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Control of Untethered Magnetically Actuated Tools with Localization
Uncertainty using a Rotating Permanent Magnet
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Abstract— Magnetically actuated tools (MATs) that utilize
rotating magnetic fields for propulsion, such as active capsule
endoscopes and magnetic microrobots, have typically been
controlled using either arrangements of electromagnets or
permanent-magnet systems operated in limited configurations.
It was recently shown that a rotating magnetic field for MAT
actuation can be generated using a single rotating permanent
magnet (RPM) from any position in space with a unique axis of
rotation. The method has potential benefits for clinical systems,
but it requires knowledge of the MAT position with respect
to the RPM. In any application, MAT localization will be
subject to uncertainty caused by sensor noise, slow update
rates, and/or localization failure. In this paper, we develop and
experimentally verify worst-case bounds on properties of the
rotating dipole field, given a worst-case bound on localization
error, which can be used to design operating procedures that
mitigate undesired MAT behavior in the presence of known
localization uncertainty. The results are important for the
robust operation of rotating MATs actuated using a single
rotating permanent magnet in a clinical setting.

I. INTRODUCTION

Untethered magnetic devices, such as magnetic micro-
robots [1] and active capsule endoscopes [2], have become
an active area of research because of their potential impact to
minimally invasive medicine. These devices typically consist
of a rigidly attached magnetic body on which magnetic forces
and torques are applied by an external field. Due to the
difficulty of scaling electromagnetic systems to clinical sizes,
researchers are considering the use of permanent magnets
for actuation. Some of these approaches utilize magnetic
forces for pulling [3], while others apply torque generated
by rotating magnetic fields to roll on a surface [4], [5], or
crawl through a lumen via helical propulsion [6]. Because
these devices can be viewed as simple end-effectors of a
larger robotic system, and they may range in size from the
microscale to the mesoscale, we refer to them herein as
magnetically actuated tools (MATSs) without any implied size.

In prior work, MATs actuated with a rotating permanent
magnet (RPM) have been constrained to operated in radial
or axial positions relative to the RPM (Fig.1) where the
rotation of the field is easy to visualize [4]-[6]. In [7], we
show that MAT's can be successfully actuated by an RPM in
any position, removing the need to be exclusively operated
in axial or radial configurations. The methods presented
in [7], however, require the MAT position in space to be
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Fig. 1. When a dipole magnet with moment M rotates around the axis 2
with M perpendicular to Q, the field vector at any given position rotates
around, and is perpendicular to, a constant axis @. The axis & at various
positions are illustrated with large blue arrows. A representation of the
ellipse traced out by the rotating magnetic field at the position p is shown.
Any position on the €2 axis is denoted to be in an axial position and any
position in the plane spanned by the rotating M is a radial position.

known. A variety of localization strategies exist. The most
appropriate depends on the MAT size and the environment in
which it operates. If the MAT is visible, direct visualization
approaches can be applied [1]. If not, RF triangulation with
~ 37mm error [8], magnetic position localization strategies
that measure the magnetic field generated by the RPM (or
MAT) with ~ 10mm error [9], [10], or computer vision
approaches using images obtained through CT scan or x-ray
fluoroscopy with ~ 1 mm error [11] may be applied. Each
method will be subject to uncertainty caused by noise, slow
update rates, and/or temporary failure or obstruction.

When actuating a MAT with the nonuniform field pro-
duced by a single RPM, the applied field magnitude, rotation
axis, and instantaneous rotational velocity all vary depending
on the placement of the MAT relative to the RPM. If the
rotation axis and velocity of the RPM are set according to
[7] to produce a desired rotating magnetic field at an expected
MAT position, then variation of the MAT position from ex-
pected will cause the rotating field experienced by the MAT
to deviate from expected. Individual MATs may respond
differently to unintended deviation in the rotating magnetic
field depending on their design and the environment in which
they operate. However, it is likely that unexpected deviation
will produce undesired MAT behavior, and in the worst-case
may result in loss of control authority.

In this paper, we present analysis of the worst-case de-
viation of applied field magnitude, rotation axis, and in-
stantaneous rotational velocity from that expected, given a
known worst-case bound on localization error, which can
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be used to design RPM operating procedures that reduce
unexpected MAT behavior in the presence of known local-
ization uncertainty. This paper only studies how the behavior
of the rotating dipole field, generated by a single RPM, varies
according to position, making the results applicable to any
rotating MAT including active capsule endoscopes and mag-
netic microrobots. We demonstrate our results by measuring
the magnetic field and by actuating a threaded MAT shaped
like a wireless endoscope capsule with artificially induced
uncertainty.

II. CONTROLLING LOCAL FIELD ROTATION

The results of [7] readily enable the solution to be found
for the necessary RPM rotation axis that produces an applied
rotating field about any given rotation axis at any given
position relative to the RPM. These results are necessary
for Sec.III and are reviewed here in an abbreviated form.

All vectors are expressed in a common, static coordinate
frame, and the “hat” symbol denotes a vector normalized to
unit length. Let the RPM’s dipole moment M rotate around
the axis €2 such that M is always perpendicular to €2, and the
direction of rotation is found using a right-hand rule. Let the
vector @ be the desired rotation axis of the local magnetic
field at the MAT position p. Assuming the magnetic field
H, generated by the RPM, at position p can be accurately
modeled with the point-dipole model, given by

HM=

PP’ — = —— _HM,
4r|pl3

1
H= 3
Trpp 0P

(1)

where 1 is the identity matrix and p is the unit vector in the
direction of p, then the necessary €2 that achieves @ at p is

O = Ho. )

The matrix H is always invertible and the solution for the
local field axis of rotation @ at the position p, given the
RPM axis of rotation 2, is found with

o =H"1Q. (3)
where H™! = (H — I)/2, requiring no matrix inversion.
At any given MAT position, the instantaneous field magni-

tude [H| fluctuates in an elliptical fashion as the RPM rotates
about €2, and is given by

[M]

= L \/1+3(MTp)2 4
and the minimum and maximum field magnitudes are
M
H|min = 5
H] PR )

|H|max =

M| ~
V1+ 3B, 6

where the vector p = (I — QQT)f) is the projection of p
onto the plane perpendicular to Q (i.e., the plane in which M
resides). The maximum field magnitude occurs when M is
parallel to p and the minimum field magnitude occurs when
M is perpendicular to P. |H|pax iS, at most, twice |H|min.

The instantaneous angular velocity of the applied field
varies through each RPM cycle as well. If w and 2 denote
the instantaneous angular velocities of the local field and the
RPM, respectively, then |w| and || are related by

‘H‘min|H|maX
— (PERmin2max ) o)
| = (el ) oy a)

The position p of the MAT relative to the RPM is
measured by the localization system. With p known and
the desired applied field rotation axis @ for MAT actuation
known, the necessary actuator axis of rotation € can be
quickly found by (2). As the MAT or the RPM moves and
the direction of p changes, (2) must be updated by repacking
the matrix H, and a new solution for €2 must be produced to
maintain the desired field rotation axis at p. This approach
to MAT actuation is demonstrated in [7].

IIT. CONTROLLING ROTATING MATS WITH
LOCALIZATION UNCERTAINTY

Any method used for MAT localization will produce an
expected MAT position p with an associated uncertainty. In
practice, the expected position will be used in (2), (4), and
(7) to generate expected (and desired) applied field rotation
behavior for MAT actuation. In nonuniform fields generated
by an RPM, the local field rotation axis, the instantaneous
field magnitude, and the instantaneous field rotation speed
vary depending on the MAT position p. Error between the
expected MAT position p and the actual MAT position
P, when applying (2), (4), and (7) for control, may cause
undesired MAT behavior. We present worst-case bounds on
all three factors above if the MAT is known to reside in a ball
of radius 7, centered at the expected position p, assuming
that » < |p| (i.e., the RPM is not within the ball) and that
the RPM field can be modeled with the point-dipole model.

We find that the three factors can be non-dimensionalized
and purely described by the parameters § and r/|p|, where
6 measures the angle between the expected MAT position p
and the RPM rotation axis €2, and the ratio r/|p| describes
the relative uncertainty in the MAT position. Because (2),
(4), and (7) are radially symmetric about the axis Q, the
three factors are invariant to the rotation of p about Q, SO
considering 7/|p| € [0,1) and § € [0°,180°] captures all
three parameters for any expected position p.

A. Worst-case Rotation Axis Misalignment

Let the set B hold every position in the ball centered at
P, known to contain the MAT. If € remains constant, the
rotation axis @ of the rotating applied field, given by (3),
varies at positions throughout B. Let & be the expected
rotation axis at the expected MAT position p, and let v
measure the angle between & and any other rotation axis
in B. The maximum ¢ in the ball is denoted by maxp ().
In this notation, the subscript of max denotes the set over
which the argument is maximized.

For any given RPM rotation axis Q, the expected local
field rotation axis & is given by (3) with the matrix H™!
packed with the expected position p. The rotation axis at
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Fig. 2. If the MAT is known to reside in a ball of radius r centered at an expected position p, the worst-case deviation of & from expected & within the
ball is shown in (a), the worst-case minimum field magnitude (normalized by |M|/4|p|3) within the ball is shown in (b), and the worst-case maximum
local field rotation speed (normalized by |€2|) in the ball is shown in (c). In all three plots, the expected position p is varied such that the angle between
P and €2, denoted by 6 ranges from 0° to 180°. The effect of increasing the uncertainty relative to the expected distance between the RPM and MAT
(i.e., increasing r/|p|) is shown in each plot with r/|p| = {0.0,0.05,0.1,0.2} (r/|p| = 0.0 corresponds to no uncertainty).

some other position p in B is given by (3). An analytic
solution for maxz(t)) is nontrivial, however, max;(1)) can
be found numerically for any given r and p by comparing
@ to @ at every enumerated position in B.

Fig.2(a) shows four plots of maxp(y) for r/|p| =
{0.0,0.05,0.1,0.2}. As r/|p| increases, the worst-case de-
viation of & from & also tends to increase. It is also
evident from the figure that the commanded @ is more
sensitive to localization uncertainty in axial positions than
radial positions (see Fig.1). If the proper alignment of &
with & is critical for MAT control, then the RPM should be
positioned near radial positions or |p| should be increased
to make r/|p| small. Increasing |p| comes at the cost of
decreasing the expected field magnitude, however.

B. Worst-case Field Magnitude

The instantaneous magnitude of the rotating magnetic field
is given by (4). At a given MAT position p in 5, the field
magnitude ranges from |H|yi, to |H|max, given by (5) and
(6), respectively. The magnitude of the magnetic torque that
makes the MAT rotate is limited by the minimum strength of
the applied magnetic field |H|y,. If the MAT position lies
in B, then (5) shows that the smallest |H|,;, that occurs in
the ball, ming(|H|min), happens at the position in B where
the MAT is the farthest from the RPM and is given by

M
in(lp[+1)®

Fig.2(b) shows four plots of ming(|H|un,) with /|p| =
{0.0,0.05,0.1,0.2} normalized by |[M|/4x|p|>. As r/|p|
increases, the worst-case field magnitude over all positions in
B decreases, and the figure clearly shows that ming(|H|min)
is invariant to changing @. If the field magnitude is important
for MAT control, then |p| should be decreased to keep the
worst-case magnitude acceptable. This should be done with
care, however, as the attractive magnetic force between MAT
and RPM increases dramatically with decreasing |p|.

i ([H i) @®)

C. Worst-case Field Rotation Speed

The angular velocity of the applied field varies according
to (7). Typically, it is necessary to ensure that the maximum
applied field speed never exceeds the maximum potential
rotation speed of a MAT. At any given position in the ball, the
applied field rotation speed is bound from above by |w|max,
which can be obtained by substituting |H| i, for |H| in (7).
After substituting (5) and (6) into the resulting expression,
|w|max becomes

|@|max = /1 + 3[B[?[€2]. ©)

Because p is the projection of p onto the plane perpendic-
ular to €, maxp(|w|max) occurs at the position in B that
maximizes |p|, resulting in:

mgx(\w|max) = 1/1+ 3sin?()|9| (10)
where
90° if [90° — 0 <8
a=4q 0+p if § <90° -3 (11)
0—p if 0 >90°+ 4

and g is the angle between p and every position in 5 whose
vector lies tangent to the ball surface.

Fig. 2(c) shows four plots of maxs(|w|max) normalized by
|2, with r/|p| = {0.0,0.05,0.1,0.2}. As r/|p| increases,
the worst-case rotation speed tends to increase, however,
maxg(|w|max) is slower near axial than radial positions. The
fastest rotation speed at any position will never surpass 2|9
according to the point-dipole model. The worst-case speed in
the radial position is already 2|€2| and cannot increase any
further with increasing r/|p|. If maintaining field rotation
speed below some threshold is critical for MAT actuation,
then the RPM rotation speed should slow down as r/|p|
increases, and axial positions should be favored over radial.

1634



(b)

(d) 26 mm

14 mm

Fig. 3. The Yaskawa Motoman MHS5 6-DOF robotic manipulator (a) is used
to position the RPM (b). A custom, three-axis magnetic field sensor (c) and
a capsule-shaped, threaded, screw MAT (d) are used to obtain experimental
results. The thread of the MAT has a pitch of 9mm and is 1.5 mm deep and
the MAT contains a 6.35 mm cube Grade-N52 NdFeB permanent magnet
positioned at the device’s center-of-gravity.

IV. EXPERIMENTAL RESULTS & DISCUSSION

The RPM is positioned with a Yaskawa Motoman MHS5
6-DOF robotic manipulator (Fig.3(a)), and consists of a
cylindrical 25.4mm diameter, 25.4mm long, Grade-N42,
diametrically magnetized (i.e., along the diameter) NdFeB
permanent magnet (Fig.3(b)) driven by a Maxon 24V A-
Max DC motor with an Advanced Motion Controls servo
control drive and amplifier. The field produced by the
RPM closely follows the point-dipole model, with [M| =
12.7 A-m?, at distances where actuation typically occurs [7].

We demonstrate the theory presented in Sec. III by measur-
ing the magnetic field generated by the RPM in the center
and on the surface of two imaginary balls with 12.5 mm
radius, centered in axial and radial positions 125 mm from
the RPM (Fig.4). Each ball center represents an expected
position that could have been obtained from a localization
system. The radius represents a potential worst-case bound
for the imaginary localization system, making r/|p| = 0.1.
The magnetic field H is measured in terms of the magnetic
flux density B, where B = pgH, using a three-axis sensor
(Fig. 3(c)), which is discussed in [7].

For each ball, the rotating magnetic field is measured
at the ball center and at six other positions that span the
diameter of the ball in each coordinate direction (seven total
measurements), shown at the top of Fig. 4. Figs. 4(a) and 4(c)
show the magnetic field measured by the three-axis sensor
at each ball center in the x-z and y-z planes along with the
field predicted by the point-dipole model. The rotation axis
(found using principal component analysis) differs from that
predicted with the point-dipole model by 3.51° and 2.85° in
the axial and radial positions, respectively. Figs. 4(b) and 4(d)
show tables presenting the deviation angle ¢, measured from
the rotation axis at each ball center, along with the minimum
field magnitude |B| i, and the maximum field rotation speed
|w|max, all measured at each ball center and positions p
through pe. || = 2.5rad/s in both both examples.

Sec. III-A predicts that the worst-case deviation angle of

the local field rotation axis in the ball, measured from
the expected local field rotation axis, is largest for axially
centered balls and is smallest for radially centered balls.
This is verified by Figs. 4(b) and 4(d), which show maximum
deviations of 19.2° for the axial ball, and 8.1° for the radial
ball. For a ball with r/|p| = 0.1, Fig. 2(a) predicts that the
worst case deviation in the axial and radial expected positions
are 17.1° and 8.6°, respectively. The measured deviation is
greater than the predicted worst-case in the axial ball. This
may be caused by error between the dipole model and the
actual magnetic field, or nonidealities in the field sensor.

The worst-case (i.e., the weakest) field magnitude if the
MAT is known to reside within some ball is predicted in
Sec.III-B to be purely a function of the expected distance
between the ball center and the RPM. Because the position
where the worst-case magnitude occurs is the position in
the ball farthest from the RPM, Sec.III-B can be verified
by examining the minimum field magnitude at pg for the
axially centered ball, and at p4 for the radially centered ball.
Figs.4(b) and 4(d) show that the minimum field strength
(magnetic flux density) is 0.45mT in both positions. The
point-dipole model predicts that the minimum field strength
at both positions should be 0.49 mT.

Sec.II-C predicts that the worst-case (i.e., the fastest)
field rotation speed is fastest in the radially centered ball
and is slowest in the axially centered ball. This is verified
in Figs.4(b) and 4(d), which show the fastest rotation speed
in the axially centered ball to be 2.54 rad/s versus 5.09rad/s
in the radially centered ball. With »/|p| = 0.1 and |Q| =
2.5rad/s, Fig. 2(c) predicts that the worst-case rotation speed
should be 2.54 rad/s and 5.00 rad/s in the axially and radially
centered balls, respectively.

With known localization uncertainty, the RPM should be
operated so that the factors presented in Sec. Il are within
bounds tolerated by the MAT. For a constant uncertainty
bound r, increasing |p| decreases r/|p|, and decreases the
worst-case rotation axis misalignment and rotation speed.
However, increasing |p| decreases the worst-case field mag-
nitude, which is typically required to be above some thresh-
old to maintain control authority. Additionally, the worst-case
rotation axis is minimized in a radial position, and the worst-
case rotation speed is minimized in an axial position. These
factors must be considered during RPM motion planning.

Scaling the dimensions of the RPM can mitigate effects
due to localization uncertainty. The field generated by an
RPM scales homothetically, meaning that the field of an
RPM whose dimensions have been scaled by a factor s (the
RPM volume is scaled by s%), measured at the position sp,
is the same as that of an unscaled RPM measured at the
position p. If the localization system and the uncertainty
bound r are invariant to RPM scaling, operating the MAT
at sp makes the expected position become sp, and the
relative uncertainty becomes /(s|p|), which scales as s~
Therefore, scaling the dimensions of the RPM by s and
operating at equivalently scaled distances, without changing
r, decreases r/(s|p|) along with the worst-case rotation axis
misalignment, field magnitude, and rotation speed.
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Fig. 4. The theory presented herein is verfied by measuring the magnetic field (magnetic flux density) in the center and on the surface of two imaginary
balls (shown in the scale drawings at the top of the figure). Both balls have radius 12.5 mm and their centers (denoted by po) are 125 mm away from
the RPM. The measured and predicted rotating field at both ball centers is shown in (a) and (c) for the axial and radial examples, respectively. Tables (b)
and (d) show the rotation axis deviation 1) from that measured at po, the minimum field strength |B|,i, measured, and maximum rotation speed |w|max

measured at varying positions on each ball.

Unlike uniform magnetic fields, nonuniform fields (such
as those produced by the RPM) cause a magnetic force to be
applied to the MAT. As demonstrated in [7], the magnetic
force can assist or hinder MAT actuation. Magnetic force
may substantially impact successful MAT actuation in the
presence of localization uncertainty. If the magnetic force
opposes the desired direction of motion, then the MAT
will be less robust to localization error than expected. If
the magnetic force assists motion, then the magnetic force
makes MAT actuation more robust under uncertainty in some
positions and produces no improvement in others.

We demonstrate the above by actuating a threaded,
capsule-shaped MAT (Fig.3(d)) within a clear PVC lumen
with 22.2 mm inner diameter, lightly lubricated with personal
lubricant jelly. While the MAT travels through the lumen,
the RPM position is visually servoed to maintain a radial
position p = [0,0, —125]T mm in Figs. 5(a) and 5(b), where
magnetic force neither assists nor hinders motion, and a
leading position p = [0,72.2, —102]" mm in Figs.5(c) and
5(d), where magnetic force assists motion, using a stereo
vision system (detailed in [7]) producing millimeter tracking
accuracy at 30 frames-per-second (Fig.3(a)). In both posi-
tions, |p| = 125mm and 2 is oriented to keep the rotation
axis of the field at the MAT position aligned in the negative y
direction. Localization uncertainty is artificially induced by
physically blocking the MAT from view of the vision system.
When sight is lost, the vision system assumes the MAT to be

in the last known position. This represents uncertainty due
to localization failure, however, the effect is the same for
uncertainty due to noise or slow sampling frequency (i.e.,
the MAT is not where expected).

Figs.5(a) and 5(c) show the MAT being actuated with
|©2] = 2.5rad/s in the radial and leading positions, respec-
tively. In both examples, the MAT begins within sight of the
vision system at t = 0s. The MAT passes beneath the visual
obstruction at t = 48s and ¢t = 30 s for the radial and leading
positions, respectively, where the vision system loses sight
of the MAT. In the radial case, the magnetic force opposes
the desired MAT motion while the MAT continues down the
lumen. The 30 mm long obstruction is the largest the MAT
is capable of tolerating without the combination of reduced
field strength and change in field rotation axis causing step-
out. In the leading case, the magnetic force assists the MAT
through the obstruction and the MAT easily passes through.

Figs.5(b) and 5(d) show the MAT being actuated with
|©2| = 0.5rad/s. At this speed, the MAT in the radial position
passes through the 60 mm obstruction (Figs. 5(b)) despite the
field magnitude decreasing and the field rotation axis pitching
39.1° from expected at the last known position. In the leading
position, the MAT is pulled through the obstacle until it
steps-out at t = 338 s. At this time, the field strength is larger
than when the RPM is in sight, however, the field rotation
axis is pitched 60.2° from expected (and desired) at the
last known position, likely causing the RPM to lose control
authority. Clearly, applying magnetic force to assist motion
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The capsule MAT (Fig. 3(d)) is actuated in a radial position with p = [0, 0, —125]T mm at 2.5rad/s (a) and 0.5rad/s (b), and in an unintuitive

leading position with p = [0, 72.2, —102]T mm at 2.5rad/s (c) and 0.5rad/s (d). In the radial position, the magnetic force neither assists or opposes the
desired MAT motion. In the leading position, the magnetic force assists desired motion. The MAT is driven through a region (shaded in the images) 30 mm

long in (a) and (c), and 60 mm long in (b) and (d), where the MAT is blocked from sight of the vision tracking system to induce uncertainty.

does not guarantee successful actuation, and as demonstrated
by the successful actuation in the radial example, where
the magnetic force opposed motion, an assistive magnetic
force may not be useful in some positions. Scaling the
RPM dimensions by s and operating at equivalently scaled
distances scales the magnetic force by s~! for both helping
and hindering forces. Fully understanding the influence of
magnetic force is extremely important for robust actuation,
and is the topic of future work.

V. CONCLUSION

Any system for MAT localization will produce an expected
MAT position with an associated uncertainty. Unlike actua-
tion with uniform magnetic fields produced by arrangements
of electromagnets, in the nonuniform field produced by a
single RPM, the applied field rotation axis, field magnitude,
and instantaneous rotational velocity change as the MAT
position varies. If the RPM position and rotation axis are
selected according to an expected MAT position, deviation
of the actual MAT position from expected (caused by sensor
uncertainty) may cause undesired behavior. In this paper,
we have developed and experimentally verified worst-case
bounds on the applied field rotation axis, field magnitude, and
instantaneous rotational velocity from those expected, given
a worst-case bound on localization error. These bounds can
be used to design RPM operating procedures that reduce un-
desired MAT behavior given known localization uncertainty.
The results apply to any rotating MAT, actuated by a single
RPM, including active capsule endoscopes and magnetic
microrobots.
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