achieve a desired maximum ratio Rmax can be found

by solving (6). The minimum factor s to achieve a desired

Rmax is s �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rmax=2

p
. Note that R(s) ranges from 1 to �2s2

when the field rotation frequencies ranges between the base-

line and scaled microrobot’s step-out frequencies.

As the magnetic field rotation frequency increases past

the scaled microrobot’s step-out frequency, the ratio R(s)

drops and approaches a horizontal asymptote [see Fig. 2(b)].

In this regime, R(s) is given by

RðsÞ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðsxso=xhÞ2

q
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðxso=xhÞ2

q ¼
xh!1

s2: (7)

In the context of controlling multiple sets of microro-

bots, the fact that R(s) approaches a horizontal asymptote

when both sets have lost field synchronization creates the

possibility for complex control methods. For example, if

there are three sets of microrobots denoted by A; B, and C
with step-out frequencies scaled by factors s¼ 1, 2, and 3,

respectively, then the ratios of their angular velocities can

take on many combinations [refer to Fig. 2(b)]. For exam-

ple, if the field is rotated at a scaled frequency in the range

of [2.5, 3], then the ratio of set B and A velocities remains

approximately constant near 4, while the ratio of set C and

A velocities can range from approximately 12 to 18. Many

combinations are possible, however a microrobot cannot

rotate faster than another with a higher step-out frequency,

provided the field rotates at a constant angular velocity.

Additional selection can be achieved by designing groups

to convert the rotating field to spatial velocity at different

rates.

Fig. 3(a) shows the average microrobot rotation fre-

quency �xm (left axis) and the corresponding average forward

velocity (right axis) for the soft-magnetic helical swimmer10

(shown in the inset) with two magnetizations resulting from

the application of a 2 mT and 4 mT field, obtained while

swimming in Methyl cellulose (0.2% w/v) near a silicon sur-

face within a triaxial Helmholtz-coil system, which applies

negligible magnetic forces. The average rotation frequency

is deduced from measured forward velocity by recognizing

that the microrobot and field rotation frequencies are the

same below step-out (i.e., the slope of the average microro-

bot rotation frequency, plotted as a function of field rotation

frequency, is 1 below step-out). A least-squares fit of (5) to

each dataset is also shown. The step-out frequencies of the

swimmer magnetized with the 2 mT (the “baseline”) and

4 mT fields are 17.7 Hz and 23.9 Hz, respectively, indicating

a scaling factor of s¼ 1.35. The ratio of the average microro-

bot rotation frequencies is plotted in Fig. 3(b), which falls in

the range of [1.0, 3.0] for xh 2 ½17:7 Hz; 23:9 Hz	, and

approaches the horizontal asymptote 1.352¼ 1.82.

Fig. 4(a) shows the average rotation frequency �xm for

two permanent-magnet “microrobot” devices [one is shown

in the inset of Fig. 4(a)], obtained from measured average de-

vice forward velocity in the same manner as Fig. 3(a), with

khk ¼ 8 mT. Each permanent-magnet “microrobot” device

consists of a 2.55 mm diameter, 3.18 mm tall cylinder with

an axially magnetized 1.59 mm diameter, 1.59 mm tall cylin-

drical NdFeB magnet positioned in the device’s geometric

center and polarized perpendicular to the device’s longitudi-

nal axis. Both devices are geometrically identical, but one

contains an N52-grade magnet and the other contains an

N42-grade magnet. The devices are actuated in a triaxial

Helmholtz-coil system and roll on a polystyrene surface

immersed in corn syrup with viscosity and density of 2500

cps and 1.36 g/ml, respectively. Reynolds-number analysis

FIG. 3. (a) The average microrobot rotation frequency �xm for a soft-

magnetic helical swimmer [shown in the inset] magnetized by a 2 mT and

4 mT magnitude field, as a function of field rotation frequency xh. The

“baseline” swimmer (s¼ 1) is magnetized by the 2 mT magnitude field. The

right axis denotes the swimmer’s forward spatial velocity. The numerical

similarity between the left and right axes is coincidental. (b) The ratio of the

average microrobot rotation frequencies at both magnetizations. The right

axis denotes the ratio of the forward spatial velocities.

FIG. 4. (a) The average rotation frequency �xm is shown for two permanent-

magnet rolling “microrobot” devices of the same geometry [see the inset of

(a)], but one contains a N42-grade magnet and the other a N52-grade mag-

net, and with khk ¼ 8 mT as a function of field rotation frequency xh. The

right axes denote the devices’ spatial velocities. (b) The ratio of the average

device rotation frequencies. The right axis denotes the ratio of the devices’

spatial velocities. Reynolds-number analysis predicts that both “microrobot”

devices behave equivalently to a 60 lm diameter microrobot in water.
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predicts the behavior of both devices to be equivalent to a

60 lm diameter microrobot in water.

Although both “microrobot” devices are geometrically

the same, unintended surface irregularities cause the forward

velocity of the N42-grade device to be 9.9% faster than the

N52-grade device for the same rotating frequencies. The

step-out frequencies of the N42-grade (i.e., the “baseline”)

and N52-grade devices are 2.75 Hz and 3.88 Hz, respectively,

which indicates a scaling factor of s¼ 1.41. Fig. 4(b) shows

the ratio of the average device rotation frequencies, which

falls in the range of [1.0, 3.38] for xh 2 ½2:75 Hz; 3:88 Hz	,
and approaches the horizontal asymptote 1.412¼ 1.99. The

average forward velocity ratio approaches the horizontal as-

ymptote 1.8.

Fig. 5 (with associated multimedia) demonstrates the use

of the step-out behavior described herein for the simultaneous

control of the two “microrobot” devices used in Fig. 4.

Fig. 5(a) shows both devices actuated along a square path by

driving the devices forward for 5 s, turning the devices p=2 rad

clockwise over 3 s, and repeating until a square has been

completed. The field rotates at 1 Hz, where both “microrobot”

devices synchronously rotate, and khk ¼ 8:0 mT. The N42-

and N52-grade devices follow 4.4 mm and 3.4 mm square

paths and travel at 0.88 mm/s and 0.68 mm/s, respectively,

indicating a forward velocity ratio of 0.80 (Fig. 4(b) predicts

0.91).

Fig. 5(b) shows both permanent-magnet “microrobot”

devices operated with khk ¼ 8:0 mT and xh ¼ 7 Hz, which

is above both devices’ step-out frequencies. In this case, the

path is generated by driving the devices for 16 s and turning

for 3 s. The N42- and N52-grade “microrobot” devices fol-

low 5.1 mm and 8.8 mm square paths and travel at 0.32 mm/s

and 0.55 mm/s, respectively, indicating a forward velocity

ratio of 1.7 (Fig. 4(b) predicts 1.8). This demonstrates the

ability to selectively control the ratio of the microrobots’ for-

ward velocities by operating both devices above their step-

out frequencies.

The analysis presented herein can add an additional

level of microrobot differentiation to existing multi-

microrobot control methods (e.g., addressable actuation

strategies that have proven useful for positioning and manip-

ulation2), and may be applied to exploit natural variance in

batch-manufactured microrobots for the control of microro-

bot swarms. This work was partially funded by the National

Science Foundation under Grant No. 0952718 and European

Research Council Advanced Grant BOTMED.
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FIG. 5. A demonstration of selective control over the forward velocity ratio of

two permanent-magnet “microrobot” devices by varying the field rotation fre-

quency xh. In (a), both devices follow a square path with khk ¼ 8:0 mT and

xh ¼ 1 Hz, which is below both devices’ step-out frequencies. The measured

forward velocity ratio is 0.80. In (b), both devices follow a square path with

khk ¼ 8:0 mT and xh ¼ 7 Hz, which is above both devices’ step-out frequen-

cies. The measured forward velocity ratio is 1.7. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4870768.1]
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CHAPTER 4

GENERATING ROTATING MAGNETIC

FIELDS WITH A SINGLE PERMAN-

ENT MAGNET FOR PROPULSION

OF UNTETHERED MAGNETIC

DEVICES IN A LUMEN

Visualizing the rotation behavior of the dipole-shaped magnetic field produced by a

single rotating permanent magnet is difficult except in a few select positions in space. As

a result, prior work that employs a rotating permanent magnet for the propulsion of an

untethered magnetic device has restricted operation to the easily visualized positions. This

artificially imposed restriction has made rotating-permanent-magnet systems impractical

for clinical use. The following paper, published in IEEE Transactions on Robotics, analyzes

the behavior of rotating dipole fields in all positions (not just those that are easily visualized)

and develops control methods that enable untethered magnetic devices to be actuated in

any position relative to the rotating permanent magnet, thus eliminating the artificially

imposed constraints. Systems that employ the methods that the paper presents will be

much more flexible than prior work.

c©2014 IEEE. Reprinted, with permission, from A. W. Mahoney and J. J. Abbott, “Gener-

ating rotating magnetic fields with a single permanent magnet for propulsion of untethered

magnetic devices in a lumen,” IEEE Trans. Robot., April 2014.
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Generating Rotating Magnetic Fields With a Single
Permanent Magnet for Propulsion of Untethered

Magnetic Devices in a Lumen
Arthur W. Mahoney, Student Member, IEEE, and Jake J. Abbott, Member, IEEE

Abstract—To date, untethered magnetic devices actuated with
a single rotating permanent magnet, such as active capsule endo-
scopes and magnetic microrobots, have been constrained to operate
in positions where the rotating dipole field behavior is simple and
easy to visualize. In this paper, we show how to generate a rotating
magnetic field with any desired rotation axis, for magnetic device
actuation, at any device position in space using a single rotating-
magnet actuator. The methods presented can control untethered
rotating magnetic devices, while the rotating actuator magnet fol-
lows trajectories independent of the untethered devices themselves.
We demonstrate our methods by actuating rotating magnetic de-
vices in a lumen. Applications include minimally invasive medical
tasks requiring an untethered magnetic device to operate in natu-
ral lumen pathways of the body (e.g., the gastrointestinal system,
the subarachnoid space of the nervous system, or vasculature).

Index Terms—Capsule endoscopy, magnetic manipulation, med-
ical robotics, microrobotics.

I. INTRODUCTION

UNTETHERED magnetic devices (UMDs), such as mag-
netic microrobots [1] and magnetically actuated capsule

endoscopes [2], have become an active area of research because
of their potential impact on minimally invasive medicine. These
devices derive their power from externally applied magnetic
fields. Some forms of actuation utilize magnetic forces for drag-
ging [3]–[7], others apply magnetic torque to roll on a surface
[8]–[10], swim through a fluid or lumen via helical screw propul-
sion [11]–[15], screw through soft tissue [16], [17], or swim with
a flexible tail [18]. Because these devices range in size from the
microscale to the mesoscale and employ many forms of mag-
netic propulsion, we refer to them herein as UMDs without any
implied size, propulsion method, or application. These devices
can be viewed as simple end-effectors of a larger robotic system.

Due to the ability of permanent magnets to generate
strong magnetic fields at low cost, researchers are considering
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cation November 21, 2013; date of current version April 1, 2014. This paper was
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Fig. 1. When an actuator magnet with moment ma rotates around the axis ω̂a

with ma perpendicular to ω̂a , the dipole field vector h at any given position
rotates around, and is perpendicular to, a constant axis ω̂h . The axis ω̂h at
various positions are illustrated with large blue arrows. A representation of the
ellipse traced out by the rotating magnetic field at the position p is shown. Any
position on the ω̂a axis is denoted to be in an axial position and any position in
the plane spanned by the rotating ma is a radial position. The magnetic field at
p is illustrated by gray arrows rotating around ω̂h .

permanent magnet systems for UMD actuation [8]–[12]. Actu-
ation of UMDs using permanent magnets tends to be nontrivial
due to the complex nature of the generated magnetic fields. In the
case of actuation using a single permanent magnet, UMD con-
trol strategies developed to date have employed either attractive
magnetic force or magnetic torque in simple ways for propul-
sion. Strategies exclusively employing attractive magnetic force,
generated between a single permanent magnet and a UMD, em-
ploy the magnetic force for dragging [3], [4], [6], [7]. Strategies
exclusively employing magnetic torque typically apply rotat-
ing magnetic fields, generated by a single rotating permanent
magnet, that cause the UMD to rotate; UMD rotation is then
transformed into propulsion using a helix or screw [11], [12], or
by rolling [8]–[10].

Strategies that employ the magnetic force generated by a sin-
gle permanent magnet tend to be limited by the fact that the
force magnitude decreases faster than that of magnetic torque
with increasing UMD-actuator separation distance, requiring
either a large actuating magnet or performing actuation with
the permanent magnet placed close to the UMD. Strategies that
employ magnetic torque generated by a single rotating perma-
nent magnet tend to be limited by the complexity of the rotating
dipole field generated by the magnet. To simplify control, ro-
tating UMDs have been exclusively operated in radial or axial
positions relative to the rotating magnet (see Fig. 1) [8]–[12].
In these two positions, the rotating magnetic field h applied to

1552-3098 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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the UMD rotates around an axis ω̂h that lies parallel to the ac-
tuator magnet’s rotation axis ω̂a , making it easy to visualize the
coupling between the rotating actuator magnet and the UMD.
Requiring UMDs to be exclusively operated in these two posi-
tions, however, significantly constrains the physical placement
of the actuator magnet.

It has been shown that when a dipole (e.g., rotating permanent
magnet) rotates such that its magnetic moment is perpendicular
to its rotation axis, the generated field at any position in space
rotates around, and is perpendicular to, a constant axis, and its
field magnitude is described by an ellipse (see Fig. 1) [19]. In
this paper, we reformulate this phenomenon in a manner that
readily enables a unique rotation axis of the actuator magnet to
be found that produces any desired magnetic field rotation axis
(which may be specifically required to produce rotating UMD
propulsion) at any UMD position. This removes the need for
rotating UMDs to be actuated exclusively in axial and radial po-
sitions, enabling the actuator magnet’s position to move freely
during UMD operation to avoid obstacles in the workspace, im-
prove control authority, and potentially employ attractive mag-
netic force to simultaneously contribute to propulsion.

We demonstrate our results by measuring the rotating mag-
netic field, and driving a threaded-capsule UMD and rolling a
spherical UMD through a lumen, using a rotating permanent
magnet (which we will refer to as the “actuator magnet”) posi-
tioned in space by a 6-degrees-of-freedom (DOF) robotic ma-
nipulator. Applications include any minimally invasive medical
task that requires a UMD to operate in the natural lumen path-
ways of the body (e.g., the gastrointestinal (GI) tract, the sub-
arachnoid space of the nervous system, or vasculature). Robotic
systems that apply our method for actuating UMDs will be more
flexible in their choice of actuator-magnet position.

This paper contains results that first appeared in [20], as well
as additional formal analysis of magnetic field properties, ex-
perimental results, and discussion. The experimental results pre-
sented are proof-of-concept experiments that confirm the theory
contained herein. The problem of finding the optimal actuator-
magnet position for UMD actuation, the best choice of localiza-
tion system, and the magnetic fields necessary for propulsion in
the human GI tract is beyond this paper’s scope.

II. CONTROLLING ROTATING UNTETHERED MAGNETIC

DEVICES WITH A SINGLE ROTATING PERMANENT MAGNET

In this paper, scalars are denoted by lower-case standard font
(e.g., c), vectors are denoted by lower-case bold font (e.g., x),
and matrices are denoted by capital standard font (e.g., M ). The
ˆsymbol denotes a unit-length vector (e.g., x̂).

Let the dipole moment of the UMD’s magnet be md ∈
R3 {A·m2}. If a magnetic field h ∈ R3 {A·m−1} is applied
to the UMD, then a magnetic torque τ {N·m} and a magnetic
force f {N} will be produced:

τ = μ0md × h (1)

f = μ0(md · ∇)h (2)

where μ0 = 4π × 10−7 N·A−2 is the permeability of free space
[21]. Note that in the literature, the magnetic field is typically

denoted as H, however, we denote it in lower-case as h to
maintain the conventions of this paper.

The magnetic torque causes md to rotate in the direction of h.
If the magnetic field h rotates around an axis ω̂h (with direction
of rotation given by the “right-hand” rule), then τ will cause
md (and thus the UMD) to continuously rotate. The magnetic
force f causes the UMD to translate in a direction determined
by the UMD’s dipole moment md and the spatial derivative of
the magnetic field. UMD propulsion can be produced using the
magnetic torque to generate UMD rotation, which is converted
into propulsion via rolling or with a screw thread, the magnetic
force can be employed for pulling, or both can be used in concert.

If the magnetic field h is generated using a single actuator
magnet, then its field at the UMD’s position p (see Fig. 1),
relative to the actuator-magnet center, can be approximated by
the point-dipole model

h =
1

4π‖p‖3
Hma (3)

where ma ∈ R3 {A·m2} is the dipole moment of the actua-
tor magnet, H = 3p̂p̂T − I , and I ∈ R3×3 is the identity ma-
trix [21]. Equation (3) exactly predicts the field produced by
a spherical magnet. For all other geometries, it is an approxi-
mation that becomes more accurate with increasing distance. A
nonspherical geometry can be chosen to be well approximated
by (3) at smaller distances [22].

A. Rotation Axis of the Magnetic Field

For UMDs that employ magnetic torque generated by the
rotating magnetic field h for propulsion, appropriately selecting
the rotation axis ω̂h of the magnetic field is a critical component
of the control strategy. For UMDs in free medium (e.g., helical
microswimmers in fluid) or those that roll, the UMD rotation
axis naturally aligns itself with ω̂h and varying ω̂h steers the
UMD. For screw-like UMDs constrained in a lumen (e.g., a
magnetic capsule endoscope in the small intestine), ω̂h should
be locally aligned with the lumen in order to apply the most
useful magnetic torque.

1) Choosing ω̂a Given ω̂h and p̂: For a dipole field gen-
erated by an actuator magnet that rotates around the axis ω̂a ,
the required rotation axis ω̂a to make the magnetic field h at
any desired position p rotate around a desired axis ω̂h is not
easy to visualize. If the actuator magnet is rotated such that its
dipole moment ma is perpendicular to ω̂a (i.e., mT

a ω̂a = 0)
and it is desired that the field h be perpendicular to ω̂h (i.e.,
hTω̂h = 0), then the necessary ω̂a given a desired ω̂h can be
found by substituting (3) into the projection hTω̂h and applying
the symmetry of H to produce the expression

hTω̂h =
1

4π‖p‖3
mT

a Hω̂h = 0. (4)

Because Hω̂h does not vary as the actuator magnet rotates, and
because mT

a ω̂a = 0, letting ω̂a lie parallel to Hω̂h is the only
solution for ω̂a that satisfies (4) and is simultaneously invariant
to the rotation ofma . Therefore, given ω̂h and the UMD position
p, the necessary actuator-magnet rotation axis ω̂a can be found
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with

ω̂a = Ĥω̂h . (5)

Because H is constructed using p̂, H only varies with changes
in the direction of p̂. This implies that solutions obtained from
(5) are invariant to scaling ‖p‖ by moving the actuator magnet
nearer to or farther away from the UMD, provided that the
direction of p remains unchanged. Naturally, the magnitude
of the field will depend on ‖p‖. In addition, it is shown in
Appendix A that p, ω̂h , and ω̂a are always coplanar.

It can be easily verified using (3) that the eigenvectors of
H include p̂ and a two-dimensional eigenspace consisting
of vectors in the plane orthogonal to p̂, with corresponding
eigenvalues λ1 = 2 and λ2 = λ3 = −1, respectively. Because
det(H) = λ1λ2λ3 = 2 for all p, H is always invertible and
there exists exactly one actuator-magnet rotation axis ω̂a to
generate a desired field rotation about the axis ω̂h for any UMD
position p. The forward problem, which gives the local field axis
of rotation ω̂h at the position p, given the actuator magnet’s axis
of rotation ω̂a , is found with

ω̂h = Ĥ−1ω̂a (6)

where H−1 = (H − I)/2 (derived in Appendix B). Fig. 1 shows
ω̂h at positions on a half-hemisphere with a given ω̂a .

With p obtained from a localization system and the desired
applied field rotation axis ω̂h known, the necessary actuator-
magnet axis of rotation ω̂a can be quickly found by (5). As
the UMD or the actuator magnet moves and the direction of
p changes, (5) must be updated by repacking the matrix H ,
and a new solution ω̂a must be produced to maintain the de-
sired applied field rotation axis at p. Theoretically, a desired
actuator-magnet position trajectory can be first established and
the necessary ω̂a can be found during execution given the posi-
tion of the actuator magnet and the UMD. In practice, however,
the actuator magnet’s position trajectory should adapt to the
UMD’s behavior in order to maintain control authority while si-
multaneously avoiding hardware collisions or other constraints.
If the actuator magnet is positioned using a robotic manipu-
lator, every potential orientation of ω̂a may not be physically
achievable at every manipulator pose due to range constraints
of the manipulator’s joints. This issue may be alleviated during
motion planning by utilizing the fact that a desired ω̂a is achiev-
able from at least two unique manipulator poses by reversing
the actuator magnet’s rotation direction.

2) Choosing p̂ Given ω̂h and ω̂a: If the direction of the
actuator magnet’s rotation axis ω̂a is fixed (e.g., if the actuator
magnet is positioned using only a 3-DOF gantry robot), then
any desired applied field rotation axis ω̂h can still be achieved
at any UMD position by sacrificing actuator-magnet positioning
flexibility and placing the actuator magnet in a specific position
p̂. If the direction of ω̂a can be reversed by changing the actuator
magnet’s spin direction, then there exist at least four unique
directions of position p̂ where the actuator magnet can be placed
to achieve any desired ω̂h .

With the desired field rotation axis ω̂h given and the actuator-
magnet rotation axis ω̂a fixed and known, the solutions for
the necessary actuator-magnet position (actually computed as
the position direction p̂ of the UMD relative to the actuator

magnet) are found using the projection γ = p̂Tω̂h , obtained by
first computing the intermediate projection

ρ = ω̂T
h ω̂a =

ω̂T
hHω̂h

‖Hω̂h‖ =
3γ2 − 1√
3γ2 + 1

(7)

after substituting (5) for ω̂a . (The value of ρ is known since
ω̂h and ω̂a are given.) Squaring both sides of (7) and grouping
terms produces a polynomial in terms of the unknown γ

9γ4 − 3
(
2 + ρ2

)
γ2 +

(
1 − ρ2

)
= 0. (8)

There are two solutions of (8) for γ2 , which can be found using
the quadratic formula

γ2
+ =

2 + ρ2 +
√

8ρ2 + ρ4

6
≥ 1

3
(9)

γ2
− =

2 + ρ2 −
√

8ρ2 + ρ4

6
≤ 1

3
(10)

and are verifiably bound by 1/3 from below and above, respec-
tively. After examining the right-hand side of (7), it is clear that
ρ ≤ 0 requires γ2 ≤ 1/3 and ρ ≥ 0 requires γ2 ≥ 1/3. Given
the lower and upper bounds of (9) and (10), respectively, the
solution of (7) is

γ2 =

{
γ2

+ if ρ ≥ 0
γ2

− if ρ ≤ 0
. (11)

For a value of γ2 given by (11), two solutions for p̂ can
be found (due to ±γ) in opposite directions of each other: the
solution where γ ≥ 0 is denoted by +p̂ and the opposite solution
where γ ≤ 0 is denoted by −p̂. Using the fact that ω̂a , ω̂h ,
and ±p̂ are always coplanar (see Appendix A), +p̂ can be
constructed by first generating an orthonormal basis for the
plane spanned by ω̂a and ω̂h . After selecting the first basis
vector to be ω̂h , a second basis vector ω̂⊥

h is

ω̂⊥
h =

(I − ω̂hω̂T
h)ω̂a

‖(I − ω̂hω̂T
h)ω̂a‖

. (12)

Since γ is the projection of p̂ onto ω̂h , the vector +p̂ can be
formed from the orthonormal basis as

+p̂ = |γ|ω̂h +
√

1 − |γ|2ω̂⊥
h (13)

where |γ| is obtained from (11), and the solution for −p̂ is
given by −1(+p̂). After ±p̂ is determined, ‖p‖ can be selected
without changing the result of (13).

There are two cases when (12) becomes degenerate and the
aforementioned approach for constructing ±p̂ breaks down,
both are illustrated in Fig. 2(a). The first case occurs when
ω̂h = ω̂a . In this case, it can be verified using (11) that γ2 = 1
implying that ±p̂ are parallel to ω̂h and ω̂a . These positions
correspond to axial positions (see Fig. 1). The second degenerate
case occurs when ω̂h = −ω̂a . In this case, γ2 = 0 implying that
±p̂ must be perpendicular to ω̂h and ω̂a . There are an infinite
number of solutions in this case, and all correspond to radial
positions (see Fig. 1). Reversing the actuator magnet’s spin
direction turns one degenerate case into the other.

In every other nondegenerate case, spinning the actuator mag-
net about ω̂a in one direction admits two unique solutions for
p̂, and spinning in the opposite direction changes the sign of
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Fig. 2. (a) Configurations that cause (12) to become degenerate, for ‖p‖ =
125 mm. (b) An example set of actuator-magnet position solutions that achieve a
desired field rotation axis ω̂h = [0, −1, 0]T when the actuator magnet’s rotation
axis is constrained to ω̂a = [0, 0, −1]T and ‖p‖ = 125 mm. The positions p1

and p2 are the +p̂ and −p̂ solutions, respectively, given by (13). If the actuator
magnet’s spin direction can be reversed such that ω̂a = [0, 0, 1]T, then p3 and
p4 are the corresponding +p̂ and −p̂ solutions.

ρ, produces another value of γ2 from (11), and admits two ad-
ditional unique solutions for p̂ making, in total, four unique
solutions that produce a desired field rotation axis ω̂h given a
reversible actuator-magnet rotation axis ω̂a . Fig. 2(b) shows an
example set of actuator-magnet positions that achieve a desired
field rotation axis when the actuator magnet’s rotation axis is
constrained but is permitted to reverse direction.

B. Magnitude and Rotation Speed of the Magnetic Field

For rotating UMDs, a common failure mode that results in
the loss of control authority occurs when the UMD steps out of
synchronization with the rotating field as the field rotates. The
rotation frequency above which the applied magnetic torque is
too weak in magnitude to keep the UMD synchronized with the
rotating field is referred to as the “step-out” frequency and is de-
noted by ‖ωso‖. If a UMD’s rotational dynamics are dominated
by friction and inertia is negligible, then its angular velocity
is approximately proportional to the magnetic torque by a lin-
ear damping coefficient c, and ‖ωso‖ is the speed that requires
the total available magnetic torque to maintain synchroniza-
tion (a similar property holds for UMDs with nonnegligible
inertia). The maximum available torque at any instant in time
is ‖τ‖max = μ0‖md‖‖h‖ resulting in the step-out frequency
‖ωso‖ = ‖τ‖max/c.

In rotating nonuniform fields produced by an actuator magnet,
the applied field magnitude and angular velocity, at any given
UMD position p, depend on the orientation of ma and p. During
actuator-magnet rotation, the instantaneous field magnitude ‖h‖
fluctuates in an elliptical fashion, and is

‖h‖ =
‖ma‖

4π‖p‖3

√
1 + 3(m̂T

a p̂)2 (14)

and the minimum and maximum field magnitudes are

‖h‖min =
‖ma‖

4π‖p‖3
(15)

‖h‖max =
‖ma‖

4π‖p‖3

√
1 + 3‖p̃‖2 (16)

where the vector p̃ = (I − ω̂aω̂a
T)p̂ is the projection of p̂ onto

the plane perpendicular to ω̂a (the plane in which ma resides).
The maximum field magnitude occurs when ma is parallel to
p̃, and the minimum field magnitude occurs when ma is per-
pendicular to p̃. In the special case of ω̂a = p̂, corresponding
to the axial positions that are depicted in Fig. 1, then p̃ = 0 and
‖h‖min = ‖h‖max .

The instantaneous angular velocity of the applied field, as it
rotates around ω̂h , varies through each actuator-magnet cycle as
well. If ωh and ωa denote the instantaneous angular velocities
of the applied field and the actuator magnet, respectively, then
the relation between ‖ωh‖ and ‖ωa‖ is given by

‖ωh‖ =

(‖h‖min‖h‖max

‖h‖2

)
‖ωa‖. (17)

Because ‖h‖ > 0 at all times, it is clear that the maximum
angular velocity of the applied field occurs at the instant when
the magnetic field strength ‖h‖ is the weakest, and the minimum
angular velocity occurs when ‖h‖ is the strongest.

Because rotating the field faster than ‖ωso‖ causes the UMD
to become unsynchronized with the field, ‖ωa‖ should be lim-
ited so that ‖ωh‖ ≤ ‖ωso‖ for all time. Since both the mag-
nitude and angular velocity of the rotating field vary through
each cycle, the maximum actuator-magnet rotation speed that
guarantees synchronization also varies through each cycle. The
maximum actuator speed can be found using

‖ωh‖ ≤ ‖ωso‖ =
‖τ‖max

c
=

μ0‖md‖‖h‖
c

. (18)

Substituting (17) for ‖ωh‖, then solving for ‖ωa‖ produces

‖ωa‖ ≤ μ0‖md‖‖h‖3

c‖h‖min‖h‖max
. (19)

The fastest constant actuator-magnet angular velocity that sat-
isfies (19) can be found as

‖ωa‖ =
μ0‖md‖‖h‖2

min

c‖h‖max
(20)

after substituting ‖h‖min for ‖h‖ in (19).
If desired, the step-out frequency can be increased by moving

the rotating actuator magnet closer to the UMD (i.e., decreasing
‖p‖ and increasing ‖h‖), without changing the solution for ω̂h .
This should be done with care, however, as decreasing ‖p‖ also
increases the applied magnetic force. In most situations, it is
likely that the friction coefficient c will vary and will not be
known a priori. For magnetic capsule endoscopy, Hall-effect
sensors aboard a mockup capsule have been used to estimate
the onset of step-out [23]. When step-out is detected, either the
actuator magnet should adapt by moving closer to the capsule
or by rotating slower.

C. Applied Magnetic Force

The actuator magnet’s field causes a magnetic force to be
applied to the UMD, which can be derived from (2) as

f =
3μ0

4π‖p‖4

(
p̂mT

d + mdp̂T + (mT
dp̂)Z

)
ma = Fma (21)
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where the matrix Z = I − 5p̂p̂T. When actuated well beneath a
UMD’s step-out frequency, the magnetic force generally tends
to attract the UMD toward the actuator magnet. For configu-
rations where the actuator magnet is positioned in a way that
attractive magnetic force has a component in the desired direc-
tion of propulsion, then the attractive force can be beneficial.
If the actuator magnet is placed where the magnetic force has
a component directed against the desired propulsion direction,
then the attractive force hinders actuation.

UMDs that are able to convert a rotating magnetic field into
propulsion can propel themselves against attractive forces so
long as the propulsive force is larger than the magnetic force.
In the case where the desired propulsion direction is against
the attractive magnetic force, the rotation speed at which the
UMD’s propulsive force balances the attractive force is called
the “break-away” speed [11]. If the UMD is actuated slower
than its break-away speed, then the UMD will be attracted
toward the actuator magnet. The attraction can become self-
compounding as the magnetic force increases dramatically (as
‖p‖−4 according to (21)) with decreasing distance between the
actuator magnet and the UMD. In this paper, the UMD is ac-
tuated at distances where the UMD’s weight, friction, and the
propulsive force overpower any attractive magnetic force.

The ability of a rotating UMD to propel against attractive
magnetic forces increases flexibility in actuator-magnet place-
ment compared with other propulsion strategies. Stably driving
a UMD away from a single permanent magnet, when solely
applying magnetic force for pushing actuation, is challenging
because the magnetic torque tends to align the UMD’s dipole
moment md such that the magnetic force is always attractive.

For clinical applications, it is likely that the magnetic force
must be managed to ensure safety [4], [24]. It has been found
that actuating a UMD at its step-out frequency, in any actuator-
magnet position, reduces the magnitude of the force and redi-
rects it such that no component of the average magnetic force
applied to the UMD over one rotation cycle is attractive [24]. In
the event of loss of UMD localization or loss of control author-
ity, the actuator magnet’s ability to apply undesirable magnetic
force to a UMD can be dramatically reduced by rapidly in-
creasing the separation distance ‖p‖, or by rotating the actuator
magnet well above the UMD’s step-out frequency. If the actu-
ator magnet is rotated fast enough, the UMD’s dipole moment
md will remain approximately stationary in space. Assuming p
is approximately constant over one actuator-magnet revolution
and the actuator magnet’s rotation about ω̂a is parameterized by
the angle φ, the averaged magnetic force applied to the UMD is
then

f̄ =
1

2π

∫ 2π

0

Fmadφ =
1

2π
F

∫ 2π

0

madφ = 0 (22)

since F is approximately constant and the rotation of ma about
the axis ω̂a generates an odd function in R3 , which integrates
to zero over a complete actuator-magnet revolution.

Equation (22) will become more accurate as ‖ωh‖ increases
above step-out. This is demonstrated in Fig. 3, which shows
‖f̄‖ obtained from a simulation of a UMD whose dynamics are
dominated by friction [and whose step-out frequency ‖ωso‖ is

Fig. 3. The average magnetic force f̄ applied to a UMD over one actuator-
magnet revolution asymptotically approaches 0 as the rotation frequency in-
creases above step-out. Nondimensionalized simulation results of ‖f̄‖ (normal-
ized by δ) are shown for a UMD whose dynamics are dominated by friction (the
step-out frequency is given by (18)) as ‖ωh ‖ (normalized by ‖ωso ‖) increases.
Results in two UMD positions are shown.

Fig. 4. The Yaskawa Motoman MH5 6-DOF robotic manipulator (a) is used to
position the actuator magnet (b) for point-dipole calibration, and for actuating a
spherical rolling UMD (c) and a threaded capsule-mockup UMD (d). The screw
thread of the capsule UMD has a pitch of 7 mm and is 1.5 mm deep. Both
devices contain a 6.35- mm cube Grade-N52 NdFeB magnet.

given by (18)] in two positions relative to the actuator magnet.
The results of Fig. 3 are nondimensionalized by scaling ‖f̄‖
by δ = 3μ0‖md‖‖ma‖/(4π‖p‖4) to remove the influence of
‖p‖, ‖md‖, and ‖ma‖, and by scaling ‖ωh‖ by the UMD’s
step-out frequency to remove the influence of friction c. The
results in two UMD positions are shown. In position 1 the UMD
is in a radial position. In position 2, the UMD is nearly in an
axial position. In general, as the UMD’s position approaches an
axial position, ‖f̄‖ approaches 0 for all rotation speeds. In any
position, ‖f̄‖ asymptotically approaches 0 as ‖ωh‖ increases.
Detailed discussion on the influence of the UMD’s position on
the magnetic force can be found in [24].

III. EXPERIMENTAL RESULTS AND DISCUSSION

In our experiments, the actuator magnet is positioned with
a Yaskawa Motoman MH5 6-DOF robotic manipulator [see
Fig. 4(a)], and consists of a cylindrical 25.4 mm diameter,
25.4 mm long, Grade-N42, diametrically magnetized (i.e.,
along the diameter) NdFeB permanent magnet [see Fig. 4(b)]
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driven by a Maxon 24 V A-Max DC motor with an Advanced
Motion Controls servo control drive and amplifier. We demon-
strate propulsion of rotating UMDs by actuating a rolling
spherical device [see Fig. 4(c)], and a threaded capsule-shaped
device [see Fig. 4(d)] similar to the design in [13], that produces
translational motion along its principal axis from rotation
around the same axis. Both UMDs contain a 6.35- mm cubic
Grade-N52 NdFeB magnet positioned at the device’s center of
gravity, with the dipole moment oriented perpendicular to the
device’s principal axis in the case of the threaded capsule.

The UMDs were constrained during experimentation in
a clear PVC lumen with 22.2 mm inner diameter, lightly
lubricated with personal lubricant jelly. Although the PVC lu-
men is not representative of the human GI system, it is suffi-
cient for our proof-of-concept experiments. (Note that there is
experimental evidence to suggest that capsule-shaped UMDs,
similar to Fig. 4(d), can be successfully actuated in the human
GI system [13], [25].) The UMD position was obtained using
a stereo vision system [see Fig. 4(a)] consisting of two Basler
A602FC cameras each fitted with a 4.5- mm fixed-focal-length
lens producing sub-millimeter tracking accuracy at 30 frames-
per-second. Although visually tracking a UMD is not clinically
relevant, it is sufficient for our proof-of-concept experiments.
Existing clinically relevant UMD localization strategies include
RF triangulation [26], magnetic methods [27]–[30], and CT scan
or X-ray fluoroscopy [31]. Irrespective of the tracking method,
the effect of localization uncertainty on the control techniques
presented has been studied in [32].

The actuator magnet’s dipole moment magnitude ‖ma‖ was
found using a least-squares fit of the measured field to the point-
dipole model. The magnetic field was measured with a custom-
made three-axis sensor shown in the corner of Fig. 5(a) and
(b), constructed using three pairs of Allegro A1301 linear Hall-
effect sensors mounted on the six sides of a 7- mm cube. Each
sensor has a sensitivity of 25 V/T and a range of ±0.1 T. The
average value of each sensor pair on two opposing faces ap-
proximates the component of the field at the cube’s center in the
direction normal to the faces. One hundred samples of the field
were obtained per millimeter between 30 and 140 mm from the
actuator-magnet center in an axial position, resulting in the fit
‖ma‖ = 12.7 A·m2 with R2 = 0.999.

The accuracy of the fit and correctness of the theory were ver-
ified by measuring the magnetic field while rotating the actuator
magnet in two positions located 100 mm from the actuator mag-
net’s center. The positions p1 = [0, 100, 0]T mm [see Fig. 5(a)]
and p2 = [81.61, 57.79, 0]T mm [see Fig. 5(b)] are described
in the coordinate system depicted at the top of Fig. 5. Fig. 5(c)
and (d) shows the measured and predicted magnetic fields and
axes of rotation at both positions projected onto the xz and yz
planes. The actuator magnet rotates at 1 rad/s in both positions.
The predicted ω̂h , obtained by (6), differed from the measured
ω̂h , obtained using principal-component analysis (the direction
of least variance), by 2.94◦ for p1 and 0.73◦ for p2 . Fig. 5
clearly shows that the actuator magnet’s field and its axis of
rotation are closely predicted by the point-dipole model with
‖ma‖ = 12.7 A·m2 in the positions indicated, even though the
actuator magnet is nonspherical. The actuator magnet’s field is

Fig. 5. The components of the magnetic flux density b = μ0h mea-
sured and predicted at the positions p1 = [0, 100, 0]T mm (a) and p2 =

[81.61, 57.79, 0]T mm (b) are shown in (c) and (d), respectively. The pre-
dicted ω̂h at p1 and p2 differed from the measured ω̂h by 2.94◦ and 0.73◦,
respectively. The custom field sensor used to obtain the data appears in the lower
right corners of (a) and (b). Note that in the literature, the magnetic flux density
is typically denoted as B, however, we denote it in lower-case as b to maintain
the conventions of this paper.

within 3% of a point-dipole field (3) in every position, provided
‖p‖ ≥ 36 mm [22].

The following experiments were intentionally performed at
slow rotation speeds to demonstrate the methods presented
herein as purely magnetic effects, with minimal contribution
of inertia. Helical UMD propulsion has been previously shown
to be robust to misalignment in applied-field rotation axis [32].
The successful actuation of the spherical UMD, which is more
sensitive to rotation-axis alignment, will demonstrate that proper
control of the rotating magnetic field is achieved.

A. Demonstration Varying ω̂a , Given ω̂h and p̂

To date, rotating UMDs have been actuated in axial or radial
positions where the applied field rotation is easy to visualize
and the coupling between the actuator magnet and the UMD
is easy to understand. In the radial position, for example, the
magnetic field rotates around an axis parallel to that of the
actuator magnet, although in the opposite direction. Actuation
of the threaded UMD in the radial position is demonstrated
in Fig. 6(a). While the UMD travels along the lumen (from
right to left), the actuator magnet’s position is maintained at
p = [0, 0,−125]T mm (in the coordinate system depicted in
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Fig. 6. The threaded capsule UMD is propelled in the (a) radial position with the actuator magnet’s position regulated to maintain p = [0, 0, −125]T mm (in
the coordinate system depicted above the captured images) where the necessary actuator-magnet rotation axis is intuitive. Captured images taken during operation
with the actuator magnet’s position maintained (b) at p = [0, −72.2, −102]T mm and (c) at p = [0, 72.2, −102]T mm demonstrate the UMD being actuated
where the necessary actuator-magnet rotation axis (found by applying (5)) is nonintuitive. In all three examples, ‖p‖ = 125 mm and the actuator magnet was
rotated at a constant speed of ‖ωa‖ = 5 rad/s. The scale drawings above the images depict the scene from direct left and front views. Please see supplementary
multimedia.

Fig. 6) using the stereo vision system. Because the external
thread converts rotation about the UMD’s principal axis to
propulsion parallel to its principal axis, ω̂a must be parallel
to the y-axis for propulsion through the lumen. In Fig. 6(a), the
UMD travels at an average speed of 3.4 mm/s. Rotating UMDs
actuated in the radial position can be found in [8]–[12].

The theory presented in Section II enables operation of UMDs
in nonintuitive ways. Fig. 6(b) shows the threaded UMD actu-
ated with the actuator magnet’s position regulated to maintain
p = [0,−72.2,−102]T mm. After substituting the appropriate
p and ω̂h = [0,−1, 0]T into (5), it can be found that the actuator
magnet’s rotation axis must be ω̂a = [0, 0, 1]T. It is particularly
nonintuitive that the necessary actuator-magnet rotation axis is
perpendicular to the desired UMD rotation axis in this position.
Note that the rotation axis of the field in an equivalent position is
measured in Fig. 5(d). The actuator magnet is rotated at 5 rad/s
and causes the UMD to travel from right to left with an average
speed of 1.5 mm/s.

Although the attractive magnetic force must always be man-
aged, it can significantly contribute to propulsion. Fig. 6(c)
shows the UMD actuated with p = [0, 72.2,−102]T mm. In
this position, a component of the magnetic force attracts the
UMD in the desired direction of motion, producing an average
speed of 4.3 mm/s, which is faster than the average speed in the
radial position [see Fig. 6(a)], where the force neither hinders

nor helps actuation, and much faster than the position where
the actuator magnet trails the UMD [see Fig. 6(b)], where the
force hinders actuation. This demonstrates that a rotating UMD
can be simultaneously driven and pulled, using the available
magnetic torque and force, resulting in faster UMD propulsion.
(A threaded UMD in a similar experiment achieved forward
velocities of 21.0 mm/s in the same configuration [24].)

In Fig. 6, the position of the actuator magnet is regulated to
maintain a constant relative position with respect to the UMD.
Due to the presence of obstacles in a clinical setting that an
actuator magnet must avoid, including the patient, it is unlikely
that a UMD will always be actuated in this manner. The theory
presented in Section II enables a UMD to be actuated in any
position, which may change as the UMD or the actuator mag-
net move in space, provided that the actuator magnet’s rotation
axis ω̂a is adjusted according to (5). This is demonstrated in
Fig. 7, which shows two examples of the spherical UMD being
propelled while the actuator magnet follows a trajectory inde-
pendent of the UMD. In both examples, the actuator magnet’s
instantaneous rotation axis ω̂a is set according to (5) using the
known actuator-magnet position, and the instantaneous UMD
position obtained from the stereo vision system, to update the
instantaneous position vector p. Fig. 7(a) shows superimposed
still images demonstrating the UMD being rolled from left to
right while the actuator magnet’s position remains stationary.
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Fig. 7. The spherical UMD [see Fig. 4(c)] is propelled with the actuator
magnet’s position remaining stationary (a) and following a rectangular step
trajectory (b). In both examples, the actuator magnet’s position follows the pre-
defined trajectory in an open-loop fashion, independent of the UMD’s position.
The direction of the actuator magnet’s rotation axis ω̂a is constantly updated
to maintain ω̂h = [−1, 0, 0]T (in the same coordinate system as Fig. 6) by ap-
plying (5), using the known actuator-magnet position and the measured UMD
position to update the relative position p. ‖ωa‖ = 0.25 rad/s in both cases.
Please see supplementary multimedia.

In the case of Fig. 7(b), the UMD rolls from left to right while
the actuator magnet follows a rectangular step trajectory. The
actuator magnet initially travels parallel to the lumen until it jogs
vertically at t = 33 s with a rate of 9.47 mm/s; at t = 44 s, the
actuator magnet continues parallel to the lumen at 3.16 mm/s
until t = 77 s, when the actuator magnet moves back to its
original height at 9.47 mm/s; the actuator magnet then finishes
moving parallel to the lumen at 3.16 mm/s. It is easy to imagine
this trajectory being used to avoid an obstacle.

In both examples, ω̂h = [−1, 0, 0]T (in the same coordinate
system as Fig. 6) without entering a radial or axial position, and
the actuator magnet is rotated at ‖ωa‖ = 0.25 rad/s. Although
both actuator-magnet trajectories are arbitrary, they demonstrate
UMD actuation that was not possible using prior methods that
only considered axial or radial positions. In practice, actuator-
magnet position trajectories should be planned to prevent loss
of control authority, employ available magnetic force, avoid
collision with obstacles, avoid manipulator singularities or joint

limits, and mitigate the influence of localization uncertainty on
UMD actuation [32].

B. Demonstration Varying p̂, Given ω̂h and ω̂a

If the rotation axis of the actuator magnet is constrained such
as by the use of a 3-DOF robotic manipulator, then any desired
field rotation axis can still be achieved by appropriately selecting
the actuator magnet’s position (refer to Section II-A2). Although
they were originally obtained by setting the actuator magnet’s
position and solving for the required actuator-magnet axis of
rotation, Fig. 6(b) and (c) can also be used to demonstrate the
actuation of the capsule UMD while maintaining a constrained
actuator-magnet rotation axis. In this example, the desired field
rotation axis at the UMD’s position is ω̂h = [0,−1, 0]T, and the
actuator magnet’s rotation axis is constrained to lie parallel to the
z-axis, with the ability to reverse the actuator magnet’s direction
of spin. The four position solutions, given by (13), that achieve
the desired field rotation axis are shown in Fig. 2(a). Two of
the four solutions, p2 and p3 , place the actuator magnet below
the experimental setup’s floor and are not physically achievable.
The other two solutions, p1 and p4 , correspond to the actuator-
magnet rotation axes ω̂a = [0, 0,−1]T and ω̂a = [0, 0, 1]T, and
are shown in Fig. 6(b) and (c), respectively. When multiple
feasible solutions exist, the position can be chosen to maximize
the contribution of magnetic force to actuation, improve the
robustness of actuation to uncertainty in the UMD’s location
[32], or maximize the configuration-space distance of the robot
manipulator from singularities or joint limits.

In the previous example, the desired field rotation axis ω̂h

remains constant through time and the four actuator-magnet po-
sition solutions never change. Fig. 8 shows superimposed still
images demonstrating the spherical UMD traveling from left to
right along a curved lumen, where the field rotation axis and the
actuator magnet’s position solutions change. At every instant in
time, the position of the actuator magnet is chosen using (13) to
insure that the field rotation axis ω̂h is always perpendicular to
the curved lumen. The desired field rotation axis ω̂h is adjusted
manually by the operator as the UMD rolls through the lumen.
Fig. 8(a) shows the actuator magnet propelling the spherical
UMD, while the actuator magnet’s rotation axis is kept fixed
at ω̂a = [−0.71, 0, 0.71]. The case where the actuator magnet’s
rotation axis is kept fixed at ω̂a = [0,−0.71, 0.71] is shown in
Fig. 8(b). Allowing the actuator magnet’s spin direction to be
reversed, there are four possible positions where the actuator
magnet can be positioned to achieve the desired ω̂h . Two of
the potential positions obtained from (13) result in the actuator
magnet being placed below the floor of the experimental setup
and are physically unrealizable. One of the two physically re-
alizable positions caused the actuator magnet and manipulator
to occlude the UMD from the view of the vision system. The
actuator magnet was placed in the remaining position at each
time step.

C. Effects of Scaling

The actuator magnet’s magnetic field scales homothetically,
meaning that the field of an actuator magnet, whose dimensions
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Fig. 8. Spherical UMD [see Fig. 4(c)] is propelled through a curved lumen while maintaining a constant actuator-magnet rotation axis ω̂a . The magnetic field
rotation axis ω̂h is kept perpendicular to the curved lumen as the spherical UMD travels. The actuator-magnet poses for three positions of the UMD in the lumen
are shown where ω̂a = [−0.71, 0, 0.71] in (a), and where ω̂a = [0, −0.71, 0.71] in (b). Using the UMD position obtained from the vision system, the actuator
magnet’s position is adjusted according to (13) to keep ω̂h perpendicular to the lumen. Top and side views of each experiment pose are illustrated below (a) and
(b). ‖p‖ = 150 mm in all configurations. Please see supplementary multimedia.

have been scaled by a factor s, measured at the position sp,
is the same as that of the unscaled actuator magnet measured
at the position p. This can be verified using (3). Because the
dipole magnetization ‖ma‖ is proportional to the actuator mag-
net’s volume, scaling by s causes the magnetic dipole to become
s3‖ma‖. Operating the UMD at an equivalently scaled distance
away makes p become sp. After substituting s3‖ma‖ and sp
into (3) for ‖ma‖ and p, respectively, the factor s3 appears in
both the numerator and the denominator and can be canceled,
making the field of the scaled actuator magnet at equivalently
scaled distances the same as without scaling. Since the mag-
netic force is amplified by the scalar 3μ0‖md‖‖ma‖/4π‖p‖4 ,
substituting s3‖ma‖ and sp for ‖ma‖ and p, respectively, into
this amplification factor shows that the magnetic force scales as
s−1 . This implies that when the actuator magnet’s dimensions
are scaled by s and the UMD is operated at an equivalently scaled
distance, the magnetic field (and thus the magnetic torque) re-
mains the same, whereas the magnetic force is diminished. This
demonstrates that the magnetic fields generated by the actua-
tor magnet will scale well for clinical use, assuming magnetic
torque is the primary means of actuation. However, if the mag-
netic force is expected to assist actuation [as demonstrated in
Fig. 6(c)], then diminishing the force may be undesirable.

IV. CONCLUSION

To date, rotating UMDs operated using a single rotating per-
manent magnet have been actuated in positions where the mag-
netic field behavior is simple and easy to visualize. Constraining
the actuator magnet to these positions, however, may preclude
the use of rotating-permanent-magnet actuation in clinical set-

tings due to the presence of obstacles, including the patient’s
body. We have demonstrated that a desired rotating magnetic
field for UMD propulsion can be generated using a single rotat-
ing actuator magnet from any position in space, which enables
rotating UMDs to be actuated in any position relative to the ac-
tuator magnet, provided the UMD position is known. We have
experimentally verified the theory presented in this paper by
measuring the magnetic field generated by the rotating actu-
ator magnet, and by propelling a spherical rolling UMD and
a threaded capsule UMD in two different scenarios: 1) with
the actuator magnet positioned arbitrarily in space and actua-
tor magnet’s rotation axis determined in a closed-loop fashion,
2) and with the actuator magnet’s rotation axis fixed and the
actuator magnet’s position determined in a closed-loop fash-
ion. Both scenarios assume the 3-DOF position of the UMD
is found with a localization system. Systems that employ our
method will not be constrained to actuate in positions where the
rotating magnetic field is easy to visualize.

APPENDIX A

The fact that the rotation axis of the applied magnetic field ω̂h ,
the UMD’s position p, and the rotation axis ω̂a of the actuator
magnet are coplanar, can be demonstrated by expanding (5):

ω̂h =
H−1ω̂a

‖H−1ω̂a‖ =

(
3(p̂Tω̂a)

2‖H−1ω̂a‖

)
p̂ −

(
1

‖H−1ω̂a‖

)
ω̂a

(23)
and thus ω̂h is in the span of p̂ and ω̂a , and it holds that ω̂h , p̂,
and ω̂a are coplanar. It can be likewise shown that the magnetic
field h, the UMD’s position vector p, and the actuator magnet’s
dipole moment ma are also coplanar.
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APPENDIX B

An explicit representation of H−1 can be found with the
identity H2 = H + 2I , derived using the definition of H and
recognizing that p̂Tp̂ = 1. Multiplying both sides of H2 by
H−1 produces H = I + 2H−1 and subsequently

H−1 =
1

2
(H − I) . (24)
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CHAPTER 5

MANAGING MAGNETIC FORCE

APPLIED TO A MAGNETIC

DEVICE BY A ROTATING

DIPOLE FIELD

Prior work has generally made the assumption that the magnetic force applied to a

rotating magnetic device by a rotating-permanent-magnet actuator is always attractive in

nature. However, in the following paper that was originally published in the journal Applied

Physics Letters, I present a magnetic phenomenon that actually enables the magnetic force

to be directed laterally (i.e., neither attractive nor repulsive) by adjusting the angular

velocity of the rotating permanent magnet. This phenomenon can be exploited to contribute

toward the propulsion of a rolling untethered magnetic device or limit the magnetic force

(e.g., for safety).

Reprinted with permission from A. W. Mahoney and J. J. Abbott, “Managing magnetic

force applied to a magnetic device by a rotating dipole field,” Appl. Phys. Lett., vol. 99,

no. 124103, pp. 47–49, 2011. Copyright 2011, AIP Publishing LLC.
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We demonstrate that the attractive magnetic force acting on a rotating magnetic device (e.g.,

a magnetic microrobot), actuated using a rotating magnet dipole, can be converted into a lateral

force by rotating the actuator dipole according to a specific open-loop trajectory. Results show

rotating magnetic devices can be rolled and simultaneously pushed along a surface by the lateral

force, resulting in significant increase in velocity. We also demonstrate that the lateral force

magnitude can be sufficient to levitate the magnetic device. The results apply to rotating magnetic

devices of any size provided inertia has a negligible contribution to its dynamics. VC 2011 American
Institute of Physics. [doi:10.1063/1.3644021]

Untethered robots at the micro and mesoscale have

become an active area of research because of their potential

impact to minimally invasive medicine.1 Devices fabricated

with a magnetic component, on which forces and torques are

applied by an external magnetic field, are demonstrating par-

ticular promise. Approaches to magnetic locomotion include

pulling using magnetic forces and those, where the primary

mode of operation is rotation, such as helical propulsion and

rolling. In the case of rotating devices using a single rotating

permanent magnet as the field source,2–4 the magnetic dipole

field generates torque, which causes the device to rotate

while simultaneously generating a magnetic force that typi-

cally tends to attract the device toward the permanent mag-

net (Figs. 1(a) and 1(c)).

For in vivo medical applications, an attractive force too

large in magnitude may cause the magnetic device to pull to-

ward the actuator, resulting in tissue deformation and poten-

tially trauma. The problem may become self-compounding

as the magnitude of the attractive force increases dramati-

cally with decreasing distance from the magnetic actuator.

For practical use, the attractive force must be manageable,

and in some cases it may need to be substantially eliminated.

In this study, we demonstrate that if the actuating permanent

magnet is driven according to a specific open-loop rotation

trajectory of nonconstant speed, the attractive magnetic force

acting on a magnetic device vanishes and is converted into a

lateral force nearly constant in magnitude. This lateral force

may oppose or contribute to the rolling of the device on a

surface (Figs. 1(b) and 1(d), respectively), and it can be large

enough in magnitude to overcome the device’s weight when

oriented against the gravity. This study presents theoretical

and experimental analysis of this phenomenon. The results

apply to any rotating magnetic device ranging in size from

the microscale (e.g., a magnetic microrobot) to the meso-

scale (e.g., a magnetic capsule endoscope), actuated by a sin-

gle rotating permanent magnet, provided that inertial effects

are negligible. Such devices may roll on a surface2,3 or

employ a helix to generate forward motion out of rotation.4,5

Define a stationary world frame with axes {x, y, z}.

Assuming that the applied magnetic field B is generated

using a single magnetic dipole (referred to as the actuator

magnet) with dipole moment M that can be accurately

approximated using the point-dipole model, then B at the

position of the magnetic device, described relative to the

center of the actuator magnet with vector p, is

B ¼ l0

4pjpj3
3

ppT

jpj2
� I

" #
M ¼ l0jMj

4pjpj3
0

sinðhÞ
2 cosðhÞ

2
4

3
5; (1)

where l0 is the permeability of free space constant, I is the

identity matrix, and h describes a specific parameterization

shown in Fig. 2. Without loss of generality, the rightmost

equality in Eq. (1) constrains p to lie on the z world axis

with the actuator rotating around the x world axis, constrain-

ing M to the y-z plane.

The magnetic torque s produced on a dipole moment m

(i.e., the moment of the magnetic body attached to the rotat-

ing device) by the applied field B causes m to align with B

and is expressed by s¼m�B. The magnetic torque causes

the device to rotate in the opposite rotation direction of the

actuator M. We model the magnetic device’s rotational dy-

namics rolling on a surface or rotating in a fluid or lumen

using the applied magnetic torque and a linear drag torque

with coefficient c, while assuming that the torque due to the

device’s inertia is negligible. If / measures the angle of m

from the z axis, then the device’s rotational dynamics are

� c _/þ jmjjBj sinðaÞ ¼ 0; (2)

implying that _/ is linearly coupled to the rotating actuator

by the magnetic torque, which is maximized when a¼ 90�.
By examining the conditions when a¼ 90� at steady-state,

according to Eq. (2), we find that the actuator must be driven

so that its rotation velocity _h follows

_h ¼ l0jmjjMj
8pjpj3c

1þ 3 cos2ðhÞ
� �3

2¼ K 1þ 3 cos2ðhÞ
� �3

2: (3)
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Driving the actuator according to Eq. (3) stably maintains

a¼ 90�; it can be shown that a ! 90� as t ! 1 for any

initial conditions of a and h. Although the magnetic force

acting on the device influences the coefficient c, significant

effects to the rotational behavior of the device actuated in

this paper are not observed.

Eq. (3) requires the actuator’s orientation h, the device’s

position p, and the speed coefficient K to be known but does

not require measurement of the device’s magnetized orienta-

tion, which can be difficult for some devices such as micro-

robots of spherical or cylindrical (polarized diametrically)

geometry. In practice, h is known, the device’s position p

can be measured using a variety of methods such as com-

puter vision or medical imaging, and an estimate K̂ is used

in place of K. If K̂ � K, then it can be shown that a con-

verges to sin�1ðK̂=KÞ. If K̂ > K, no steady-state a exists and

the device will step out of synchronization with the actuator.

K̂ can be measured by incrementally increasing K̂ until the

device is observed to step out of synchronization with the ac-

tuator, at which time K̂ � K.

When the magnetic device is positioned as in Fig. 2 and

the actuator is rotating according to Eq. (3), making the devi-

ce’s dipole moment m lag the applied field B by 90�, then

we find that the magnetic force F¼ (m � $)B acting on the

device, using Eq. (1), is

F ¼ 3l0jmjjMj
4pjpj4

1þ cos2ðhÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3cos2ðhÞ

p
 !

0

�1

0

2
4

3
5: (4)

When the actuator rotates in the positive direction while

satisfying Eq. (3), the applied magnetic force lies in the

negative y direction. In general, if X represents the actua-

tor’s angular velocity vector, then the magnetic force points

in the direction of X� p. No component of the magnetic

force attracts the device to the actuator. The magnitude jFj in
Eq. (4) varies from 94.3% to 100% of

3l0jmjjMj
4pjpj4 as h changes,

making the magnetic force nearly constant in magnitude.

The method presented herein was verified experimen-

tally using a magnetic device consisting of a diametrically

polarized NdFeB (Grade N42) cylindrical magnet 6.35 mm

in length and 3.17 mm in diameter, weighing 1.2 g. The

FIG. 3. (Color online) Rolling velocity of the magnetic device as a function

of rotation frequency obtained with the actuator positioned 90 mm above the

device (Fig. 1(d)) and using a triaxial Helmholtz coil system.5 Each data

point is the average of four trials, and the error bars denote one standard

deviation.

FIG. 2. (Color online) The magnetic device is positioned on the z axis and

the actuator magnet rotates around the x axis (out of the image), constraining

the actuator and device dipole moments, M and m, respectively, to the y-z

plane.

FIG. 4. (Color online) An experimental setup (a) with the magnetic device

circled. Image sequences show the device driven right to left using 1.23 Hz

actuation with (b) a constant angular velocity and (c) according to Eq. (3)

with K̂ ¼ 3:0. Use of Eq. (3) significantly reduces the attractive magnetic

force (enhanced online). [URL: http://dx.doi.org/10.1063/1.3644021.1]

FIG. 1. (Color online) When rotating

the actuator quasistatically, the magnetic

force tends to attract the magnetic device

(e.g., a microrobot) toward the actuator

while causing it to roll (a), (c). Operating

the actuator dynamically as described

herein causes the magnetic force to

oppose the magnetic device’s rolling

motion in the case where the rolling sur-

face lies between the rotating actuator

and the device (b) and to contribute to

rolling otherwise (d).

134103-2 A. W. Mahoney and J. J. Abbott Appl. Phys. Lett. 99, 134103 (2011)
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device was actuated using magnetic fields produced by a dia-

metrically polarized NdFeB (Grade N42) cylindrical magnet

25.4 mm in length and diameter with magnetic moment

jMj ¼ 12.6 A � m2, driven by a Maxon 24 V A-Max DC

motor with an Advanced Motion Controls servo control drive

and amplifier. For any K̂ , the actuator’s instantaneous rota-

tion speed (given by Eq. (3)) varies with the actuator’s orien-

tation from K̂ to 8K̂ throughout each cycle with an effective

peak-to-peak frequency f � 0:41K̂ Hz. To remain within the

torque constraints of the motor while demonstrating the

effects of applied force, the drag coefficient c was increased

by immersing the magnetic device in a rectangular acrylic

tank of corn syrup. A triaxial Helmholtz coil system,5 which

generates uniform magnetic fields and force-free magnetic

torque, is used for experimental comparison.

When K̂ < K and a< 90� at steady-state, we find

numerically that the horizontal and attractive components of

the magnetic force are nonzero and fluctuate with h. As

K̂ ! K, the average lateral and attractive components over

one actuator cycle increase and decrease, respectively, until

the magnetic force converges to Eq. (4) when K̂ ¼ K. Fig. 3

shows the horizontal device rolling velocity when positioned

as in Fig. 1(d) and actuated according to Eq. (3) with increas-

ing K̂ . Fig. 3 also shows the horizontal rolling velocity when

actuated within the Helmholtz system at equivalent frequen-

cies for comparison. The Helmholtz system applies negligi-

ble force; therefore, the significant increase in velocity when

driven with the actuator magnet is attributable to the hori-

zontal magnetic force that is the subject of this work. As K̂
increases, the horizontal magnetic force and its contribution

to the horizontal velocity increase as shown. As jpj
increases, we expect the contribution of the applied force

will diminish as jpj�4, making the velocity approach that in

the Helmholtz system.

Previous approaches consider quasistatic actuation using

a single rotating permanent magnet at constant frequencies

where the lead angle a is small.2–4 When operated in this

manner, the magnetic force always attracts the magnetic de-

vice toward the actuator magnet. Operating the actuator

according to Eq. (3) reduces the attractive force even at

equivalent frequencies. Figs. 4(b) and 4(c) show an image

sequence of the device operated by rotating the actuator at a

constant angular velocity of 1.23 Hz compared to rotating

the actuator according to Eq. (3) with the same frequency.

With a constant angular velocity, although the magnetic

force initially pulls the device in the rolling direction at

1.67 mm/s, it decelerates as the magnetic force transitions

upward and overcomes the device’s weight, attracting the

device toward the actuator. Driving the actuator according to

Eq. (3) reduces the attractive magnetic force, and the device

remains on the lower surface while traveling at 0.78 mm/s.

Aside from managing the magnetic force in a manner

that simultaneously reduces the attractive component and

contributes to the device’s rolling velocity, the magnetic

force can also be used for levitation. Fig. 5 shows an image

sequence with the device configured according to Fig. 1(b)

(rotated 90�). The device begins at t¼ 0 s in its static equilib-

rium position with no actuator rotation and rises 24 mm to

its dynamic equilibrium position at t¼ 60 s when actuated

according to Eq. (3) with K̂ ¼ 20. When the actuator rotates

clockwise, the device rotates counterclockwise producing a

rolling force in the same direction as gravity. The component

of the applied magnetic force causing the device to levitate,

therefore, opposes both the rolling force and the device’s

weight, resulting in a net vertical motion, while the remain-

ing attractive component pins the device to the wall.

We have demonstrated theoretically and experimentally

that the attractive magnetic force acting on a rotating mag-

netic device can be diminished and converted into a lateral

force when positioned as in Fig. 2 and actuated according to

Eq. (3) in an open-loop fashion. Such operation can be used

to simultaneously roll and push a device on a surface, result-

ing in potentially significant increases in rolling velocity, or

it may be used for device levitation. Although the experi-

ments were performed on a millimeter-scale device, the

results of this work apply to rotating magnetic devices of any

size with negligible inertia actuated with a single rotating

magnetic dipole.

This work is supported by the National Science Founda-

tion under Grant Nos. IIS-0952718 and DGE-0654414.
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FIG. 5. (Color online) Image sequence

shows the magnetic force, the subject of

this work, levitating the magnetic device

against both its weight and the rolling

force. The image sequence begins at

t¼ 0 s where the device is at static equi-

librium and rises 24 mm to a dynamic

equilibrium at t¼ 60 s with the actuator

rotation satisfying Eq. (3) for K̂ ¼ 20.

Images are shown in 10 s increments

(enhanced online). [URL: http://

dx.doi.org/10.1063/1.3644021.2]
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CHAPTER 6

DISCUSSION AND FUTURE

POSSIBILITIES

The desire to wirelessly affect an untethered device has led researchers to study magnetic

manipulation for quite some time. Many approaches have been developed that employ

electromagnets and permanent magnets, and many forms of device propulsion have been

applied. Magnetic manipulation is already beginning to have an impact on minimally

invasive medicine in the form of magnetic catheter guidance systems [1], [2] and other

procedures such as capsule endoscopy [3]–[5]. With the progress of current research, further

proliferation of magnetic technology into medicine is almost certain. There are many future

possibilities for magnetic systems that employ rotating and nonrotating magnetic fields.

In Chapters 4 and 5, the rotating magnetic field is created using a single permanent mag-

net. An immediate extension to the state-of-the-art is to use multiple permanent magnets.

As demonstrated in [6], nonuniform magnetic fields can be exploited to independently apply

forces to individual rotating magnetic devices in a group. In [6], the nonuniform magnetic

fields are generated by an arrangement of electromagnets. Creating a nonuniform, rotating

magnetic field using multiple permanent magnets (or other dipole sources) has not yet been

explored. The results of Chapter 4 may be used to understand the behavior of multiple

superimposed rotating dipole fields, although the combined field is likely to have much

more complicated behavior than a single rotating dipole field itself. Many properties can

be explored. For example, the field measured at a position in space relative to two rotating

permanent magnets can have different behavior depending on the phase-lag between both

magnets. In some configurations, a 180◦ phase lag could result in no field being measured

(i.e., the field contributed by each rotating magnet perfectly cancels). As another example,

the rotation axis of the measured magnetic field generated by a single rotating permanent

is well understood from Chapter 4; however, when superimposing multiple rotating dipole

fields, the net rotation axis of the combined field measured at a position in space is unclear.

Understanding the net behavior of superimposed rotating dipole fields could have future
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applications for the control of one or multiple untethered magnetic devices.

Employing multiple nonrotating actuator magnets for magnetic manipulation is another

area where the state-of-the-art can be advanced. To date, the most successful system uti-

lizing multiple nonrotating permanent magnets is the Stereotaxis Niobe system for cardiac

catheter guidance [2]. The Stereotaxis system integrates two large permanent magnets

positioned on either side of the patient and a C-arm fluoroscope system positioned at

the patient’s head. The magnets are oriented robotically in a manner that enables the

applied magnetic torque on the tip of a magnetic catheter to be controlled while applying

approximately no magnetic force to the catheter’s tip. In fact, due to the configuration

of the permanent magnets, the applied magnetic force cannot be controlled independently

of the magnetic torque. A more capable system can be made by using more permanent

magnets, each with a smaller volume. For example, retrofitting the five arms of a da

Vinci surgical robot with five end-effectors that each encapsulate a permanent magnet

could be used to remotely manipulate a catheter or other surgical instrument with more

degrees-of-freedom than the Stereotaxis Niobe system (additionaly, two da Vinci systems

could be positioned opposite each other, making a total of ten actuator magnets). The more

permanent magnets a system incorporates, the more flexibility it will have to dynamically

select permanent-magnet configurations that optimize a desired measure of manipulability

subject to geometric constraints. For example, if a C-arm fluoroscope is used for guidance,

then the magnets should be kept from configurations that might interfere with imaging.

A major factor that limits the clinical use of permanent magnet systems is safety. Unlike

electromagnets, permanent magnets cannot be shut off in an emergency. In the case of the

Stereotaxis Niobe system, the permanent magnets are extremely large, and great care must

be taken even when not in use. There are several techniques to “shut off” the effect of a

permanent magnet’s field to some extent. In [7], I show that spinning an actuator magnet

well above the step-out frequency of an untethered magnetic device causes the time-averaged

applied magnetic force to drop to zero. In the case of a tethered device (e.g., a magnet-tipped

catheter), a step-out frequency does not technically exist but the same principle applies.

The simplest approach to “shut off” a permanent magnet’s field is to exploit the fact that

magnetic torque drops off with increasing distance as d−3, and magnetic force drops off as

d−4 by pulling the actuator magnet away from the magnetic device.

Both approaches are applicable to systems that employ static or rotating permanent

magnets, but neither approach instantly turns off the field. In this regard, a system

employing multiple small permanent magnets (rather than one large one) may have an
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advantage. When positioned near one another and operated in concert, multiple small

permanent magnets can produce a field of similar magnitude as a field created by one larger

magnet. In the case of an emergency, the total field generated by multiple small magnets

may be reduced faster than the field generated by one large magnet by moving the small

magnets away from the workspace and simultaneously increasing their separation distance

from each other. Additionally, a large magnet must be treated with caution even when not

in use. Multiple smaller magnets may be benign individually, provided they are not brought

near each other simultaneously.

The study presented in Chapter 5 was limited to a specific configuration where the rela-

tive position between the rotating-permanent-magnet actuator and the untethered magnetic

device is orthogonal to the actuator magnet’s rotation axis (this is one of the configurations

where the behavior of the rotating magnetic field is easy to visualize). The results of Chapter

4, however, enables the untethered device to be actuated in any configuration (not just those

that are easy to understand). This leads to the natural extension of the study presented

in Chapter 5 to all configurations. In a preliminary study, I have found that the applied

magnetic force acting on an untethered magnetic device can always be directed laterally

(i.e., neither attractive nor repulsive), regardless of the magnetic device’s position in space

[8]. In addition, there always exists a tradeoff between the applied magnetic torque and

the applied magnetic force, i.e., the applied magnetic torque is always maximized when the

applied magnetic force is minimized. The extent of this tradeoff varies with the position of

the untethered magnetic device. For devices that can be propelled with both the magnetic

torque and force, this tradeoff readily lends itself to an optimization problem that determines

where the optimal position of the rotating magnet should be and how fast it should rotate

to produce the best combination of magnetic torque and force for device propulsion (note

that I have largely solved this problem for simple propulsion models).

Aside from the field of medicine, magnetic manipulation is also beginning to impact

materials science and biology. For example, in a recent Nature Communications article,

Tasoglu et al. use an untethered magnetic microrobot to assemble functional materials with

tunable structural, morphological, and chemical features [9]. Untethered magnetic devices

have been used to capture protein crystals [10], and in [11], an untethered microrobot device

is fabricated on which cells can be cultured and then transported for targeted delivery.

The understanding of helical-microswimmer control is advancing to the point where they

can be used to manipulate individual biological cells [12], [13]. The ability to control

multiple microswimmers can increase their usefulness as manipulation devices. Currently,
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multiple helical microswimmers have only been controlled as a group or semiselectively

on a two-dimensional plane. The results of Chapter 2 could be used to simultaneously

control the spatial velocities of multiple helical microswimmers that are differentiated by

their physical geometry (i.e., size, helix pitch, etc.) in three dimensions rather than a

two-dimensional plane (note that three-dimensional control of multiple magnetic devices has

only been demonstrated in [6]). The helical microswimmers could be further differentiated

using their magnetization by employing the results of Chapter 3.

Because most prior work has used helical microswimmers constrained to a planar surface,

there still remain questions about their behavior in three dimensions. For example, the

behavior of a helical-microswimmer when operated above its step-out frequency is well

understood when on a two-dimensional surface (see Chapter 3). When not in contact

with a surface, however, the behavior of a helical-microswimmer above step-out has not

been studied. An additional problem that remains to be studied is the stability of helical-

microswimmers while steering. In general, it has been taken for granted that a swimmer’s

lowest energy state is the configuration where the swimmer’s principle axis is aligned with

the field’s rotation axis. Since a swimmer always wants to be in the lowest energy state

possible, adjusting the rotation axis of the applied field causes the swimmer to realign its

principle axis with the field’s rotation axis (thus steering the swimmer in space). However,

it has been observed that when performing large-angle steering at high rotation speeds,

the swimmer can become unstable. Understanding this behavior will lead to a better

understanding of how to control helical swimmers.

Most prior work employs uniform magnetic fields, generated by triaxial arrangements of

Helmholtz coils, to actuate helical microswimmers in bench-top settings. Uniform magnetic

fields apply no magnetic force to a helical microswimmer and as a result, the dynamics of

helical microswimmers under pure magnetic torque are well understood. Using nonuniform

magnetic fields to actuate a helical microswimmer has been studied to a limited degree in

[14], which uses a rotating permanent magnet. Nonuniform magnetic fields have the ability

to simultaneously apply a magnetic force and a magnetic torque for the propulsion of a

swimmer. In general, the spatial and angular velocity of a helical microswimmer are linear

combinations of the applied magnetic force and torque. There are interesting implications

of this coupling on the control of helical microswimmers in nonuniform fields that are not

fully understood. For example, a magnetic force applied parallel to a swimmer’s principle

axis can effect the swimmer’s step-out frequency (the highest frequency that synchronous

rotation can be maintained). If the swimmer’s helix is right-handed (i.e., the swimmer
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moves in the direction of the applied magnetic torque in the presence of no magnetic force),

then a magnetic force applied in the same direction as the magnetic torque (i.e., it assists

propulsion) results in an increase in the swimmer’s step-out frequency. When the magnetic

force is applied in the opposite direction (i.e., it impedes propulsion) results in a decrease

in the swimmer’s step-out frequency. If the swimmer is actuated with a rotating permanent

magnet, then this phenomenon has implications for the rotating-permanent-magnet con-

figuration that optimizes device propulsion. This phenomenon may also have interesting

implications for the control of multiple swimmers.
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CHAPTER 7

CONCLUSION

This dissertation is motivated by problems in microscale manipulation and minimally

invasive medicine that require a small untethered device to be wirelessly manipulated and

controlled either under a microscope (e.g., helical microswimmers) or within the human

body (e.g., capsule endoscopes). This dissertation has presented advancements in exerting

force and torque to untethered devices, fabricated with a magnetic body, by externally

applied rotating magnetic fields. The rotating fields can be created using specially designed

electromagnetic systems or using rotating permanent magnets.

Many untethered magnetic devices with varying methods of propulsion have been de-

veloped. In Chapter 2, a method is presented to control the spatial velocity of helical

microswimmers (devices that replicate the helical propulsion of natural bacterial flagella) in

three-dimensional fluid, using a uniform rotating magnetic field created by an electromagnet

arrangement called a Helmholtz system. The work presented in Chapter 2 first developed a

six degree-of-freedom model for a helical swimmer of arbitrary geometry and then applied

it to solve the inverse problem of determining the correct field rotation axis and frequency

that achieve a desired three-dimensional swimmer spatial velocity. The results make the

control of helical swimmers more intuitive for a human operator, opening the doors for

coordinated use of helical microswimmers in three dimensions.

Helical microswimmers have been applied to the task of manipulating microscale objects

(e.g., biological cells) underneath a microscope. The ability to control multiple untethered

magnetic devices (e.g., helical microswimmers) simultaneously is a grand-challenge problem

in the field of microscale manipulation. Chapter 3 presented analysis and experimental

results that describe an unintuitive behavior of untethered magnetic devices when placed in

a rotating magnetic field that rotates above their step-out frequency (the frequency where

the applied magnetic torque is not strong enough to keep the device rotating synchronously

with the applied field). The phenomenon is exploited to add a level of differentiation for

the simultaneous control of multiple rotating magnetic devices, thus demonstrating that
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operating a rotating untethered magnetic device above its step-out frequency can, in fact,

be useful (contrary to the assumptions of prior work).

Due to the fact that permanent magnets can create stronger magnetic fields than electro-

magnets in smaller form-factors, permanent-magnet actuation systems are gaining attention

for clinical applications. The complex geometry of a rotating dipole field, generated by a

rotating magnet, makes the behavior of the field difficult to understand and visualize in

most configurations. This has limited the use of rotating permanent magnets to control

untethered magnetic devices except in specific configurations where the field is easy to

understand. Chapter 4 presents an analysis of the behavior of a rotating dipole field that

enables a magnetic devices to be controlled in all configurations, not just those that are

simple to visualize. The results enable much more flexible use of a rotating permanent

magnet for the actuation of untethered magnetic devices.

In prior work, the magnetic force applied to a magnetic device by a single rotating

permanent magnet was assumed to be attractive in nature. Chapter 5 presented an analysis

of the applied magnetic force, which predicted that the force could actually be manipulated

to point in a lateral direction (i.e., neither attractive nor repulsive). This phenomenon was

demonstrated in Chapter 5 by varying the rotation speed of the rotating-permanent-magnet

actuator. The ability to direct the applied magnetic force, in previously unknown ways, can

be useful for simultaneously applying magnetic torque and force for device propulsion and

safety in clinical applications. Both uses are demonstrated in Chapter 5.

The results of this dissertation advance the state-of-the-art of magnetic manipulation

by making magnetic systems that employ rotating magnetic fields more intuitive to control,

able to control multiple devices simultaneously, and increasing our understanding of how

the field and forces generated by a single rotating permanent magnet behave. The results

contribute to the body of research that is paving the way for further proliferation of magnetic

technology into medicine and manipulation.




