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Abstract
Magnetic helical microswimmers, which swim using a method inspired by the propulsion of bacterial flag-
ella, are promising for use as untethered micromanipulators and as medical microrobots. Man-made devices
are typically heavier than their fluid environment and consequently sink due to their own weight. To date,
methods to compensate for gravitational effects have been ad hoc. In this paper, we present an open-loop
algorithm for velocity control with gravity compensation for magnetic helical microswimmers that enables
a human operator or automated controller to command desired velocity intuitively, rather than directly con-
trolling the microswimmer’s orientation and rotation speed. We provide experimental verification of the
method.
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1. Introduction

Untethered biomedical microrobots are a topic of considerable research. Micro-
robots have the potential to radically transform many medical procedures by operat-
ing in hard-to-reach locations of the body, performing tasks such as targeted therapy
(e.g., drug delivery, hyperthermia), tissue removal (e.g., ablation) and remote sens-
ing, and the bodies of the microrobots themselves may be used as maneuverable
structures (e.g., stents, tissue scaffolding) [1]. Microrobots have also already been
demonstrated as useful tools for untethered manipulation at the microscale, both on
planar surfaces [2, 3] and in three-dimensional fluidic environments [4, 5]. Un-
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tethered microrobots stand to impact a broad range of fields, but we must first
understand their locomotion and how to effectively control them wirelessly.

The environment in which a microrobot operates is significantly different than
that of macroscale robots as we know them. In particular, microrobots typically
operate in fluids at the low-Reynolds-number regime, where viscous drag signif-
icantly dominates over inertia [6]. In this environment, propulsion and actuation
can be challenging, and although there are a number of ways for a microrobot to
be wirelessly propelled, one method of particular interest is helical propulsion —
a swimming method inspired by the propulsion of bacterial flagella — using torque
produced from the rotation of an externally applied magnetic field [4, 7, 8]. It
has been shown that magnetic helical swimming performs well compared to other
methods of magnetic propulsion as the size of the microrobot scales down [9]. Mi-
crorobots that are propelled in this manner are typically simple devices consisting
of a magnetic body rigidly attached to a chiral structure resembling a cork screw
or wood screw. The community now has a good basic understanding of the ways
in which magnetic helical microswimmers can be controlled and researchers have
begun to tackle some of the non-idealities that manifest themselves during experi-
mentation [10].

One such non-ideality is the microrobot sinking due to its own weight. Mag-
netic control of helical microswimmers has typically started from the assumption
that the microswimmers behave similarly to bacteria, which are approximately neu-
trally buoyant, and the microswimmer is simply pointed in the direction of desired
velocity, as depicted in Fig. 1a. When swimming under an optical microscope, the
microswimmer typically lies near the horizontal plane, such that it can be easily
observed and controlled. However, man-made microswimmers are typically heav-
ier than their fluid medium and they sink down, albeit slowly, due to their own
weight, resulting in a velocity that is not aligned with the thrust direction of the
microswimmer (Fig. 1b and d), thus making the microswimmer attain a desired ve-
locity is not as simple as merely pointing the microrobot in the desired direction. To
counteract this downward drift and keep the microswimmer at a desired focal plane,
researchers have pitched the microswimmer up in an ad hoc manner, as shown in
Fig. 1c, with the goal of keeping the long axis of the microswimmer close to the hor-
izontal plane such that observation through the microscope is relatively unchanged.
In Ref. [4], for example, the authors report that their microswimmers require a com-
pensation pitch of approximately 10◦–20◦, with the necessary pitch being inversely
proportional to the microswimmer’s rotation speed. As we will show herein, there
is a unique combination of pitch angle and rotation speed (modulo 180◦ change
in pitch) to achieve the desired velocity of the microswimmer, whether or not the
desired velocity lies in the horizontal plane, and this combination of pitch angle
and rotation speed is not intuitive to a human operator. In this paper, we describe
a velocity-control-plus-gravity-compensation algorithm that calculates the correct
pitch angle and rotation speed to achieve the commanded velocity with results like
those shown in Fig. 1e, making teleoperation much more intuitive.
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(a) Neutrally buoyant swimmer (b) Heavy swimmer (c) Gravity compensation

(d) Experiment without gravity compensation (e) Experiment with gravity compensation

Figure 1. (a) Natural flagellated bacteria are nearly neutrally buoyant. (b) Man-made swimmers are
denser than water, causing them to drift downward under their weight. (c) To compensate for this
drift, the microswimmer must be commanded to swim at a unique pitch angle and rotation speed.
(d and e) Composite images from scaled experiments where the swimmer is commanded to move
horizontally with a constant velocity, without and with the proposed gravity-compensation algorithm,
demonstrating the behaviors described in (b) and (c), respectively. Gravity points downward in the
images.

Considering the command input of magnetic helical microswimmer to be spa-
tial velocity rather than manual control of pitch and rotation speed has not been
done previously. It may be more appropriate to think of microswimmers as tiny
helicopters as opposed to bacteria. Rather than the default configuration of the mi-
croswimmer being in the horizontal plane, it should be pointed vertically such that
the thrust of the microswimmer is directly counteracting gravity. From this vertical
configuration, the microrobot can move up or down simply by changing the rotation
speed. To make lateral movements, the microswimmer pitches away from vertical,
and again there is a unique combination of pitch angle and rotation speed to achieve
the desired velocity.

To accurately command a velocity to our microswimmer that is not aligned with
the microswimmer’s central axis requires a model of the microswimmer that goes
beyond the simple 2-d.o.f. model that has been used in prior work; in Section 2
we develop a full 6-d.o.f. model for helical microswimmers. In Section 3 we de-
velop an algorithm that calculates the microswimmer orientation and rotation speed
needed to achieve a desired spatial velocity. We experimentally verify the algorithm
in Section 4, using a scaled magnetic swimmer propelled by the rotating uniform
magnetic field of an electromagnetic system consisting of nested Helmholtz coils.
Finally, in Section 5 we provide some additional discussion and interpretation of
our algorithm and experimental results.
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2. The 6-d.o.f. Helical Microswimmer Model

The swimming properties of magnetic helical microswimmers are well understood
for motion along the microswimmer’s central axis [6, 9, 11]. In a low-Reynolds-
number regime, the applied nonfluidic torque and force, τ and f , acting along the
microswimmer’s central axis are linearly related to the translational velocity and
angular velocity, v and ω, also along the microswimmer’s central axis. This is ex-
pressed in the form of the widely used system of equations:[

f

τ

]
=

[
a b

b c

][
v

ω

]
, (1)

where a, b and c are scalars that depend upon the geometry of the microswimmer
and the properties of the fluid in which it swims. This 2-d.o.f. axial model has
been used with good success to study the feasibility of helical swimming [9, 11]
and to characterize basic swimming properties [12]; however, it does not provide
sufficient information to understand how a helical microswimmer behaves in full
6-d.o.f. motion.

In this section, we extend (1) from 2 to 6 d.o.f. using resistive force theory (RFT)
and spatial transformations, including effects caused by rigidly fixing a spherical
magnetic head to the end of a helix. Making the assumption that the fluidic forces
acting on the helix and the head are independent from each other, we first determine
the fluidic force and torque acting purely on the helix, fh and τ h, using RFT, and
then the fluidic force and torque acting solely on the spherical magnet head, fm and
τm (this assumption has been used in other work to obtain a good approximations
of the fluidic properties of rigid helices in the low Reynolds regime [9, 13]). Thus,
the total force and torque acting on the microswimmer is the sum of the forces and
torques acting on the helix and the spherical head: f = fh + fm and τ = τ h + τm, re-
spectively. Although we only consider helices of right-handed chirality, the results
derived in this section can be obtained for left-handed helices using the same meth-
ods. A similar 6-d.o.f. model was presented in Ref. [13] for the study of cellular
flagella motility where the helical flagella rotates opposite the direction of the cell
body.

RFT is a simple approach used to determine the forces caused by velocity on an
infinitesimally small length of helix [14, 15]. RFT takes the velocity vs of one of
these small segments of the helix, decomposes the velocity into components parallel
and perpendicular to the segment, and relates them to parallel and perpendicular
drag forces acting on the segment with the differential forces:

df⊥s = ξ⊥v⊥s ds (2)

df‖s = ξ‖v‖s ds, (3)

where ξ⊥ and ξ‖ are scalar drag coefficients, which have a number of empirical ap-
proximations (e.g., Ref. [15]). Integrating these differential forces along the length
of the helix provides the fluidic forces acting on the helix (fh) induced by a spe-
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Figure 2. A helical microswimmer consisting of spherical magnetic body of radius rm attached to a
right-handed helix with pitch θ and radius rh. The coordinate frame of the microswimmer’s helix (de-
noted by h) is oriented with xh along the central axis of the helix with the origin Oh of the right-handed
coordinate system at the center of the helix.

cific movement of the helix. To perform this integration in three dimensions, we
first need to define the coordinate frames for the helix and for a given differen-
tial segment. Let the geometry of the helix be defined with pitch θ and radius
rh, and let the helix coordinate frame (denoted by h) lie with the xh axis parallel
to the central axis of the helix, and the yh and zh axis be arranged as in Fig. 2.
The origin of this coordinate system is located at the center of the helix, denoted
by Oh. For ease of integration, we will describe the helix using a cylindrical co-
ordinate system parameterized by the polar angle φ. The matrix that will rotate
vectors written in a given segment coordinate frame (denoted by s) to the helix
frame is hRs(φ) = Rx(φ)Ry(−θ), where hRs ∈ SO(3) denotes a rotation matrix
from frame s to frame h, and Rx(φ) ∈ SO(3) denotes a rotation matrix about axis x
by φ rad [16]. We can write the vector from Oh to the origin of each segment frame
with respect to φ in the form:

hp(φ) =
[ rφ

tan(θ)
r cos(φ) r sin(φ)

]T
, (4)

where hp denotes the vector p represented in frame h. At each of these points, the
xs axis of the segment frame lies parallel to the helix segment, and both ys and zs lie
perpendicular to the helix segment, with ys pointing radially away from the central
axis of the microswimmer’s helix. This leads us to express the differential relat-
ing velocity to force in three dimensions with respect to the frame of an arbitrary
segment along the helix in the segment frame as:

sdfs = s�svs ds, (5)

where:

s� =
[

ξ‖ 0 0
0 ξ⊥ 0
0 0 ξ⊥

]
, (6)

and sfs and svs are the force and velocity of the segment expressed in the segment’s
own frame. The relationship between velocity and forces in the segment frame can
be expressed in the helix frame as:

hdfs = h�(φ)hvs ds, (7)
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where:

h�(φ) = hRs(φ)s�sRh(φ). (8)

As the helix is swimming, the velocity vs of an infinitesimally small segment
of helix (parameterized by φ with position described by p(φ)) can be decomposed
into the sum of the microswimmer’s translational velocity v and the velocity caused
by an arbitrary helix rotation ω:

vs = v + ω × p(φ) = v − p(φ) × ω. (9)

This can be expressed in the helix frame as:

hvs = hv − S{hp(φ)}hω = hv + S{hp(φ)}Thω, (10)

where S{k} packs the vector k = [k1 k2 k3]T into the skew-symmetric matrix,
representing the cross-product operation:

S{k} =
[ 0 −k3 k2

k3 0 −k1
−k2 k1 0

]
. (11)

Substituting (10) into (7) results in:

hdfs = h�(φ)hv ds + h�(φ)S{hp(φ)}Thω ds. (12)

A similar differential expression relating fluidic torque to translational and angular
velocities of the helix can also be derived. Each force acting on an infinitesimally
small segment of helix induces a subsequent torque about the helix origin. The rela-
tionship between the torque and force at an arbitrary helix segment, parameterized
by φ, can be expressed in the helix frame as:

hdτ s = hp(φ) × hdfs = S{hp(φ)}h dfs . (13)

Here, we make an assumption that is common when using RFT: that the drag torque
on the helix due to a given segment is due to the translational velocity of the segment
as it slices through the fluid and that the torque due to the small segment’s rotation
is negligible. This assumption significantly simplifies calculations and should be
valid provided that the cross-section of the segment is small compared to the overall
radius of the helix.

The total fluidic force and torque on the helix are found by integrating the forces
and torques on the segments along the total length of the helix:

fh =
∫

dfs, τ h =
∫

dτ s . (14)

For both (12) and (13) the helix was parameterized using the polar angle φ. There-
fore, the force and torque will be obtained by integrating both differentials with
respect to φ. Substituting (12) into (13), replacing ds with rh dφ/ sin(θ) and in-
tegrating φ from −πn to πn produces two integral equations for an n-turn helix
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centered at Oh:

hfh =
(

rh

sin(θ)

∫ πn

−πn

h�(φ)dφ

)
hv

+
(

rh

sin(θ)

∫ πn

−πn

h�(φ)S{hp(φ)}T dφ

)
hω (15)

hτ h =
(

rh

sin(θ)

∫ πn

−πn

S{hp(φ)}h�(φ)dφ

)
hv

+
(

rh

sin(θ)

∫ πn

−πn

S{hp(φ)}h�(φ)S{hp(φ)}T dφ

)
hω. (16)

Evaluating all four matrix integrals results in two equations relating force and
torque to translational velocity and angular velocity around Oh:[

hfh
hτ h

]
=

[
hAh

hBh
hBT

h
hCh

][ hv
hω

]
, (17)

where:

hAh =
[

ah11 0 0
0 ah22 0
0 0 ah22

]
, hBh =

[
bh11 0 bh13

0 bh22 0
0 0 bh33

]

(18)
hCh =

[
ch11 0 ch13

0 ch22 0
ch13 0 ch33

]
,

and:

ah11 = 2πnrh(ξ‖ cos2(θ) + ξ⊥ sin2(θ))

sin(θ)
(19)

ah22 = πnrh(ξ⊥ + ξ⊥ cos2(θ) + ξ‖ sin2(θ))

sin(θ)
(20)

bh11 = 2πnr2
h (ξ‖ − ξ⊥) cos(θ) (21)

bh13 = −2πnr2
h (ξ‖ − ξ⊥) cos(θ)

tan(θ)
(22)

bh22 = −3πnr2
h (ξ‖ − ξ⊥) cos(θ)

2
(23)

bh33 = −πnr2
h (ξ‖ − ξ⊥) cos(θ)

2
(24)

ch11 = 2πnr3
h (ξ⊥ cos2(θ) + ξ‖ sin2(θ))

sin(θ)
(25)

ch13 = −2πnr3
h (ξ⊥ cos2(θ) + ξ‖ sin2(θ))

sin(θ) tan(θ)
(26)
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ch22 = 2πnr3
h (ξ‖ cos2(θ) + ξ⊥ sin2(θ) − ξ⊥/2)

sin(θ)
(27)

+ πnr3
h (ξ‖ cos2(θ) − ξ⊥ sin2(θ) − ξ⊥)

2 tan2(θ) sin(θ)

+ (πnrh)
3(ξ‖ cos2(θ) − ξ⊥ sin2(θ) + ξ⊥)

3 tan2(θ) sin(θ)
(28)

ch33 = πnr3
hξ⊥

sin(θ)
− πnr3

h (ξ⊥ cos2(θ) + ξ‖ sin2(θ) − ξ⊥)

2 tan2(θ) sin(θ)
(29)

+ (πnrh)
3(ξ⊥ cos2(θ) + ξ‖ sin2(θ) + ξ⊥)

3 tan2(θ) sin(θ)
. (30)

As the microswimmer rotates about Oh, the spherical magnetic head of radius
rm fixed to the helix exerts fluidic forces and torques on the microswimmer that
we assume to be independent from those caused by the helix. Let k be the vector
from the center of the helix Oh to the center of the magnetic head Om as shown in
Fig. 2. Given that the translational and rotational drag coefficients in Stokes flow of
viscosity η are ξvm = 6πηrm and ξωm = 8πηr3

m, respectively [17], the drag force
acting on the head is the product of the translational drag coefficient and the head’s
velocity. Arbitrary movement of the microswimmer produces a magnet velocity,
expressed in the helix frame, of

hvm = hv + hω × hk = hv − hk × hω = hv + S{hk}Thω, (31)

which corresponds to a force on the magnet:

hfm = ξvm
hv + ξvmS{hk}Thω. (32)

The drag torque caused by the spherical head is a result of the force acting at the
moment arm k as well as the drag caused by the rotation of the head itself. This can
be expressed in the form hτm = hk × hfm + ξωm

hω, with hfm from (32). Replac-
ing the cross-product operator with its corresponding skew-symmetric matrix and
grouping like terms produces:

hτm = ξvmS{hk}hv + (
ξvmS{hk}S{hk}T + ξωmI

)hω, (33)

where I is the identity matrix. If we let the matrices:

hAm = ξvmI, hBm = ξvmS{hk}T

(34)hCm = ξvmS{hk}S{hk}T + ξωmI,

then the total force hf = hfh + hfm and torque hτ = hτ h + hτm acting on the mi-
croswimmer are: [

hf
hτ

]
=

[
hA hB

hBT hC

][
hv
hω

]
, (35)
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where hA = hAh + hAm, hB = hBh + hBm and hC = hCh + hCm:

hA =
[

a11 0 0
0 a22 0
0 0 a22

]
=

[
ah11 + ξvm 0 0

0 ah22 + ξvm 0
0 0 ah22 + ξvm

]
(36)

hB =
[

b11 0 b13
0 b22 b23
0 −b23 b33

]
=

[
bh11 0 bh13

0 bh22 ξvm|k|
0 −ξvm|k| bh33

]
(37)

hC =
[

c11 0 c13
0 c22 0

c13 0 c33

]

=
[

ch11 + ξωm 0 ch13
0 ch22 + ξvm|k|2 + ξωm 0

ch13 0 ch33 + ξvm|k|2 + ξωm

]
. (38)

Equation (35) is the 6 d.o.f. equivalent of (1). Note that f and τ do not represent
viscous drag associated with the microswimmer’s total velocity v and ω. Rather,
they represent non-fluidic force and torque — in this paper, force due to gravity and
torque due to magnetism — corresponding to a given microswimmer velocity (i.e.,
the force and torque required to overcome viscous drag for a given microswimmer
velocity). Now that we are equipped with a 6-d.o.f. helical microswimmer model,
we are ready to develop the control algorithm that enables intuitive control over the
microswimmer’s velocity, as opposed to directly controlling the microswimmer’s
orientation and rotation speed.

3. Algorithm for Velocity Control with Gravity Compensation

To compensate for the drift caused by an applied force on the microswimmer, it is
necessary to find the direction that it must point, xh, and at what speed it must rotate,
�, to achieve a desired spatial velocity, wv, where w indicates the stationary world
frame. In this paper, the microswimmer’s weight is the sole applied non-fluidic
force, represented by a vector mg, where m is the mass of the microswimmer and
g is the acceleration of gravity, and the ‘downward’ direction is defined with the
unit vector ĝ = g/‖g‖. As can be seen from the off-diagonal terms in the hB and
hC matrices of Section 2, the result of steering the microswimmer (i.e., rotating the
swimmer around the yh or zh axis) can produce complex forces and torques act-
ing on the microswimmer aside from those produced by weight. Despite this fact,
previous research has shown that magnetic helical microswimmers can be turned
effectively by adjusting the axis around which the applied magnetic field rotates
[4, 12]. Although there is evidence that commanding steering maneuvers that are
too rapid can lead to loss of control, we make the assumption herein that the mi-
croswimmer can be turned continuously to a desired pitch angle away from vertical
fast enough such that the microswimmer’s transient behavior is negligible.

In this section, we present a steady-state solution to the velocity problem, and use
it to produce a control algorithm that takes a desired velocity as its input and outputs
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the direction the microswimmer must be pointed and how fast it must be rotating
to attain the desired velocity at steady state. We denote the pointing direction by
x̃ and the rotation speed by �. In the context of command inputs using magnetic
fields, x̃ is also the axis around which the magnetic field should rotate, such that the
magnetic field is always perpendicular to x̃ and � is the rate of rotation.

If the stationary world frame is aligned with the microswimmer’s workspace in
an intuitive manner, the control inputs would best be expressed in this frame. To
avoid requiring vectors to be converted back and forth between the world frame
and the microswimmer’s coordinate frame (i.e., frame h, which rotates), any equa-
tions used to generate the necessary pitch and angular velocity would also best be
represented in the world frame. From the 6-d.o.f. model derived in Section 2, the
portion of (35) that is of particular interested to us is:

hf = hAhv + hBhω, (39)

which relates the microswimmer’s velocity to applied non-fluidic forces and angular
velocity of the microswimmer. As hA is clearly invertible, the desired velocity can
be solved for in (39) to produce:

hv = (hA−1)hf + (−hA−1hB)hω = hDhf + hEhω, (40)

where:

hD =
[

d11 0 0
0 d22 0
0 0 d22

]
, hE =

[
e11 0 e13
0 e22 e23
0 −e23 e33

]
, (41)

all expressed in the microswimmer’s helix frame. Using wRh, (40) can be written
in the world frame:

wv = wDwf + wEwω, (42)

using similarity transformations:

wv = wRh
hv, wf = wRh

hf
(43)wD = wRh

hDhRw, wE = wRh
hEhRw.

Constructing hRw requires the orientation of the robot as it rotates to be detected.
In practice, it is difficult to sense the orientation of the robot about its central axis as
it rotates during propulsion (e.g., using computer vision). To make best use of (42)
for anything aside from the trivial cases where the microswimmer is being com-
manded to move vertically, we will express (42) in a manner that does not require
the orientation of the microswimmer about its central axis to be known.

Since weight is the sole non-fluidic force acting upon the microrobot, the in-
put force f to (39) is mg. The desired velocity, v, can be broken into vertical and
horizontal components, respectively:

vver = (v · ĝ)ĝ (44)

vhor = v − vver. (45)
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If ‖vhor‖ = 0, then the microswimmer is being commanded to move vertically:
either straight up, straight down or a stationary hover. This is the trivial case
where (39) effectively becomes equivalent to its 2-d.o.f. counterpart from (1), mak-
ing the solution for x̃ and � straightforward:

x̃ = −ĝ (46)

� = ‖v‖ + d11‖f‖
e11

. (47)

If ‖vhor‖ �= 0, the solution is more complicated. Using ĝ, we will construct a
new coordinate frame associated with the microswimmer that does not rotate when
the microswimmer rotates about its central axis and we will express (42) in this
frame. This coordinate system (denoted by p) will be constructed such that the
basis vectors are eigenvectors of wD or wE. As the eigenvectors of wD or wE are
aligned with the principle directions of the microswimmer, we will refer to this
frame as the ‘principle’ coordinate frame. Let the basis of this coordinate frame be
defined as:

xp = (xh · v)xh

|xh · v| (48)

yp = xp × g
‖xp × g‖ (49)

zp = xp × yp. (50)

The principle frame is depicted in Fig. 3a. Expressing (42) in the principle coor-
dinate frame transforms the problem of finding the necessary pitch and angular
velocity into one that is relatively easy to solve and, as will be seen, is invariant to
rotations of the microswimmer about its central axis. The representation of (42) in
terms of the principle frame can be found by determining the representation of its
terms, wDwf and wEwω, individually.

If we make the assumption that the swimmer is at steady state as discussed ear-
lier, then we know wω = �wx̃ = �wxp and wxp is parallel to wxh (i.e., wxp = wxh or

(a) (b)

Figure 3. (a) Definition of the principle frame, angles and forces. (b) Construction of x̃.
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wxp = −wxh). It can be easily verified that hxh is an eigenvector of hE correspond-
ing to the eigenvalue e11. The similarity transformations of (43) do not affect the
eigenvalues of matrices and only rotate the eigenvectors with the wRh transforma-
tion, implying that e11 is an eigenvalue of wE and its corresponding eigenvector is
wxh, and due to their parallelism, wxp is also a corresponding eigenvector. Thus, the
expression of wEwω using the principle frame basis vectors can be easily found:

wEwω = wE�wxp = e11�
wxp. (51)

Recasting the wDwf term of (42) is performed in a similar manner. It is also easily
verified that hD has two eigenvalues: d11 and d22. The d11 eigenvalue has the cor-
responding eigenvector hxh and an eigenspace spanned by {hyh,

hzh} corresponds
to the eigenvalue d22. Any vector that is a linear combination of hyh and hzh will
be scaled by the eigenvalue d22. Again, eigenvalues are preserved under similar-
ity transformations, so the subsequent eigenvalues and eigenvectors of wD are d11
corresponding to wxh and d22 corresponding to any vector found in the span of
{wyh,

wzh}. The force wf acting on the microswimmer can be broken into two com-
ponent vectors with one parallel to the eigenvector wxh, which is aligned with the
central axis of the helix, and the other perpendicular (i.e., in the span of syh and
szh):

wf = (
(f · xh)

wxh
) + (

(f · yh)
wyh + (f · zh)

wzh
) = wf‖h + sf⊥h. (52)

Both wf and wf‖h are unaffected by the spinning of the microswimmer about the
wxh axis, implying that wf⊥h remains unchanged as well. Using this fact, and be-
cause both wyp and wzp are in the span of {wyh,

wzh}, wf⊥h can be written as linear
combinations of wyp and wzp. In fact, as can be seen from Fig. 3, no component of
wf⊥h lies in the direction of wyp, making wf⊥h = (f · zp)

wzp. This implies that wf⊥h
is an eigenvector corresponding to eigenvalue d22 and, along with the fact that wf‖h
is an eigenvector corresponding to eigenvalue d11, leads us to write the wDwf term
of (42) using the principle frame basis:

wDwf = wDwf‖h + wDwf⊥h = d11
wf‖h + d22

wf⊥h

= d11(f · xp)
wxp + d22(f · zp)

wzp. (53)

Combining (51) and (53) produces (42) written using the basis vectors of the prin-
ciple frame:

wv = d11(f · xp)
wxp + d22(f · zp)

wzp + e11�
wxp. (54)

As (f · zp)
wzp = wf⊥h is invariant to the microswimmer’s propulsive rotation and

the swimmer rotates around the wxp axis, neither of the terms in (54) are affected
by the rotation of the swimmer about its central axis.

Since the horizontal component of the desired velocity vhor is nonzero, we can
denote the angle of v measured from the vertical axis of the world frame by α =
tan−1(‖vhor‖/‖vver‖). To compensate for weight, the microswimmer will need to
be pitched upward by some angle above v as shown in Fig. 3. Let this angle be
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denoted by 
 . Taking (54) and projecting it first onto the wxp axis and then the wzp
axis produces two scalar equations of the form:

(v · xp) = d11(f · xp) + e11� (55)

(v · zp) = d22(f · zp). (56)

The angle 
 can be computed from (56) by recognizing from Fig. 2 that (v · zp) =
−‖v‖ sin(
) and (f · zp) = ‖f‖ sin(
 − α), producing:

−‖v‖ sin(
) = d22‖f‖ sin(
 − α). (57)

By utilizing the identity sin(
 − α) = sin(
) cos(α) − cos(
) sin(α) and then
grouping terms, we can solve for 
 resulting in:


 = tan−1
(

d22‖f‖ sin(α)

‖v‖ + d22‖f‖ cos(α)

)
, (58)

where the values for ‖v‖, ‖f‖, d22 and α are all known. Using α and 
 , the solution
x̃ can be reconstructed by defining an intermediate vector ṽ = ṽhor + ṽver composed
of its horizontal and vertical components, respectively, where ṽhor = vhor and ṽver =
−‖ṽhor‖ tan(π/2 − α + 
)ĝ. The solution x̃, then is computed as:

x̃ = ṽ
‖ṽ‖ . (59)

The construction of x̃ is depicted in Fig. 3b. Once 
 has been determined, � can
be found from (55) after recognizing that (v · xp) = ‖v‖ cos(
) and (f · xp) =
−‖f‖ cos(
 − α):

� = ‖v‖ cos(
) + d11‖f‖ cos(
 − α)

e11
. (60)

To summarize the control algorithm, the commanded velocity v is decom-
posed into vertical and horizontal components using (44) and (45), respectively.
If ‖vhor‖ = 0, then (46) and (47) are used to solve for x̃ and �, respectively. Other-
wise, (59) and (60) are used. The magnetic field should then be perpendicular to and
rotated about the axis x̃ with a rotation speed of � rad/s to achieve the commanded
velocity.

4. Experimental Verification

4.1. Experimental Setup

The experimental setup used to generate the controlled magnetic fields is shown
in Fig. 4. The system consists of three nested sets of Helmholtz coils. Each set of
Helmholtz coils generates a magnetic field that is optimally uniform in the center
of the workspace, which is aligned with the axis of the coils and which varies lin-
early with the electrical current flowing through wire. Each set of Helmholtz coils
is connected in series, such that a single current is used to power set. The three
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Figure 4. Experimental setup.

Table 1.
Parameters of Helmholtz coil electromagnets

Coil Coil radius No. wraps No. wraps No. wraps Resistance Inductance
set (mm) (width) (depth) (total) (�) (mH)

Inner 44 9 7 63 0.5 0.944
Middle 69 9 11 99 0.9 3.78
Outer 98 13 11 143 1.6 12.2

The radius, number of wraps wide, number of wraps deep and total wraps are reported per indi-
vidual coil, whereas the resistance and inductance are reported for each pair. All coils are wrapped
with 14 AWG insulated copper magnet wire (1.628 mm diameter). The separation of the coils in a
Helmholtz pair is equal to the radius of the coils in the pair.

sets are arranged orthogonally such that the magnetic field vector can be assigned
arbitrarily, with each Helmholtz pair corresponding to one basis direction of the
field vector. The details of the Helmholtz coils can be found in Table 1. Each set
of Helmholtz coils is driven by an Advanced Motion Controls S16A8 PWM ana-
log servo drive, capable of 8 A continuous current and 16 A peak current. The
S16A8 is designed to drive three-phase brushless motors with sinusoidal current
profiles, which is similar to the task of generating rotating magnetic fields required
herein. The three S16A8 drives are powered by a single Advanced Motion Controls
PS2x300W power supply. Analog communication between the PC and the drives is
accomplished with a Sensoray 626 Analog and Digital I/O card. The relationship
between the generated magnetic field and the commanded current was calibrated in
the center of the workspace using a Hirst GM08 gaussmeter. A 25 mm × 25 mm
square-cross-section vial with a length of 50 mm is located in the common center of
the Helmholtz coils. A Basler A602FC camera fitted with a Computar MLH-10X
macro zoom lens has a lateral view of the contents of the vial, which is backlit by a
Coherent Cold Cathode ML-0405 Backlight Panel that gives high-contrast images.
The entire system is cooled from above with a desk fan in a temperature-controlled
room in order to maintain an approximately constant viscosity of the swimmer’s
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environment. The system is controlled with a PC containing a 1.2-GHz dual-core
processor and 2 GB of RAM running with Linux.

4.2. Fabrication of the Magnetic Helical Swimmer

The helical swimmer pictured in Fig. 5 was fabricated from Nitinol tubing with an
outer diameter of 1.0 mm and inner diameter of 0.68 mm using micro wire electrical
discharge machining (WEDM). The WEDM machine was designed and built at the
University of Utah to utilize small-diameter wires ranging from 50 to 100 µm [18].
For the helical cut shown in Fig. 5a, the machine was equipped with a rotary axis
(A-axis) with its axis of rotation perpendicular to the EDM wire. In order to achieve
a pitch of 1 mm and a helix ribbon width of 0.2 mm, the 100-µm wire first penetrated
the tube to a depth of 0.15 mm below the axis of rotation (y-axis). The helix was
then cut in a single sweep by synchronizing the horizontal linear motion (x-axis)
with the rotation of the A-axis. Using a 100-µm brass wire at 250 V open-circuit
voltage and a 5.5-nF capacitor, the EDM cuts for the helical swimmer including
a cylindrical cut for attaching the magnet took approximately 1 h. The geometry
of the helix was chosen to approximate the geometry of the microswimmers in
Ref. [4].

As can been seen in Fig. 5a and b, a hemicylindrical pocket was machined into
the ‘head’ of the helix. After fabricating the helix, a 1-mm long, 0.75-mm diame-
ter axially magnetized cylindrical permanent magnet (nickel-plated NdFeB Grade
N50 from SuperMagnetMan) was seated into the pocket using epoxy, such that the
magnetization (i.e., dipole axis) of the magnet is perpendicular to the central axis
of the helix.

The helical swimmer fabricated herein is approximately the size that could be
used in a number of in vivo medical applications [1]. However, we are primarily
interested in applying our results to the type of microswimmers that have been de-
signed for use as untethered micromanipulators under an optical microscope. In
this regard, our helical swimmer is a scaled model of the microswimmers that have
been created. We use corn syrup as our fluid medium herein, whereas microswim-
mers would typically swim in water or a fluid with properties similar to water. To

(a) (b) (c)

Figure 5. (a) Helical swimmer machined from 1-mm outer diameter Nitinol tubing using micro elec-
trical discharge machining to produce a 5-mm long helix with 3.5 turns in a single sweep. (b) Scanning
electron micrograph of the fabricated helix. (c) Helical swimmer on a human fingertip.
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understand for what size of microswimmer our results directly apply, we consider
matching of Reynolds number:

Re = ρmicLmicVmic

ηmic
= ρmodLmodVmod

ηmod
, (61)

where ‘mod’ denotes our model and ‘mic’ denotes the equivalent microscale swim-
mer in water. We are interested in finding the length scale of a microswimmer that
corresponds to our experimental results. For our characteristic length we will con-
sider the radius of the helix: rh. For our characteristic velocity we will consider the
velocity of a segment of the helix moving through the fluid: rh�. The achievable
rotation speed � is invariant to scaling, due to the fact that magnetic torque scales
with volume, which is proportional to length cubed, and rotational viscous drag
also scales as length cubed (see model of Section 2). The result is a relation that
describes the radius of the microswimmer that matches our experimental results:

rh,mic =
√(

ρmodηmic

ρmicηmod

)
r2

h,mod. (62)

Our model swims in corn syrup, which has a viscosity of approximately ηmod =
2500 cps, compared to ηmic = 1 cps for water. The density of corn syrup is ap-
proximately ρmod = 1.36 g/ml, compared to ρmic = 1 g/ml for water. The radius of
our helical swimmer is rh,mod = 420 µm. Thus, the experimental results from our
helical swimmer in corn syrup will correspond directly to a microswimmer with a
radius rh,mic = 9.8 µm swimming in water, which is reasonably close to the 1.5-µm
radius of the microswimmers of Ref. [4] and which places our results squarely into
the low-Reynolds-number regime of interest.

4.3. Characterization of the Magnetic Helical Swimmer

Since (58) and (60) require only d11, d22 and e11, only the two terms in hA and
the b11 term from hB need to be determined. Rather than explicitly calculating
these parameters using the derived equations, (19)–(30), we experimentally mea-
sured the necessary parameters using a method similar to that described in Ref. [12]
using (35) with known non-fluidic force (gravitational force in this case). The mass
of the robot was measured to be 8.9 mg, resulting in a gravitational force acting
on the swimmer of −8.7 × 10−5 N. Using this force, the a11 and a22 terms of
hA were calculated by measuring the velocity of the swimmer as it sinks in the
fluid at room temperature, first oriented vertically to obtain a11 and then horizon-
tally to obtain a22. As the swimmer sinks, a static magnetic field was applied to
enforce ω = 0, making (35) a relation between f and v. With v measured and
ω = 0, a11 = 0.42 N · s/m and a22 = 4.4 N · s/m were found. To find the b11 co-
efficient, rather than applying a static field to force ω = 0, the microswimmer
was oriented vertically and made to rotate fast enough so the forward propulsion
in the upward direction balanced the gravitational force downward. At this point
of equilibrium, ω is known and v = 0, turning (35) into a relation between ap-
plied force and rotation speed along the xh axis. Experimentally, the rotational
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speed necessary to balance the gravitational force was found to be 2.23 Hz making
b11 = −3.9 × 10−5 N · s. Since d11 = 1/a11, d22 = 1/a22 and e11 = −b11/a11, then
we calculate the necessary parameters as: d11 = 2.4 N−1 · m/s, d22 = 0.23 N−1 · m/s
and e11 = 9.3 × 10−5 m.

4.4. Experimental Results

A variety of experiments were performed to study how the helical swimmer dis-
cussed in Sections 4.2 behaves under open-loop velocity control. Each experiment
was performed with the swimmer submerged in a 50 × 20 × 20-mm rectangular
tank of corn syrup arranged in the center of the Helmholtz coils.

Presenting the user with control over the microswimmer’s velocity in the world
frame is an intuitive method to direct the swimmer. Without the algorithm presented
in Section 3, performing simple maneuvers requires non-intuitive control over the
direction to point the swimmer and how fast to rotate it. In the experiment shown
in Fig. 6, the user held the vertical velocity at zero and manually adjusted the de-
sired velocity in the horizontal direction to make the swimmer go from a stationary
hover, ramp up to a constant horizontal velocity of 0.35 mm/s and then return to
hover. Although it is intuitive that the swimmer must turn in the direction of the
desired velocity and increase its rotation speed, the exact pitch angle from verti-
cal and the rotation speed of the swimmer required to execute this maneuver are
not immediately obvious to a human operator. With each change in input from the
user, the control algorithm immediately adjusts the axis around which the magnetic
field rotates and its rotational speed. The algorithm naively neglects the transient
response of the swimmer to the changes in output. During the transient response,
the robot sinks as seen in Fig. 6a between the swimmer at time 1 and 54 s. This is
discussed further in Section 5.

The algorithm is not only designed to maintain a constant elevation by keeping
‖vver‖ = 0. Figure 7a and b shows the resulting trajectories after commanding the
swimmer to attain a velocity of 0.1 mm/s pitched 30◦ above horizontal and 30◦
below horizontal, respectively. The results show the swimmer moves in a straight
trajectory approximately as commanded, achieving desired velocities of 0.12 mm/s
20◦ above horizontal and 0.17 mm/s 17◦ below the horizontal for the respective
cases.

We found while performing the experiments that the steady-state behavior of
the microswimmer is sensitive to changes in the viscosity of the corn syrup. The
effect of fluid viscosity on fluidic characteristics can be understood by examining
the terms of the hA and hB matrices. The ξ‖, ξ⊥ and ξωm coefficients that appear
in each term of hA and hB are linearly scaled by the viscosity of the medium (η)
[15], making hA and hB themselves also linearly related to viscosity. The matrix
hD and hE from which the control equations were derived are not related to vis-
cosity in this manner, however. As hD = hA−1, hD (and subsequently its terms)
is inversely proportional to viscosity. Analyzing the matrix hE = −hA−1hB shows
that because hA−1 is inversely proportional to viscosity and hB is proportional to
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(a) Trajectory composition (b) Horizontal velocity vs. time

(c) Pitch angle vs. time (d) Rotation speed (�) vs. time

Figure 6. Experimental results of a human operator commanding a hovering swimmer to accelerate up
to a constant horizontal velocity and then decelerate back to hover while imparting no vertical motion.
(a) Composite image sequence. (b) Manually commanded horizontal velocity. The human operator
updates the desired velocity in 0.5-mm/s steps, up to a velocity of 0.35 mm/s. The outputs to control
the swimmer — the pitch angle of x̃ (c) and the rotation speed � (d) — are computed by the algorithm
and are not intuitive to the human operator even for simple maneuvers such as this.

(a) Ascent under velocity control (b) Descent under velocity control

Figure 7. Composite experimental image sequences showing resulting trajectories after commanding
the swimmer to attain a velocity of (a) 0.1 mm/s angled 30◦ above horizontal and (b) 0.1 mm/s angled
30◦ below horizontal. These results show a velocity error of 33% error in direction and 22% error in
magnitude for (a). For (b), the results show a velocity error of 43% error in direction and 75% error in
magnitude. Detailed discussion of these errors are presented in Section 4.4.
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Figure 8. Composite experimental image sequence demonstrating that the algorithm seamlessly con-
trols maneuvers such as this ‘U-turn’ while maintaining a constant forward velocity.

viscosity, their net effect cancels and hE itself is invariant to changes in viscosity.
The error shown in Fig. 7 is likely attributable to a change in fluid viscosity caused
by fluctuation in ambient temperature after the swimming properties were char-
acterized using methods discussed in the preceding section, as well as changes in
the distance between the swimmer and the walls of the container. Simple sensitivity
analysis when commanding the swimmer to obtain a velocity of 30◦ above horizon-
tal at 0.1 mm/s (as is the case shown in Fig. 7a) shows that altering the parameters
d11 and d22 (near the values obtained in Section 4.3) by overpredicting viscosity
by 15% induces the microrobot to swim at an angle 10% less than desired above
horizontal and with magnitude 17% less than desired. Underpredicting viscosity
by 15% causes the microrobot to swim at an angle 10% more than desired above
horizontal with magnitude 23% greater than desired. Additionally, we have found
that the sensitivity to error in viscosity increases when operating in fluids with less
viscosity than that used in this paper. Although potentially large, these disturbances
can be compensated for by the human operator if he/she perceives that the swim-
mer is not moving as desired, since correction in the velocity commands are more
intuitive to the human than corrections in pitch and rotation speed.

The algorithm presented in this paper is not limited to maneuvers where the
swimmer is primarily oriented vertically, like those in the preceding experiments.
The algorithm can determine the necessary control outputs given any spatial veloc-
ity. Figure 8, for example, shows the trajectory of the swimmer under control of
the algorithm for a maneuver where the user initially commands the swimmer to
move horizontally and then rotates the velocity 180◦ returning back to horizontal
velocity opposite that at the start (as if performing a ‘U-turn’ in a car), while main-
taining constant velocity magnitude. As can be seen in Fig. 8, the algorithm handles
maneuvers such as these seamlessly.

5. Discussion

There are a number of assumptions built into the algorithm presented herein. (i) We
assume that the microswimmer is always rotating in sync with the applied field,
implying that the commanded rotation speed � is not above the step-out frequency
of the microswimmer. The step-out frequency is well understood when swimming
parallel to the central axis, but the effect of steering maneuvers on step-out is not
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well understood. (ii) We assume the microswimmer is swimming stably, mean-
ing that, in addition to rotating in sync with the magnetic field, the central axis of
the microswimmer xh is asymptotically converging on the field’s rotation axis x̃.
During rapid steering maneuvers at high �, microswimmers have been shown to
go unstable, essentially requiring a kind of system reset. These first two assump-
tions are highly related. (iii) If the microswimmer’s transient response to steering
commands is too slow (i.e., the microswimmer’s central axis xh takes too long
to converge on x̃), the microswimmer may ascend or descend unintentionally as
it turns, resulting in an error in velocity until it reaches steady state. Using a
smooth desired-velocity trajectory with limits on acceleration will mitigate unin-
tended consequences of the microswimmer’s transient behavior by ensuring that
the microswimmer is never asked to make rapid changes in its pitch. This acceler-
ation cap will also mitigate potential instability. (iv) We assumed a microswimmer
with a spherical permanent magnet, but our fabricated swimmer, as well as previ-
ously published microswimmers, have different magnet geometries and some have
utilized soft magnetic materials. With regard to magnet geometry, it is known that
viscous drag coefficients are insensitive to small changes in geometry in Stokes
flow. With regard to the use of soft magnetic material, this difference is inconse-
quential if we satisfy the above assumptions of stable swimming below step-out.

Since the presented algorithm is open loop and subject to modeling errors, it will
be subject to errors and drift, but the drift should be slower than without the algo-
rithm, providing the human operator with time to correct for perceived errors in the
microswimmer’s motion. In addition, the correction required by the operator will
be straightforward compared to the prior method, since directly commanding veloc-
ity in the workspace is intuitive (e.g., if the microswimmer has undesired sinking,
simply command it to move upward). It will also be straightforward to incorporate
the algorithm presented herein into a closed-loop position or velocity control sys-
tem using sensor feedback, such as the image from an optical microscope. This is
likely to only require only the 3-d.o.f. position of the microswimmer or even just
focus information. During the course of our experiments, we found that the perfor-
mance of the algorithm is particularly sensitive to the viscosity of the fluid, which
is affected by its temperature, as well as surface effects from the container, which
are widely known to be important in a low-Reynolds-number regime. As discussed
above, both of these factors could be accounted for in an intuitive manner by the
human operator, but both factors also motivate the potential benefits of closing a
control loop using visual feedback.

6. Conclusions

We have developed a 6-d.o.f. model for helical microswimmers in a low-Reynolds-
number regime. Using this model, we derived a simple open-loop controller that
allows a human user to directly command a desired velocity to magnetic helical
microswimmers. The method incorporates a gravity-compensation routine that pre-
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vents the microswimmer from sinking due to its own weight. The method is more
intuitive than controlling the orientation and rotation speed of the microswimmer
directly, which is the method utilized in prior works. We found good agreement
between experimental results and predictions.
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