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ABSTRACT

The need for precise micro/nano-positioning has arisen in many fields of research and

technology. Piezoelectric stick-slip actuators are widely used where precise positioning over

a wide range of motion is required. Controlling manipulators that utilize piezoelectric

stick-slip actuators is not a trivial task, as these actuators have a discrete stepping na-

ture, with a step size that is influenced by a variety of factors such as actuator loading,

temperature, and humidity. Absence of integrated joint sensors in manipulators that use

piezoelectric stick-slip actuators (which is typical), as well as difficulty in using vision

feedback for closed-loop control, has led to development of open-loop modeling methods to

estimate the step size of the actuators. Prior work has failed to characterize and quantify

the effects of various parameters on the displacement of such actuators to a degree as to

be easily utilized in the control of an actual manipulator. In this thesis, we propose an

empirically derived predictive open-loop model for the step size of the prismatic and rotary

piezoelectric-stick-slip-actuated joints of a Kleindiek MM3A micromanipulator, based on

static and inertial loads due to the mass of the manipulator’s links as well as loads applied

to the end-effector. The effects of various parameters on the step size of each joint are

quantified and characterized. The results obtained are then fit into a model based on

nonlinear regression via joint-specific parameters. Calibration routines are developed to

quickly determine the joint-specific parameters for use in the derived predictive step-size

model. Using the model obtained, we can predict the step size with an accuracy of 20%

(100 nm) for the prismatic joint of the manipulator, and 2% (1µrad) for the rotary joints

of the manipulator.
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CHAPTER 1

INTRODUCTION

The need for precise micro/nano-positioning has arisen in many fields of research and

technology, such as in the field of microbiology, electro-discharge machining, nanomaterial

testing (e.g., carbon nanotubes), lithography, microelectromechanical systems (MEMS),

and nanoelectromechanical systems (NEMS). The process of precise positioning at very high

resolutions (to the scale of nanometers) can be implemented using effective and accurate

positioning techniques. For the purposes of precise positioning at high resolution, while

still allowing significantly larger range of travel, concepts such as stick-slip motion, impact

drive principle, and inchworm-type motion have been employed by many researchers [1–3],

with hydraulic, piezoelectric, pneumatic, and moving-coil actuators being the most common

types of actuators that have been used for precise positioning. The stick-slip devices are

characterized by a comparatively simple design consisting of few parts, backlash-free motion,

and very high resolution. This makes them attractive for building up small, cheap, and

accurate positioners. The piezoelectric actuator is based on the piezoelectric effect, wherein

application of a voltage to the material causes it to expand. The result is very high voltages

corresponding to only tiny expansion of the piezoelectric material. Moreover, they have

a very high power-to-weight ratio, and therefore, can be scaled down and made compact.

When these piezoelectric actuators run on the concept of stick-slip motion, they are termed

“piezoelectric stick-slip actuators.” Piezoelectric stick-slip actuators have a simple structure,

high positional accuracy owing to their small piezoelectric coefficient [4], and theoretically

unlimited distance [5, 6]. In addition, they have high stability and stiffness as they are

supported by guiding surfaces [7]. Due to the above reasons, piezoelectric stick-slip actuators

have proven to be very useful for achieving submicron accuracy and very fast response. Thus,

these devices have been incorporated into many micropositioners and have drawn extensive

attention over the last decade.

The piezoelectric stick-slip actuators work on the principle as shown in Fig. 1.1. The

actuator consists of a piezoelectric element and a sliding mass that moves relative to the
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Sliding Mass
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Figure 1.1. Working principle of a piezoelectric stick-slip actuator. As the voltage slowly
increases from 1 to 2, the piezoelectric element stretches by a distance D, and due to
stick-slip friction between the piezoelectric element and the sliding mass, the sliding mass
also advances. When the voltage is quickly reduced from 2 to 3, the piezoelectric element
quickly shrinks, but the inertia of the sliding mass prohibits it from moving backward as
quickly, resulting in a net forward displacement of the sliding mass of d < D.

piezoelectric element. The sliding mass is attached to the piezoelectric element via friction

[8]. A sawtooth voltage signal is applied to the piezoelectric element. As the voltage slowly

increases from point 1 to 2, the piezoelectric element expands. The friction between the

piezoelectric element and the sliding mass causes the mass to move with the expanding

element. This is called the “stick” phase. Then, the voltage is quickly reversed from 2 to 3

leading to the piezoelectric element being retracted very quickly in the opposite direction.

This, in turn, leads to the mass sliding relative to the piezoelectric element because the

force due to inertia becomes larger than the friction between the piezoelectric element and

the sliding mass. This is called the “slip” phase. By alternating between the stick and slip

phase, infinite motion in either direction is possible. Movement can occur in two phases,

namely the fine mode (used for achieving the highest resolution possible) and the coarse

mode (used for taking comparatively larger discrete steps and for achieving quicker motion).

In recent years, several companies such as Physik Instrumente [9], NanoControl [10], and

Nanomotion [11] have developed innovative piezoelectric-based actuators for the purposes of

precise positioning at the micrometer and nanometer scale. More products based on inertial

drives or walking mechanisms have now become available (e.g., SmartAct and Piezomotor)

[12, 13]. The Kleindiek MM3A ( [14], Fig. 1.2), the Zyvex Nanomanipulator [15], Imina

Technologies miBot [16], and the Attocube Nanopositioners [17] are some of the commercial

manipulators based on piezoelectric stick-slip actuators.

One major challenge in the field of micromanipulation is controlling piezoelectric stick-

slip actuators, as these actuators have a discrete step nature. Hence, it is not possible to

send a continuous signal to these actuators to achieve continuous motion for the end-effector



3

Rotary Joints

Prismatic Joint

Figure 1.2. The Kleindiek MM3A micromanipulator, manufactured by Kleindiek Nan-
otechnik, is a RRP manipulator that utilizes piezoelectric stick-slip actuators. This is the
manipulator used throughout this thesis.

mounted on the manipulator. The input must be given in the form of number of steps to

be taken by each joint of the manipulator. The problem is that these stick-slip actuators,

being intimately connected with friction and inertia, do not have fixed step sizes, but rather,

the step sizes vary based on the external loads on the nanomanipulator [18], the mass of

the manipulator’s links, environmental conditions [19, 20], and various other factors [21].

Moreover, such devices typically lack sensor feedback, making it difficult to control the

system’s behavior in a closed-loop fashion.

To accurately control micro/nano-manipulators with piezoelectric stick-slip actuators,

various closed-loop control schemes, typically using a vision system, have been implemented.

Saiedpourazar and Jalili [22,23] developed an adaptive controller to estimate the parameters

of the manipulator, and fused visual servoing and force feedback to enable closed-loop

automatic control of the Kleindiek MM3A. Yang et al. [24] developed a closed-loop controller

for micromanipulation in an atomic force microscope (AFM). A multitude of other feedback-

control schemes such as voltage/frequency control [25], hybrid control [26], and sliding-mode

control [27] have been implemented. Research utilizing vision feedback from the scanning

electron microscope (SEM) [28] and optical microscope [29] images has also been done.

However, closed-loop control of manipulators using imaging data is challenging as real-time

nanoscale visual and force data is difficult to obtain [30]; such closed-loop techniques also

require a dedicated SEM, which is not available to all researchers.

In addition to friction, the behavior of piezoelectric systems are predominantly affected

by nonlinearities such as hysteresis, creep, and drift [31], which degrade their performance.

Due to the presence of such nonlinearities, it becomes necessary for accurate modeling of
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the dynamics for the displacement of these piezoelectric stick-slip actuators. This includes

modeling of the nonlinearities including friction and hyteresis as well as modeling the

piezoelectric element.

The research group at EPFL in Switzerland [1, 2] has focused their research on these

actuators for precise manipulation and nanoscale motion control. They have designed,

developed, and modeled various manipulators and microrobots based on piezoelectric stick-

slip devices. Edeler and Fatikow [4, 32] at University of Oldenburg in Germany have

developed techniques for open-loop control of piezo-actuated systems. Lockwood et al. [33]

characterized the performance of these actuators against gravity, and Peng and Chen [18]

shed light on the effect of the end-effector mass on the behavior of such systems. Many other

models (discussed in Chapter 2) utilizing different techniques for modeling piezo-actuated

systems have been developed. However, knowledge of the effect of static and dynamic

parameters on the behavior of piezoelectric stick-slip systems is still lacking in literature.

In addition, there has been no attempt to accurately model the behavior of the piezoelectric

stick-slip motion in its coarse mode.

The goal of this thesis is to quantify the effect of loads on the behavior of these

piezoelectric stick-slip actuators being driven in coarse mode. By doing so, we take a

first step toward accurate control of micro/nano-manipulators with piezoelectric stick-slip

actuators. Specifically, we will (1) experimentally demonstrate the effect of various static

loading conditions on the step size of the rotary and prismatic joints of the Kleindiek

MM3A manipulator, (2) develop analytical predictive models, based on empirical data, for

the effect on the joints of the MM3A based on current loading conditions, and (3) develop

calibration routines to quickly determine joint-specific parameters for use in the derived

predictive step-size model. With this approach, we propose to accurately control the motion

of micro/nano-manipulators by utilizing the derived empirical model in algorithms such as

the one we presented in [34], which converts desired manipulator end-point commands into

the appropriate number of commanded joint steps.

In Chapter 2, an introduction to the Kleindiek MM3A [14] and a review of existing

literature on modeling of piezoelectric stick-slip actuators is discussed. The kinematics and

dynamics of the MM3A (modeled as a traditional robotic manipulator) are presented in

Chapter 3, and the effects of related static and dynamic parameters are discussed. An

empirical model describing the effect of static loads on prismatic joints of the MM3A is

developed in Chapter 4. An empirical model describing the effect of static loads and inertial

load due to link 3 on rotary joint of the MM3A is developed in Chapter 5. A calibration
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routine to determine the free model parameters is discussed in Chapter 6. Finally, the

conclusion and potential future work is presented in Chapter 7. The full development of

the forward and inverse kinematics, manipulator Jacobian, and Lagrangian dynamics of the

MM3A is given as an appendix.



CHAPTER 2

BACKGROUND

Modeling of piezoelectric stick-slip actuators is a challenging task. This is mainly due

to the nonlinear nature of friction and hysteresis, which significantly affects the behavior

of these actuators [31]. Consequently, a number of studies have focused on modeling these

nonlinearities in a model of piezoelectric actuators. Moreover, when dealing with microma-

nipulation, various other factors such as pre-sliding displacement [35,36] and environmental

conditions have been shown to significantly affect the performance of these actuators. The

working principle of the piezoelectric stick-slip actuator is explained in Chapter 1. In this

section, we will give an overview on the characteristics of the Kleindiek MM3A. We will

also discuss some of the dynamic models of these actuators presented by different research

studies. Various studies have been conducted that shed light on the effect of certain external

and intrinsic factors on the performance of these actuators. We conclude this chapter by

summarizing the work of previous studies and comparing it with our work.

2.1 The Kleindiek MM3A Micromanipulator

The Kleindeik MM3A micromanipulator is a three-degree-of-freedom (3-DOF) rotary-

rotary-prismatic) (RRP) manipulator. It consists of three piezoelectric-driven actuators,

named Nanomotors R©, based on the same principle as described in Fig. 1.1. The two modes

of movement (coarse and fine), which are described in section Chapter 1, are shown in Fig.

2.1. The piezoelectric actuators utilized in the MM3A provide wide range of motion (240 ◦

in the revolute joints and 12 mm in the prismatic joint). Each step of the end-effector in fine

mode corresponds to 5 nm due to revolute actuators and 0.25 nm due to prismatic actuators,

and each step in coarse mode corresponds to 20µm and 15µm for joints 1 and 2 (revolute

joints), respectively, and 1µm due to joint 3 (prismatic joint) [6]. This nanoscale precision

combined with a wide range of motion is achieved due to the stick-slip movement of the

Nanomotors R©. The amplitude of the applied voltage signal determines the step size, and

the frequency of the signal affects the speed at which each step is executed.
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Figure 2.1. The Kleindiek MM3A micromanipulator’s (a) fine positioning and (b) coarse
positioning modes [6]. Reprinted with permission.

.
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2.2 Prior Work in Modeling of Piezoelectric
Stick-slip Actuators

In the modeling of piezoelectric stick-slip actuators, early remarkable work was con-

tributed by Pohl [37]. In Pohl’s study, the piezoelectric actuator was simplified as a simple

linear component, and the relationship between displacement of the piezoelectric actuator

and the driving voltage was represented using a linear function. The following equation

governed the study:

∆X = D(∆V )

Fp = E(∆V )

where ∆X is the expanding displacement of piezoelectric actuator, Fp is the force generated

by the piezoelectric element, ∆V is the voltage difference applied to the piezoelectric

actuator, and E and D are coefficients relating the voltage to the force and the displacement,

respectively. However, this model failed to take into account the friction nonlinearity as

well as the piezoelectric element’s dynamics. Rabinowicz [21] studied the effect of static

and kinetic friction on the stick-slip system via different experiments, and concluded that

they have a significant effect on its displacement.

In another study, Chang and Li [38] developed a model for a piezoelectric actuator with

a programmable step size. The schematic diagram of their actuator model is shown in Fig.

2.2, in which M is the mass of the movable stage, m the mass of the slider or end-effector,

k is the stiffness of the spring, and c is the damping of the damper. The equations for the

motion of the slider resting horizontally on the movable platform are:

(M +m)
d2X

dt2
= −cdX

dt
− k(X −∆L(t))− (µmg)sgn

(
dX

dt
− dx

dt

)
m
d2x

dt2
= −(µmg)sgn

(
dx

dt
− dX

dt

)
In this work, the friction between the slider and the movable platform was represented by

Coulomb friction. However, the friction observed in stick-slip piezoelectric actuators has

been shown to have far more complex nature than just Coulomb friction [39–42].

Goldfarb et al. [43] developed a nonlinear lumped parameter model of a piezoelectric

actuator. Their model, which consists of both mechanical and electrical domains, as well as

the connection between the two domains, is shown in Fig. 2.3. Their model was based on

the generalized Maxwell resistive capacitor to represent the static hysteresis that is observed

in piezoelectric actuators. This was represented by a generalized elastoplastic Maxwell-slip

model [44]. Despite the presence of this nonlinearity, the dynamics of the piezoelectric
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Figure 2.2. Simulation model of the piezoelectric-driven stick-slip actuator used by Chang
and Li in [38]. Reprinted with permission.
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Figure 2.3. Electromechanical model used by Goldfarb [43]. Reprinted with permission.

actuator was observed to have simple second-order linear characteristics. Adriaens et al. [45]

elaborated on the model presented by Goldfarb by incorporating a nonlinear first-order

hysteresis effect and by modeling the piezoelectric actuator as a distributed parameter

system. They studied the influence of the positioning mechanism on the overall behavior

of the actuator based on the mechanical model of the actuator using Bode plots and root

locus, and concluded that if the positioning system was designed well, the aforementioned

second-order approximation was a good estimate of the system dynamics. The combination
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of the piezoelectric element and slider mass was modeled as a simple mass-spring-damper

system, and the interaction force between the piezoelectric elements and the slider mass,

denoted by Fs, was given by:

msÿ + csẏ + ks = Fs

Chen et al. [46] modeled these piezoelectric stick-slip actuators as a second-order system

and provided a rationale for this second-order approximation, by employing the assumed

mode method to solve the governing equation. They provided the scope of and the errors

involved with this approximation of the system dynamics.

Comprehensive simulations were presented by a group at EPFL, Switzerland. Breguet

[47] designed several prototypes based on stick-slip actuators and designed an electrome-

chanical model of the piezo-actuator, with the friction force at the mechanical interface

being modeled by a simplified form of the LuGre model [42]. Bergander [48] applied this

aforementioned model to devise a signal shaping technique to improve the behaviour of

piezoelectric stick-slip dynamic system.

Zesch et al. [49] presented and analyzed two novel stick-slip mechanisms: Abalone and

NanoCrab. Mathematical formulae are derived to calculate step size and control signal

timing. They were found to have open-loop operation error of less than 1%. Their formulae,

however, are based on parameters, which are not further investigated. Another study by

Eigoli et al. [50] focused on developing a stick-slip model for a legged, piezoelectric-driven

microrobot. Hamilton’s principle, a linear piezoelectric relation, and linear Euler-Bernoulli

beam theory was used to derive the system’s equation of motion. The model is comprised of

the motion of these actuators in terms of robot’s physical characteristics, friction coefficient,

and applied electrical voltage.

In recent years, only few research institutions worldwide dealt with piezoelectric stick-

slip actuators as micropositioners; however, advancements have been made as far as under-

standing thier complexities are concerned. Studies have shown that for precise positioning

at micro/nano-scale, more needs to be done in regards to characterizing the stick-slip

nature of these actuators [32]. The phenomenon of pre-sliding, which has been found to

have significant effect on the displacement of these stick-slip drives, has thus come under

examination. Al-Bender et al. [35, 36] presented a comprehensive investigation into this

phenomenon. Studies have shown that in minute motion, the friction in these actuators is

dominated by pre-sliding displacement, and its nature is inherently different from Coulomb

friction. This displacement affects the step size as it affects the friction in these actuators.
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Peng et al. [18] developed a model for stick-slip actuators, incorporating pre-sliding effect

into the elastoplastic LuGre model. They also presented the effect of change in end-effector

mass on the performance of stick-slip actuators. The model used in [18] is:

Mẍ1(t) + Cẋ1(t) +Kx1(t) = Du(t)

Du(t) = H(t)− Ff

where H(t) is the Hysteresis model and Ff is the friction model:

Ff = σo(Me)z + σ1ż

ż = ẋ[1− α(z)z

βMe/σo
]

where σo(Me) denotes that σo is a function of the end-effector mass (Me). Fig. 2.4 shows

the effect of end-effector mass on the performance of stick-slip actuators.

A consequent piecewise function for σo(Me) was formulated as follows:

σo(Me) = −(5.07× 105)M3
e + (1.25× 105)M2

e + 287Me + 90.8

= when Me ≤ 0.157

σo(Me) = (4.71× 105)M3
e − (3.35× 105)M2

e + (7.22× 104)Me − 3.66× 103

= when 0.157 < Me ≤ 0.253

σo(Me) = −(2.29× 104)M3
e + (4.06× 104)M2

e − (2.29× 104)M2
e + 4.36× 103

= when Me > 0.253

Fig. 2.4 shows that the end-effector speed increases with end-effector mass up to a certain

value of mass, and then decreases with mass.

Edeler et al. [32] recently presented a comprehensive model of piezoelectric stick-slip

actuators for micromanipulation. They further investigated the effect of normal contact

force, the aspects of elastic deformation, and the concept of pre-sliding. These effects were

incorporated into a modified elastoplastic model, the parameters of which were derived from

the material properties, and an empirical model of the preload characteristics was presented.

Lockwood et al. [33] characterized the performance of slip-stick actuators against gravity.

He found that the step size of these slip-stick motors was affected by gravitational forces

by ±8%. However, he did not further model the behavior of these motors. Li et al.

[51] investigated the thermal effect on these actuators and based on their experiments

concluded that temperature change affects the displacement of the actuators. Moreover,

their studies also showed the temperature changes within the system with time, leading to
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Figure 2.4. Measured and simulated results showing the effect of end-effector mass on
stick-slip displacement [18]. Reprinted with permission.

a sense of thermal wear. They utilized their findings in the modeling of the piezoelectric

stick-slip actuator by incorporating the thermal effects [52]. Another study by Cain et

al. [53] concluded that the atmospheric relative humidity and temperature has a marked

effect on the displacement of stick-slip actuators.

2.3 Summary and Comparison
to the Current Work

It is clear that a great deal of research has been conducted on the modeling and

performance characterization of piezoelectric stick-slip actuators for micropositioning. Dif-

ferent techniques for modeling these actuators, ranging from modifying friction or hysteresis

models to studying the effect of environmental conditions and change of parameters, have

been used. In all of the prior literature, however, the effects of parameters such as inertia,

gravity, and forces applied to the manipulator’s end-effector on these stick-slip actuators

have not been quantified in a way that can used to predict the step size of an actuator

as a function of the current configuration and applied loads of the manipulator. In this

thesis, we present a novel approach to quantifying the effects of static (i.e., noninertial)

loads on the step size of these actuators, as a starting point for our larger modeling goals.

A mathematical model is formed that is based on empirical data that does not require a

sophisticated physics-based model, and must simply be calibrated using a set of well-defined

controlled motions of the manipulator’s joints. This empirical model can be used for effective

analytical prediction of the step size of the actuators.



CHAPTER 3

SIMPLIFIED DYNAMICS OF THE

KLEINDIEK MM3A

Derivation of the dynamic model of a manipulator plays an important role in simulation

of motion, analysis of manipulator structures, and design of control algorithms. Com-

putation of the forces and torques required for the execution of typical motions provides

useful information regarding the manipulator parameters. The dynamic equations explicitly

describe the relationship between force and motion [54].

The main goal of this study is to analyze the effect of various dynamic parameters such as

inertial, gravitational, and Coriolis terms on the manipulator joints considering the fact that

each joint step begins and ends with the manipulator at rest, due to the discrete-step nature

of the piezoelectric stick-slip actuators. In this chapter, we show the dynamic equations of

the manipulator, which are simplified based on our discrete-stepping assumption; we show

that the forces and torques acting on the Kleindiek MM3A depend only on the diagonal

elements of the inertial matrix and on the gravitational effects.

Kinematically, the Kleindiek MM3A manipulator is no different than any traditional

robotic manipulator in the sense that that each joint of the manipulator results in the

movement of the end effector (Fig. 3.1). Fig. 3.2 shows the parameterization of the manip-

ulator as per D-H convention.

Moreover, we can relate these joint movements to end-effector movement via a configu-

ration dependent manipulator Jacobian, J(~θ) such that

~̇X = J(~q)~̇q (3.1)

where ~q = [q1 q2 q3]
T is the vector of joint positions, ~X is the position of the end effector,

and the “dot” indicates a time derivative.

Dynamically, a serial-link nanomanipulator has the same governing dynamic equation

as a traditional robotic manipulator:

M(~q)~̈q + C(~q, ~̇q)~̇q +G(~q)− JT (~q)~f = ~τ (3.2)
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Figure 3.1. The Kleindiek MM3A (RRP) manipulator.
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Figure 3.2. The Kleindiek MM3A (RRP) manipulator with D-H parameters at its zero
angle position.

where M(~q), C(~q, ~̇q), and G(~q) are configuration-dependent inertia, Coriolis, and gravity

matrices, respectively. ~f is any load applied to the tip, and ~τ is the vector of actuator

torques and forces. This equation is useful for control of traditional robotic manipulators,

where we have direct control over the joint torques and forces. However, in the case of

a manipulator such as the Kleindiek MM3A, torques/forces cannot be directly controlled

at each joint due to the discrete nature of the piezoelectric stick-slip actuators. Rather,
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discrete steps must be commanded. Moreover, each discrete joint step begins and ends

with the manipulator at rest. However, (3.2) is still a valid equation, and matrices M(~q),

C(~q, ~̇q), and G(~q) are still valid. Knowledge of how these matrices affect the end-effector

movement during each discrete step will help in accurate control of the manipulator.

The full dynamics of Eq. 3.2 for the Kleindiek MM3A are derived in appendix A, along

with the derivation of the forward and inverse kinematics and the manipulator Jacobian.

The dynamics are derived there under the assumption that the actuators provide general

torque/force, such as would be the case with the DC motors of a traditional manipulator.

Here, we present the simplified dynamic equations that result for the discrete-step nature

of the joints. Because the joints are stepped one at a time, when joint 1 is moving, q̇1 6= 0

and q̈1 6= 0, but q̇2 = q̈2 = q̇3 = q̈3 = 0. The relationships of joints 2 and 3 are analogously

defined. The results is a significantly simplified dynamic equation that can be used during

the coarse stepping mode: M11q̈1
M22q̈2
M33q̈3

+

 G1

G2

G3

− JT (~q)~f = ~τ (3.3)

where

M11 = m1r
2
1 + 0I133 + 0I233 + 0I333 +m2(a1 − r2s2)2

+m3(a1 − (l2 + q3 − r3)s2)2 (3.4)

M22 = m2r
2
2 + s21(

0I311 + 0I211) + c21(
0I322 + 0I222)− s1c1(0I321

+0I312 + 0I221 + 0I212) +m3(l2 + q3 − r3)2 (3.5)

M33 = m3 (3.6)

and

G1 = m1r1g1s1 −m1r1g2c1 +m2g1(a1s1 − r2s1s2)−m2g2(a1c1 − r2c1s2)

+m3g1(a1s1 − (l2 + q3 − r3)s1s2)−m3g2(a1c1 − (l2 + q3 − r3)c1s2) (3.7)

G2 = m2r2g1c1c2 +m2r2g2s1c2 +m2g3r2s2

+m3(l2 + q3 − r3)g1c1c2 +m3(l2 + q3 − r3)g2s1c2

+m3g3(l2 + q3 − r3)s2 (3.8)

G3 = m3g1c1s2 +m3g2s1s2 −m3g3c2 (3.9)

The individual entries are defined in the appendix.

As can be seen in Eq. 3.3, the Coriolis terms of Eq. 3.2 have effectively become zero,

and the joint forces and torques depend only on the gravitational terms and the diagonal
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elements of the inertia matrix, due to the stepping of an individual joint. Forces applied to

the end-effector pass through the Jacobian to load the joints, and the joints are unable

to distinguish static loads due to applied forces from static loads due to gravitational

terms. In this thesis, we consider the effect of gravitational loading on the joints, with an

understanding that the results generalize to all static loads. We see that inertial loads on the

rotary joints (M11 and M22) can change as a function of the manipulator’s configuration

~q, so in this thesis we study inertial effects on the rotary joints. We see that M33 does

not change with manipulator configuration, so we do not consider inertial effects on the

prismatic joint; the effect of M33 is accounted for during calibration.



CHAPTER 4

EMPIRICAL MODEL OF THE

PRISMATIC JOINT

The step size of the prismatic joint is a function of the static loads acting on the actuator.

This has been observed by a number of researchers as stated in Chapter 2, but never

characterized and quantified. In this chapter, we study the effect of static loads on a

prismatic piezoelectric stick-slip actuator using the distal prismatic joint of the Kleindiek

MM3A, and we propose an analytical model to predict the step size of the prismatic joint

γ3 based on its current configuration. This model is based on empirical data collected from

a finite set of experiments. Also, the effect of factors such as the normal force (the force

between the slider and the stator), the configuration of the rotary joint 2, and change in

environmental conditions that affect the step size of the prismatic joint are studied, and

statistical tests are performed to test the significance of these factors on the step size.

4.1 Methods

In this section, we will discuss the methodology adopted to carry out experiments and

generate the required results.

4.1.1 Euler Convention

Fig. 4.1 shows the D-H coordinates for the Kleindiek MM3A. Euler angles, as shown

in Fig. 4.2, are used to describe the orientation of the manipulator base frame 0 in space.

Coordinate system O0 is the coordinate frame for the joint axis of joint 1, and the Euler

angles θ and ψ are described as:

(1) θ is the angle made by rotating the manipulator about an original world frame’s

x0. In other words, it is the angle between the world’s vertical z0 with the new local z′0 as

shown in Fig. 4.2(c).

(2) ψ is the angle made by rotating the manipulator about the new local y′0. It is the

angle made by the previous local z′0 with the new local z′′0 as shown in Fig. 4.2(c).
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Figure 4.1. The Kleindiek MM3A (RRP) manipulator with D-H parameters at zero angle
position.
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Figure 4.2. Kleindiek MM3A. With the z0 axis initially vertical, the base frame is rotated
by θ about x0 and then rotated by ψ about y′0. (a) Isometric view at θ = -π/2. No
gravitational loads acting on Joints 2 or 3. (b) Side view at θ = 0, with gravitational
loads acting on both Joints 2 and 3. ζ = ψ-q2. (c) The euler convention for describing the
orientation of the Kleindiek MM3A.
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(3) ζ = ψ − q2. In Fig. 4.2(b), ζ is shown to be equal to −q2 as ψ = 0.

The orientation of the manipulator base frame with respect to the world frame is

described by the rotation matrix R = Rx(θ)Ry(ψ).

4.1.2 Apparatus

The Kleindiek MM3A micromanipulation system consists of the MM3A micromanipula-

tor and a NanoControl (NC) unit as shown in Fig. 4.3(a). The NC unit is used to command

control signals to the manipulator. It has four knobs, three of which are used for controlling

the three joints of the manipulator in fine and coarse mode. The number of steps to be

taken by any particular joint corresponding to one turn of the knob can be set in the NC

unit. In our experiments, the commands are being sent to this NC unit via a serial port.

The time for one step was fixed at 10 ms and only one pulse per step was sent.

Before the start of any experiment, the joint is driven through its full range back and

forth twice. This is done in an attempt to mitigate any transients in the data due to heating

of the piezoelectric actuators; this effect has been explained in [51].

The step size of the prismatic joint is denoted by γ3. As the step size of the prismatic

joint is very small (on the order of 1µm), it is not possible to visually detect when the joint

reaches its end of travel. It was observed that a change in the sound of the piezomotor

occurs upon hitting a mechanical stop. A custom software was made that monitors the

sound from a microphone at each instant and computes the Fast Fourier Transform (FFT)

of the audio signal. The sound when the joint hits a mechanical stop is detected as a peak

in the power of the FFT. This FFT algorithm loops after every 5 steps, so the accuracy

with which this system captures the end of travel is up to five steps, or within 0.005% of the

actual steps taken to reach the end of travel. The frequency at which this peak occurs, and

Connection to serial port MM3A 
Manipulator

Microphone

NC Unit

(a) (b) (c)

Figure 4.3. The Kleindiek MM3A manipulator is shown at different orientations. (a)
q2 = −π/2, θ = 0, and ψ = 0; (b) q2 = −π/2 and ψ = 0 at a particular θ; (c) q2 = −π/2
and θ = 0 at a particular ψ.
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the intensity of the peak, may be different on different days, and thus, it has to be tuned

before each experiment.

The general formula used for computing the average step size of joint j in direction i,

γji, is

γji =
Rj
Nji

(4.1)

where Rj is the total range of joint j, Nji is the number of steps taken across the range of

motion, and i ∈ {+,−} indicates the direction of joint motion. The number of steps (N3i)

the manipulator took while traversing the whole range was recorded and the average step

size taken by the prismatic joint, γ3i, was computed by the following relation:

γ3i =
12000000

N3i
nm (4.2)

The static load on the prismatic joint can be varied by changing the angles q2, θ, and ψ.

q2 is changed by actuating joint 2. For changing θ and ψ, a fixture is used as shown in Fig.

4.3, which allows us to set the base plate at desired angles in steps of 15◦. Thus, different

orientations of link 3 can be achieved by varying q2, θ, and ψ as shown in Fig. 4.3.

4.2 Effect of Unmodeled Environmental Factors

Environmental conditions (e.g., temperature, humidity) are uncontrolled in our exper-

iments, so there is no accurate model incorporating these factors. To minimize these

unmodeled effects on the open-loop control of the Kleindiek MM3A, we propose to calibrate

the joints before each session of use. This assumes that there is a significant change from

day to day that warrants such recalibration. To substantiate this claim, the step size for

prismatic joint 3 in the positive (γ3+) and negative (γ3−) direction were taken on two

different days, which would incorporate the change in environmental conditions.

Fig. 4.4 shows the change in the step size of the prismatic joint over two different days.

The configuration of the prismatic joint in this plot is kept constant (at q2 = −π/2, θ = 0,

and ψ = 0) on both days, and three readings each of the step size value in both directions

are taken on a single day. An ANOVA test on the data shows that the difference in step

size on different days is statistically significant (p < 0.05) for both positive (p = 0.0003)

and negative (p = 0.001) directions. The ANOVA test also shows a significant difference

(p = 0.000004) in the step size between the positive and negative directions within a given

day. Thus, calibration on the rotary joints is recommended each time the manipulator is to

be used, and different calibration parameters should be found for each direction of motion.



21

day
2/2/20122/1/2012

1,300

1,200

1,100

γ 3 (n
m

)

γ3− 

Error Bars: 95% CI over three trials each on 
               two different days.

γ3+ 

Figure 4.4. Plot showing the change in step size, γ3i over two different days. The
configuration of the manipulator was set at q2 = −π/2, θ = 0, and ψ = 0.

4.3 Experimental Procedure

We will now describe the experiments performed to analyze the effects of static loads

on the prismatic joint. The procedures explained encompass the experiments for analysing

the effect of joint angle q2 combined with the effect of static loads, details of which will

be explained in the subsequent sections. Step size γ3 was recorded for values of q2 ranging

from 0 to −π at fixed intervals of −π/6, at values of θ ranging from 0 to −π/2 at fixed

intervals of −π/6, and at values of ψ ranging from −π/2 to π/2 at fixed intervals of π/6.

The step size of joint 3 in the positive and negative directions is denoted by γ3+ and γ3−,

respectively. For each configuration of q2, θ, and ψ, γ3+ was first recorded followed by γ3−.

The step size, γ3, was recorded in the following order to reduce drift in the data (if present):

(1) First, the MM3A was set at some angle ψ keeping q2 = −π/2 and θ = 0. The

prismatic joint is first driven from q3 = 0 to 12 mm in the positive direction and the

average step size reading γ3+ is computed. Then, the joint is driven back (12 to 0 mm)

to carry out its motion in the negative direction and the average step size reading γ3− is

computed. ζ, in this configuration, is equal to ψ + π/2.

(2) Next, the MM3A was fixed at θ = 0 and ψ = 0. Joint 2 was set at some angle q2.

γ3+ and γ3− were recorded in the manner described above. ζ, in this case, is equal to −q2.

(3) Next, the MM3A was titled at angle θ, keeping the same value of q2 used in the
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above step, with ψ = 0. The step size in both directions was then recorded for the entire

range of θ at fixed intervals as mentioned before.

(4) Steps 1 to 3 are repeated at the increments of ψ and then q2 at their fixed intervals

within their aforementioned range.

The recordings for the step size for the prismatic joint at configurations of ψ = 0 and

q2 = −π/2 at values of θ ranging from 0 to −π/2 at fixed intervals of −π/6 are used to

analyze the effect of normal force on the prismatic joint. The analysis for this is explained

in Section 4.4. The step size recordings gathered at θ = −π/2 at fixed intervals of q2 in

the range 0 to −π and at ψ = 0 was used to study the step size of the prismatic joint with

no gravitational force acting on it. The analysis of this is explained in Section 4.5. The

orientation of the manipulator at fixed intervals of ψ, at fixed intervals of q2 in the range 0

to −π, and at θ = 0 allows us to isolate the effect of gravity acting on the prismatic joint

and thus, the step size recordings we gather in this configuration was used to analyze the

effect of gravity (and thus all static loads) on the joint. The analysis of this is explained in

Section 4.6.

4.4 Effect of Normal Force between
Slider and Stator

In the case of piezoelectric stick-slip actuators, the normal force is the force between the

piezoelectric element and the sliding mass. The force of friction is dependent on this force,

and the fact that friction has an effect on the step size of the actuator is evident from the

review of Chapter 2. Although the third link of the MM3A appears radially symmetric,

in this section we verify that the step size is unaffected by rotations about the axis of the

prismatic joint.

Fig. 4.5 shows configurations of the manipulator at which γ3− and γ3+ recorded were

used to obtain Fig. 4.6. Fig. 4.6 shows that changing θ does not seem to affect γ3i. An

ANOVA test was performed on the data of the step size in the positive and negative direc-

tions, which revealed that the rotation of the prismatic joint about its axis is insignificant

in both the positive (p = 0.4) and negative (p = 0.9) directions of the prismatic joint. Thus,

the need for incorporating this effect in the modeling of the step size of joint 3 is eliminated.

4.5 Effect of Joint Angle q2

Fig. 4.7 shows the orientation of the Kleindiek MM3A for the experiments to study the

effect of joint angle q2 on the step size of the prismatic joint, independent of static loads.

One might expect the step size of joint 3 in this configuration to be a constant as there is
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Figure 4.5. Procedure of experiment for analyzing the effect of normal force between
the stator and the slider on joint 3. The figure shows the front view of the outstretched
manipulator.
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Figure 4.6. Plot showing the effect of normal force on change in step size γ3i at q2 = −π/2,
ψ = 0, and at fixed intervals of θ.
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z0

q2

Figure 4.7. Figure showing orientation of the manipulator (at θ = −π/2 and ψ = 0) for
conducting the experiment for analyzing the effect of joint angle q2.

no effect of gravity acting on the link. The results of the experiment are shown in Fig. 4.8.

In Fig. 4.8(a), we see that γ3i is not constant, rather, it changes with the joint angle q2.

The result from Fig. 4.8(a) is normalized into Fig. 4.8(b) by dividing the step size, γ3i, at

a given q2 in the shown configuration by the step size achieved at q2=-π/2. This gives us

an efficiency factor, η(q2) that is a function of q2, as shown by the equation below:

η(q2) = 1− bi| cos q2| (4.3)

where bi is a dimensionless free parameter to be determined via calibration. This equation

has a maximum efficiency at q2 = −π/2. The reduced step size, γ3i, at different values of q2

other than −π/2 is most likely due to the component of the recoil force of the actuator acting

perpendicular to the link connecting joint 1 to joint 2, which causes a small deflection in the

link (which is not infinitely rigid). This effect is captured by bi| cos q2|. The free parameter,

bi, captures the loss of stepping efficiency when the prismatic joint is fully perpendicular to

the maximum-efficiency configuration.

4.6 Effect of Static Loads

Fig. 4.9 shows the manipulator in three different configurations of ψ, with q2 and θ fixed.

It describes the sequence of the configuration of the manipulator at which γ3i was recorded

in order to analyze the effect of gravity on the step size of the joint. The experimental

procedure for the same has been explained in Section 4.3. In order to isolate the effect of

gravity without any loss in the stepping efficiency, θ and q2 are kept constant as shown in

Fig. 4.9. Fig. 4.10 shows the effect at θ = 0, while γ3i is a constant for θ = −π/2. The

behavior of the system with respect to the change in gravitational force seems to be well

described by the mathematical model:

γ3i = ai − ci cos(ζ) cos(θ) (4.4)
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Figure 4.10. Plot showing the change in step size γ3i with change in gravitational force
achieved by changing ψ, with q2 = −π

2 and θ = 0.
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where ai and ci are free parameters to be determined through calibration. The parameter ai

represents the basic step size of the joint when no gravitational load or recoil inefficiency is

acting on the joint, and the parameter ci cos(ζ) cos(θ) represents a function of the component

of the gravitational load due to the weight of the joint acting along the axis of the joint.

As per our equation for the dynamics of the Kleindiek MM3A, Eq. A.114, the force acting

on the prismatic joint is a function the cosine of the joint angle q2 when the base frame is

fixed. Comparing this with Eq. 4.4, we conclude that the γ3i is also a function of the cosine

of joint angle q2, since ζ = ψ − q2.
In order to analyze the change in step size with change in joint variable q3, an experiment

was conducted wherein the prismatic joint was commanded a fixed number of steps, and

the subsequent distance travelled (q3) was measured. The manipulator was fixed at q2 =

-π2 , θ = 0, and ψ = 0. The measurements were collected by processing a microscopic image

of the prismatic joint after every N number of steps. Fig. 4.11 shows the results of this

experiment. Three readings each in inward and outward direction were taken on a single

day separated by a fixed time. We can clearly see the the change in q3 is approximately

linear with the number of steps (N) commanded. From this we can safely conclude that the

step size does not vary significantly throughout the range of motion of joint variable q3.

4.7 Model for Static loads on Prismatic Joint

Fig. 4.12 shows the manipulator in three different configurations of q2, with θ = 0 and

ψ = 0. It describes the sequence of the configuration of the manipulator at which γ3i was

recorded at θ = 0. Similarly, γ3i was recorded at other different values of θ.

As can be seen from the results obtained in Section 4.5, the step size taken by the

prismatic joint is not constant when no gravitational force is acting on it. Rather, it is a

function of q2 as described by Eq. 4.3. The pure effect of gravity on the step size of the

joint observed in Section 4.6 is modified by the position of the rotary joint q2. This leads

us to propose that the effect of gravity, represented by Eq. 4.4, and the effect of joint angle

q2, represented by Eq. 4.3, are coupled. A model, given by Eq. 4.5, takes into account both

of these effects and is able to predict γ3i at any configuration.

γ3i = (1− bi| cos(q2)|)(ai − ci cos(ζ) cos(θ)) (4.5)

where the terms have the same meanings as described before.

The predicted plots, showing the change in step size at θ = 0 and θ = −π/3, were

obtained using values of the free parameters after calibration and were found to be accurate

with ±15%, details of which will be discussed in Chapter 6. The change in step size at
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Figure 4.11. Experimental results showing the distance travelled by the prismatic joint
as a function of the number of steps (N) commanded in the (a) outward direction, and (b)
inward direction. The position is measured from a microscopic image of pixel size of 54.79
µm.
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Figure 4.12. Configuration of the manipulator at q2 = 0, -π2 and -π, with ψ and θ fixed
at 0. q2 is varied from 0 to -π in steps of -π6 .

θ = 0 and θ = −π/3 are shown by Figures 4.13(a) and 4.13(b), respectively. Based on the

working principle of the piezoelectric stick-slip actuators as shown in Fig. 1.1, the step size

in the desired motion should decrease with increase in the opposing gravitational load (as

is seen in Fig. 4.10) as an increase of this load would make tracking the rapid movement

of the piezoelectric element much easier and thus, mitigate the effectiveness of the “slip”

phase. However, a closer look into the effect of q2 as shown in 4.5 leads us to believe that

this unusual effect is owing to the recoil nature associated with changing joint angle q2, as

discussed in Section 4.5.
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Figure 4.13. Effect of static loads on change in step size γ3i at (a) θ = 0 and ψ = 0, and
(b) at θ = −π

3 and ψ = 0. Predicted model equation computed using experimental data for
a single day. Calibrated parameter values of a+ = 972, b+ = 0.27, and c+ = 375.55, and
a− = 899, b− = 0.25, and c− = -436 were found using the three calibration configurations
described in the Chapter 6.



CHAPTER 5

MODEL OF THE ROTARY JOINT

The Kleindiek MM3A consists of two rotary joints, denoted by variables q1 and q2. The

range of these rotary actuators is 240 ◦. The resolution for the rotary actuators, as specified

by Kleindiek, is 10−7 radians and the range of the actuator utilizing the piezoelectric effect

is 4×10−4 radians. Since joints 1 and 2 are both rotary joints having the same NanoMotor R©

as described in 2.1, both the joints are expected to have the same behavioral trend, the

change only being in the inertial load on the respective joints. Thus, we are going to explore

the behavior of joint 2 with respect to static and inertial loads, the results of which can be

used to predict the behavior of joint 1 as well. Additionally, we expect the behavior of the

rotary joints of other MM3A manipulators to be basically the same. In this chapter, we

propose a model for the analytical prediction of the step size for joint 2 and substantiate our

claim via experiments. We also present ANOVA statistical analysis giving the significance

of unmodeled environmental factors that vary from day to day.

5.1 Experimental Procedure

The average step size γ2i for rotary joint 2 is calculated using:

γ2i =
4π

3N2i
×1000000 µrad (5.1)

where R2 is the range of motion (the full range of motion for joint 2 is 4π
3 ), N2i is the

number of steps taken across the range of motion, measured using the audio limit switch

described in Section 4.1, and i ∈ {+,−} indicates the direction of joint motion.

Before the start of any experiment, the rotary joint is driven through its full range back

and forth twice. This is done in an attempt to mitigate any transients in the data due to

heating of the piezoelectric actuators; this effect has been explained in [51].

5.2 Effect of Unmodeled Environmental Factors

Environmental conditions (e.g., temperature, humidity) are uncontrolled in our exper-

iments, so there is no accurate model incorporating these factors. To minimize these
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unmodeled effects on the open-loop control of the Kleindiek MM3A, we propose to calibrate

the joints before each session of use. This assumes that there is a significant change from

day to day that warrants such recalibration, proof of which could be seen in Fig. 5.1(a). To

substantiate this claim, the step size for rotary joint 2 in the positive (γ2+) and negative

(γ2−) direction were taken on two different days, which would incorporate the change in

environmental conditions.

Fig. 5.1(a) shows the change in the step size of the rotary joint over two different days.

Three values of γ2+ and γ2− are recorded on each day, with q3 = 0 mm, θ = −π/2, and

ψ = 0. An ANOVA test on the data shows that the difference in step size on different days

is statistically significant (p < 0.05) for both positive (p = 0.033) and negative (p = 0.016)

directions. The ANOVA test also shows a significant difference (p = 0.0000004) in the step

size between the positive and negative directions within a given day. Thus, calibration on

the rotary joints is recommended each time the manipulator is to be used, and different

calibration parameters should be found for each direction of motion.
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Figure 5.1. Plot showing (a) the change in step size, γ
2

over two different days, and (b) the
configuration of the manipulator at q3=0 mm, θ=-π/2, and ψ=0, at which this experiment
was conducted.
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5.3 Effect of Static Loads

Fig. 5.2 shows two experiments that were performed to study the effect of gravitational

loads on the rotary joint (in an effort to study static loading in general). In experiment 1,

θ is kept at −π/2 such that there is no load due to gravity on the joint. In experiment 2,

θ is kept at zero such that there is load due to gravity on the joint; here the gravitational

load on joint 2 is a function of its own position q2 (Fig. 5.3). This makes the study of

gravitational loads on the rotary joints more challenging than that on the prismatic joints.

To study the step size as a function of q2, a fixture (Fig. 5.4) was developed to measure

the average step size in intervals of π/6 in the range of q2 ∈ [0 −π]. Starting with q2 = 0,

the number of steps required to move to q2=-π/6 is measured using the fixture and the

audio limit switch, and γ2− is calculated for that interval. Similarly, the average step size is

measured for subsequent intervals until q2 = −π. These readings are taken for both θ = 0

and θ = −π/2, and for both negative (γ2−) and positive (γ2+) directions of motion, with

two different values of q3 (0 mm and 12 mm), as shown in Fig. 5.2. For both experiments,

the step size values, taken at intervals of π/6, are plotted at the average value for q2 in each

interval (e.g., γ2− measured for the interval [0 −π/6] is plotted at q2 = −π/12).

Fig. 5.5 shows the results of experiment 1, in which the variation of step size for q3 =

0 mm at θ = −π/2, from which it is safe to conclude that the step size of the rotary joint

is relatively constant when no load due to gravity is acting on the joint; since the variation

in step size in this configuration is found to be less than ±1–2%, with no discernible trend

in the data. The normalization was performed by dividing the average step size values (at

θ = −π/2) obtained at each of the six fixed intervals by the total average of all these values.

It can also be concluded that the step size γ2 is not a function of q2 in the absence of any

loading, in either the positive or negative direction.

The model for static loading on the rotary joint is derived based on the physics that, if

θ = 0, the torque on joint 2 is related to gravitational loads as:

τ2 ∝ g sin(q2) (5.2)

where g is the acceleration due to gravity; the constant of proportionality is related to the

mass and lengths of the distal links, which are unknown to us. The empirical model to

predict the step size for the rotary joint is formulated as:

γ2i = γ2i,θ=−π/2 + di sin(ζ) (5.3)

where γ2i,θ=−π/2 denotes the direction-dependent step size of the rotary joint when there

is no effect of gravity on the link (i.e., at θ = −π/2), di is a free parameter that denotes
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Figure 5.2. Configurations for experiments 1 and 2. (a) θ = −π/2, ψ = 0, and q3 = 0 mm
(experiment 1); (b) θ = −π/2, ψ = 0, and q3 = 12 mm (experiment 1); (c) θ = 0, ψ = 0,
and q3 = 0 mm (experiment 2); and (d) θ = 0, ψ = 0 and q3 = 12 mm (experiment 2).

τg = m2gr2sin(-q2)
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Figure 5.3. Loading due to gravity acting on joint 2 during experiment 2 (θ = 0). This
loading appears as an equivalent static torque load at the joint.

the maximum increase in step size over the basic step size γ2i,θ=−π/2, and ζ = ψ − q2 as

described in Section 4.1. We assume that the step size at θ = −π/2 and θ = π/2 would be

equal to the step size at q2 = 0 and q2 = −π when ψ = θ = 0, since there is no torque due

to gravity on the joint in any of these cases. We expect di to vary linearly with q3 since it

encapsulates the gravitational load due to the center of mass of link 3; thus, two values for

each di must be known to enable linear interpolation based on q3.
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Figure 5.4. Figure showing the stopper mechanism set up for the rotary joint.

The results of experiment 2 are shown in Fig. 5.6, which shows the effect of static loads

on the step size of joint 2 when θ = 0. The results show the mean and confidence intervals

for experiments on three separate days. As we have already seen, the variance between days

is quite large, so daily calibration is desirable (a predicted model is also shown, obtained

from the calibration method discussed in the next chapter, but based on the calibration

data from only one of the three days, hence its offset from the mean). As can be seen

from the figure, the nature of step size in the positive direction is an inverted form of its

nature in the negative direction. This is attributed to the fact that the load due to gravity

acts against the direction of motion of the joint in the positive direction, and with it in

the negative direction. Hence, the step size obtained in the positive direction, γ2+, will be

less than that obtained at θ = −π/2 where no gravitation load is acting on the joint. The

opposite holds true for the step size in negative direction, γ2−. In other words, downward

steps are bigger than horizontal steps, which in turn are bigger than upward steps, as we

would expect.

If the manipulator were to be tilted by an angle θ 6= 0, then the torque due to gravity

on joint 2 would become proportional to the cosine of the gravitational component shown

in equation 5.2, such that the model of equation 5.3 should be modified as:

γ2i = γ2i,θ=−π/2 + di sin(ζ) cos(θ) (5.4)

5.4 Effect of Inertial Loads

Inertia plays a significant role in determining the step size of the joints of the Kleindiek

MM3A. In Chapters 4, we only studied the effect of static loads on the prismatic joint, with

the understanding that calibration would be used to account for the change in step size of

the joint with any additional load attached to the end-effector. Now, we will briefly discuss

the effect of increase in inertial load on the rotary joint of the MM3A, as the inertia loads
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Figure 5.5. Experiment 1, corresponding to Fig. 5.2 and 5.2(a), with θ = −π/2 and ψ = 0.
(a) γ2−, (b) data in (a) normalized the average of the six values across the full range, (c)
γ2+, and (d) data in (c) normalized the average of the six values across the full range.

will change with the configuration of the manipulator, so we cannot safely assume they will

be constant during operation of the manipulator between calibrations.

In rotary joint 2, the inertial load acting on joint changes with q3. Thus, the average step

size for joint 2, γ2 was recorded at different values of q3 = 0, 4, 8, and 12 mm to study the

effect of inertial load on the step size. Fig. 5.7 shows the change in step size with the change

in q3. The step size data was recorded at θ = −π/2 so as to eliminate any effect of gravity,

such that the variation in γ2 observed is purely due to a change in inertial load. The inertia
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Figure 5.6. Experiment 2. Step size γ2i as a function of ζ at (a) q3 = 0 mm, ψ = 0, and
θ = 0 in the negative direction, with calibration parameter d− = 3.83µrad, (b) q3 = 0 mm,
ψ = 0, and θ = 0 in the positive direction, with calibration parameter d+ = −8.15µrad,
(c) q3 = 12 mm, ψ = 0, and θ = 0 in the negative direction, with calibration parameter
d− = 23.94µrad, and (d) q3 = 12 mm, ψ = 0, and θ = 0 in the positive direction with
calibration parameter d+ = −19.40µrad.
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Figure 5.7. Effect of inertial loads on the step size of the rotary joint. The inertial load
increases from q3 = 0 mm to 12 mm, as the moment arm of the center of mass of link 3
increases with q3. The configuration of the manipulator is kept at θ = −π/2 and ψ = 0,
such that gravity does not load the joint in question.

of a body with respect to a joint is directly proportional to the square of the perpendicular

distance of the center of mass of the body to the joint axis due to the parallel-axis theorem,

so the inertial load acting on the rotary joint due to q3 should affect γ2 quadratically. Also,

based on the stick-slip principle, we might expect that an increase in inertial load would

reduce the return travel of the slider in the slip phase, resulting in an increase in the step

size. However, we observe that the step size of the rotary joint decreases almost linearly

with an increase in q3 (or increase in inertial load). This contradicts our hypothesis that

the step size of a joint generally increases with increase in inertial load. It might be possible

that the displacement of the piezoelectric actuator in the stick phase is reduced due to the

increase in inertial load, resulting in an overall reduction in step size with an increase in

inertial load. Further research is required to explain this observed behavior. In this thesis,

we will assume that the step size of joint 2 due to inertial effects of link 3 varies linearly with

q3. This means we must consider that γ2i,θ=−π/2 is a function of q3; this will be considered

in the following chapter.



CHAPTER 6

CALIBRATION TECHNIQUE

In this chapter, we discuss a calibration routine that can be used to identify the param-

eters of the models for the prismatic and rotary joint that were developed in chapters 4

and 5. The function obtained for the step size of joint j is of the form γji=Γji(g, αi), where

αi is a set of actuator-specific parameters that will be obtained via calibration by using

measurements of γji at selected configurations for each joint. We will conclude this chapter

by giving an effective calibration routine for the prismatic joint and the rotary joint 2 of

the Keindiek MM3A. The step size model obtained by such a calibration technique can be

used with previously developed methods described in [34] to perform open-loop control of

the end-effector.

6.1 Prismatic Joint

The step size model for the prismatic joint as described in Eq. 4.5 is given by:

γ3i = (1− bi| cos(q2)|)(ai − ci cos(ζ) cos(θ)) (6.1)

where the subscript i denotes + or − direction.

This model has six unknown parameters that can be calibrated for by taking six mea-

surements of γ3 as shown in Fig. 6.1. For simplicity, the average step size at a known

configuration of q2, θ, and ψ is denoted by γ3i(q2,θ,ψ). The following procedure is used to

identify the six free parameters α3 = {a+, a−, b+, b−, c+, c−} of the prismatic joint:

(1) The prismatic joint is driven across its full range twice at θ and ψ equal to 0, so as

to minimize the thermal effect as is discussed before.

(2) The average step size γ3+(−π/2,0,0) and γ3−(−π/2,0,0) for outward and inward direc-

tions, respectively, are measured at (q2, θ, ψ) = (−π2 , 0, 0). By substituting these values in

Eq. 6.1, we find parameter ai of the model by the following relation

ai = γ3i(−π/2,0,0) (6.2)
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Figure 6.1. Calibrating configurations (in sequence) for identifying the six unknown
parameters of the model of the prismatic joint (joint 3). (a) ai is calculated by measuring
γ3i at (q2, θ, ψ) = (-π2 ,0,0), (b) bi is calculated using ai calculated in the previous step and
γ3i at (q2, θ, ψ)= (0,-π2 ,0), and (c) ci is calculated using the values of ai and bi above, and
γ3i at (q2, θ, ψ)= (0,0,0).

(3) Next, the prismatic joint is driven outward and then inward, from 0 to 12 mm

and back, at a configuration of q2 = 0, θ = −π/2, and ψ = 0. The average step size

γ3+(0,−π/2,0) and γ3−(0,−π/2,0) for outward and inward directions, respectively, are measured

at (q2, θ, ψ) = (0, −π2 , 0). By substituting these values in Eq. 6.1 and using the calculated

value of ai, we find parameter bi using the following relation:

bi = 1−
γ3i(0,−π/2,0)

ai
(6.3)

(4) Finally, the average step size γ3+(0,0,0) and γ3−(0,0,0) for outward and inward direc-

tions, respectively, are measured at (q2, θ, ψ) = (0, 0, 0), and by substituting these values in

Eq. 6.1 along with ai and bi, we find parameter ci using the following relation:

ci = ai −
γ3i(0,0,0)

1− bi
(6.4)

Fig. 6.2 shows the predicted model and actual experimental data for a single day at θ = 0

and −π/3. The value of θ = −π/3 is not included as one of the calibration configurations,

yet the model captures the step size of the joint as a function of the configuration. The

accuracy of the predicted model was found to be within ±20% (within 100 nm).

6.2 Rotary Joint

The step size model for the rotary joint as described in Eq. 5.3 is given by:

γ2i = γ2i,θ=−π/2 + di sin (ζ) (6.5)

Fig. 6.3 shows the calibration sequence for rotary joint 2, which would eventually give us

values for the joint specific parameter, d and γ
2,θ=−π/2

, for the rotary joint in the clockwise

(-) and counterclockwise (+) direction respectively. For simplicity, the average step size at
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Figure 6.2. Predicted model at (a) θ = 0 and −π
3 with ψ = 0 in the outward direction,

and (b) θ = 0 and −π
3 with ψ = 0 in the inward direction. The calibration parameter values

are the same used in Section 4.7.



42

(a) +

−
−

+
+

−

+

−

(b) (c) (d)

Figure 6.3. Calibrating configurations (in sequence) for identifying the six unknown
parameters of the model of the rotary joint (joint 2). q2 is driven across its full range
from π

6 to -7π6 in the negative and positive directions at (a) q3 = 0 mm, θ = 0, and ψ = 0;
(b) q3 = 12 mm, θ = 0, and ψ = 0; (c) q3 = 0 mm, θ = −π

2 , and ψ = 0; and (d) q3 = 12 mm,
θ = −π

2 , and ψ = 0.

a known configuration of q3, θ and ψ is denoted by γ2(q3,θ,ψ) unless otherwise mentioned.

The following procedure is followed to obtain the free parameter:

(1) The rotary joint is driven across its full range twice at θ and ψ equal to 0, so as to

minimize thermal effect as is discussed before.

(2) Joint 2 is driven across its range from q2 = π/6 to −7π/6 in the negative direction

and then in the positive direction at q3 = 0 mm with θ = 0 and ψ = 0. The step size

data obtained is denoted as γ2−(0,0,0) and γ2+(0,0,0) for the negative and positive directions,

respectively.

(3) Joint 2 then is driven across its range from q2 = π/6 to −7π/6 in the negative

direction and then in the positive direction at q3 = 12 mm with θ = 0 and ψ = 0. The

step size data obtained is denoted as γ2−(12,0,0) and γ2+(12,0,0) for the negative and positive

directions, respectively.

(4) Joint 2 is then driven across its range at θ = −π/2 from q2 = π/6 to −7π/6 in the

negative and then in the positive direction at q3 = 12 mm and ψ = 0. The step size data

obtained are denoted as γ2−(12,−π/2,0) and γ2+(12,−π/2,0) for the negative and the positive

directions, respectively.

(5) Joint 2 is then driven across its range at θ = −π/2 from q2 = π/6 to −7π/6 in the

negative and then in the positive direction at q3 = 0 mm and ψ = 0. The step size data

obtained are denoted as γ2−(0,−π/2,0) and γ2+(0,−π/2,0) for the negative and the positive

directions, respectively.

Since γ2 is a function of q2 at each instant, it not a trivial task to calculate the parameter

di from Eq. 6.5 by using the average step size values (γ2i) that are available to us. The

following algorithm is used to estimate di. In short, a simulation calculates the number of

steps required to move across the full range of motion for a given value of di, and then the

value of di is adjusted until the number of steps matches the experiment.
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Algorithm for computing the free parameter di of the rotary joint

1: Input γ2i,θ=−π/2, γ2i,θ=0

2: Give an initial estimate for di

Iterate the value of di for convergence.

3: for i = 1 to 5 do

4: Initialize ζ = −π
6

5: Initialize j = 1

6: while ζj ≤ 7π
6 do

7: γ2j,θ=0 = γ2,θ=−π/2 + di sin(ζj)

8: j = j + 1

9: ζj = γ2(j−1),θ=0 + ζj−1

10: end while

11: γ ′2,θ=0 =
∑

(γ2,θ=0)
j

12: ζ = sin−1(
γ ′2,θ=0− γ2,θ=−π/2

d )

13: d =
γ2,θ=0− γ2,θ=−π/2

sin(ζ)

14: error = γ2,θ=0 − γ ′2,θ=0

15: end for

16: Output di

After inputting the experimental values found for γ2,θ=0 and γ2,θ=−π/2 in our simulation,

we initially estimate the free parameter di. The code in the while loop gives us the position

and the step size of link 2 at each instant from ζ = π
6 to −7π

6 . Using this, we compute

the average simulated value γ ′2,θ=0. This average value would correspond to a position of

link 2 within the entire range of ζ taken. Thus, the corresponding ζ value at which this

step size occurs is computed; subsequently, we compute di. The updated value of di is then

sent back in the loop, and the same procedure is followed. Thus, we solve for di using

multiple iterations until convergence. The error between the computed (γ ′2,θ=0) and actual

experimental value (γ2,θ=0) was found to be less than 10−11 radians after 5 iterations.

Fig. 6.4 shows the simulation results obtained for the rotary joint after iterating q2 from

π
6 to −7π

6 (i.e., the range of q2). This confirms the behavior of the rotary joint 2. For

computing di in the algorithm above, we took values of γ2,θ=−π/2 ranging from 75µrad to

115µrad with γ2,θ=0 varying such that the difference between the two average step size

values never exceeds its limit as found in experiments (±9.2µrad). It was found that the

difference between these two average step size values show a quadratic relationship with the

free parameter di as shown in Fig. 6.5.
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Figure 6.4. Simulated model of the step size of joint 2 in (a) the negative direction, and
in (b) the positive direction. The values of γ2,θ=0 and γ2,θ=−π/2 are fixed.

As can be seen from Fig. 6.5, irrespective of the values of γ2,θ=0 and γ2,θ=−π/2, the free

parameter value di remains almost the same (difference of < 1µ rad) for the same difference

between the two step size values aforementioned. The parameter di was calculated using

the value of γ2,θ=0 − γ2,θ=−π/2 from −9.2µrad to 9.2µrad as this was the range of γ2,θ=0 -

γ2,θ=−π/2 observed in experiments. A relation for computing di was formulated by fitting

the simulation results obtained to a quadratic function as shown in Fig. 6.5. The equation

formulated using nonlinear least-squares regression is:

di = 3.41(γ2i,θ=0 − γ2i,θ=−π/2)
2 + 0.025(γ2i,θ=0 − γ2i,θ=−π/2)

+6.42× 10−7 (6.6)

Fig. 5.6 shows that there is a significant effect of the joint 3 variable q3 on the step size

of the rotary joint 2. Also, γ2i,θ=−π/2 and di are functions of q3. This is expected, as a
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Figure 6.5. Variation of the free parameter with respect to change in difference between
γ2,θ=0 and γ2,θ=−π/2 at different values of γ2,θ=−π/2. The vertical dash lines represent the
range of this difference as observed in experiments.

change in q3 will lead to a change in inertial load on joint 2 and, as discussed in Chapter

5, a change in the step size of joint 2. We observed that γ2,θ=−π/2 varies linearly with q3

(Fig. 5.7) and hence, a linear-interpolation model for γ2,θ=−π/2 and di would be a good

approximation of the variation in the step size of joint 2 due to a change in q3. Eq. 6.5 then

becomes:

γ2i = γ2i,θ=−π/2(q3) + di(q3) sin (ζ) (6.7)

where i denotes + or − direction of the rotary joint, and

γ2i,θ=−π/2(q3) = γ2i(0,−π/2,0) + q3

(
γ2i(12,−π/2,0) − γ2i(0,−π/2,0)

12

)
(6.8)

di(q3) = di(0,−π/2,0) + q3

(
di(12,−π/2,0) − di(0,−π/2,0)

12

)
(6.9)

Although the inertial load on joint 2 increases with q3, our method for finding the free

parameter di (Eq. 6.6) remains the same, as the change in step size due to an increase in

inertial load due to q3 is reflected as a change in γ2,θ=−π/2 and γ2,θ=0. So, for finding the

free parameter di, it does not matter what values of q3 we use.
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Fig. 6.6 shows the predicted model after computing di via calibration against experi-

mental data collected on a single day. Taking into account the effect of angle θ on the load

acting on the rotary joint, the equation for predicting the step size of joint 2 would become:

γ2i = γ2i,θ=−π/2(q3) + di(q3) sin (ζ) cos(θ) (6.10)

Data were then collected at θ = −π/4 and ψ = 0 to verify this model in a different

configuration, results of which are shown in Fig. 6.7. The predicted models obtained after

calibration, as shown in Figures 6.6 and 6.7, is found to be accurate to within 1µrad or

±2%.

Because joint 1 is another rotary joint with the same range as joint 2 and having the

same properties except for the change in static load value, this model and calibration routine

for joint 2 can be extended to joint 1. The only difference in the calibration routine would

be that at θ = 0 there is no effect of gravity on joint 1, while at θ = −π/2 the gravity

is perpendicular to the joint axis. So, in short the definition of the terms, γ2i,θ=0 and

γ2i,θ=−π/2 would be interchanged.

To conclude, a total of 14 calibration routines (6 for the prismatic joint and 8 for the

rotary joint) have been presented to predict the 14 free parameters of our empirically derived

analytical model. The model can be used to predict the step size of the joints at a given

manipulator configuration.
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Figure 6.6. Predicted model (after calibration) at (a) q3 = 0 mm, θ = 0, and ψ = 0 in
the negative direction; (b) q3 = 0 mm, θ = 0, and ψ = 0 in the positive direction; (c)
q3 = 12 mm, θ = 0, and ψ = 0 in the negative direction; (d) q3 = 12 mm, θ = 0, and ψ = 0
in the positive direction.
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Figure 6.7. Predicted model (after calibration) at (a) q3 = 0 mm, θ = −π/4, and ψ = 0
in the negative direction; (b) q3 = 0 mm, θ = −π/4, and ψ = 0 in the positive direction.



CHAPTER 7

ACCURACY

Kleindiek does not give specifications describing the step size of each joint of the MM3A,

so it is not possible for us to compare our method to some preexisting manufacturer

specification. To compare our developed model with a simpler, less-sophisticated model, we

analyzed our model in comparison with the constant step size obtained for both prismatic

and rotary joint when there is no effect of gravity acting on the respective joints. This

alternate method still requires the audio limit switch or some equivalent method to detect

the range of travel (which has not been developed previously), but it does not require the

more complicated model developed herein, and it is an alternative that one might expect

to have reasonable predicting power.

From Fig. 7.1, we can conclude that the developed model of the prismatic joint is accurate

to within 15% of the experimental results throughout the configuration of the manipulator,

whereas the constant step size model predicts the step size well only at configurations when

there is little influence of gravitational force. In the worst-case configuration, the simpler

model has an error in step size that is approximately 10% of the actual experimental value.

From Fig. 7.2, we can conclude that the developed model of the rotary joint is accurate to

within 2% of the experimental model, whereas the constant step size model predicts the

step size well only when the gravitational force acting on the rotary joint is minimal. In

the worst-case configurations, the simpler model has an error that is approximately 1.3%

of the actual experimental value.

From this analysis,we find that our developed model increases the overall accuracy with

which the step size taken by the respective joints of the Kleindiek MM3A could be predicted,

even when compared to a simpler model that would in itself be novel compared to the state

of the art.
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Figure 7.1. Comparison of our predicted model with the constant step size in the (a)
outward direction, and (b) inward direction.
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Figure 7.2. Comparison of our predicted model with the constant step size in the (a) −
direction, and (b) + direction.



CHAPTER 8

CONCLUSION AND FUTURE WORK

The Kleindiek MM3A can be used in applications requiring high precision to the scale

of a few nanometers, with larger steps on the order of 1µm. For effective control of the

manipulator, it is often utilized using a device such as an SEM. However, this machine is

very expensive, and research groups end up paying $50–$100 per hour. With the open-loop

control algorithm as developed in this thesis, one only requires a quick calibration routine

involving taking step-size readings of the joints of the Kleindiek at specific configurations.

This procedure described not only is cheaper, it is also easy to follow, and could result in

significant savings in time. Several closed-loop schemes, and modeling techniques for effec-

tive manipulation of the piezoelectric stick-slip actuators, have been discussed in Chapters

1 and 2. In Chapter 3, we explained the dynamics of the Kleindiek MM3A by incorporating

the fact that the joints of this manipulator are decoupled. We modeled static-loading

effects on the prismatic joint (Chapter 4), and static- and inertial-loading effects on the

rotary joint (Chapter 5) of the manipulator. In spite of the highly nonlinear nature of the

piezoelectric actuators, it was found that there is a repeatable stochastic pattern that they

follow that depends on the loads acting on the joint. This pattern can be modeled and

used for effective open-loop control of the Kleindiek MM3A. In Chapter 6, we discussed the

calibration techniques employed for predicting the step size of the joints of the manipulator

in any configuration. The accuracy we achieved was within ±15% (100 nm) for prismatic

joint and ±2%(2µrads) for rotary joints.

In this work, we made the assumption that the joints are completely independent, in that

a step in one joint has no effect in any of the other joints. This is a common assumption that

appears accurate. We neglected any effect of dynamic coupling that may occur owing to

its’ backdrivable nature. Further research needs to be done to incorporate this phenomenon

if it is important, or verify that it is not. The experiments in this thesis were performed

using a single Kleindiek MM3A, but we expect the results to generalize to other MM3As

and other similar devices that utilize piezoelectric stick-slip actuators. Having said this, the
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effectiveness of this model has yet to be tested on other similar devices.

The next step in this research is to combine the open-loop model derived in this thesis

with master-slave teleoperation algorithms. Such algorithms will enable a human user to

command an end-effector velocity that is converted into necessary joint velocities, which in

turn can be converted into a number of joint steps required. In this way, the micromanipu-

lator can be controlled more like other robots, rather than by controlling individual joints

as is currently done.



APPENDIX

DERIVATION OF THE KINEMATICS AND

DYNAMICS OF THE KLEINDIEK MM3A

MICROMANIPULATOR

In this appendix we derive the forward kinematics, inverse kinematics, manipulator

Jacobian, and dynamic equations for the Kleindiek MM3A.

A.1 Forward Kinematics and Manipulator Jacobian

The Kleindiek MM3A is a serial link rotary-rotary-prismatic (RRP) manipulator. We

model the MM3A as a 3-DOF robotic manipulator, as shown in Fig. 4.1, where the MM3A

has been modeled using the Denavit-Hartenberg (D-H) convention. Table A.1 shows the

D-H parameters for the manipulator concerned.

The system shown in Fig. 4.1 has four coordinate systems defined. Frame 0 represents

the base frame, with joint 1 corresponding to rotation about ~z0. Frame 1 is attached to the

first link and rotates about ~z0 by the angle q1, with joint 2 corresponding to rotation about

~z1. Frame 2 is attached to the second link and rotates about ~z1 by the angle q2, with joint

3 corresponding to translation along ~z2. The frame’s origin O2 is coincident with O1, which

is the origin of frame 1. A tool frame 3 is attached to the distal end of the third link and

translates prismatically along ~z2 by q3. It has an initial offset of l2 from frame 2.

The homogeneous transformation matrix of frame 3 with respect to the base frame is:

Table A.1. D-H parameters for RRP manipulator.
i ai di αi θi
1 a1 0 π/2 q1
2 0 0 −π/2 q2
3 0 l2 + q3 0 0
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0T3 =


c1c2 −s1 −c1s2 −(l2 + q3)c1s2 + a1c1
s1c2 c1 −s1s2 −(l2 + q3)s1s2 + a1s1
s2 0 c2 (l2 + q3)c2
0 0 0 1

 (A.1)

where si and ci represent the sine and cosine of the angle qi, respectively. Consequently, we

deduce the forward kinematics for the manipulator as:0d03x
0d03y
0d03z

 =

−(l2 + q3)c1s2 + a1c1
−(l2 + q3)s1s2 + a1s1

(l2 + q3)c2

 (A.2)

where 0~d03 is the vector from O0 to O3, expressed with respect to frame 0.

The Manipulator Jacobian, J(~q) is of the form:

[
0ḋ03
ω03

]
= J(~q)~̇q =



(l2 + q3)s1s2 − a1s1 −(l2 + q3)c1c2 −c1s2
−(l2 + q3)c1s2 + a1c1 −(l2 + q3)s1c2 −s1s2

0 −(l2 + q3)s2 c2
0 s1 0
0 −c1 0
1 0 0


q̇1q̇2
q̇3

 (A.3)

A.2 Inverse Kinematics

For the inverse kinematics problem, we assume we are given ~0d03, and our goal is to

find the joint values ~q. We will now derive the inverse kinematics equations to compute the

joint values.

To solve for q1, we look at the top view in Fig. A.1(a), finding:

q1 = atan2(0d03y,
0 d03x) (A.4)

Next, to solve for q2 we first compute

1d13 ≡

1d13x
1d13y
1d13z

 = 0R
T
1 (0d03 −0 d01) (A.5)

Looking at the front view in Fig. A.1(b), we get

q2 = atan2(1d13y,
1 d13x) (A.6)

Finally, to solve for q3, we see that from Eq.(A.2),

(0d03x)2 + (0d03y)
2 + (0d03z)

2 = (−(q3 + l2)c1s2 + a1c1)
2 +

(−(q3 + l2)s1s2 + a1s1)
2 + ((q3 + l2)c2)

2 (A.7)
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Solving, we get

q3 =
2a1s2 ±

√
(2a1s2)2 − 4(a21 − ((0d03x)2 + (0d03y)2 + (0d03z)2))

2
− l2

(A.8)

Thus, we have solved for the joint variables given the postion of frame 3 with respect to the

base frame.

A.3 Dynamics

The Lagrangian formulation is used for computing the dynamics of the Kleindiek MM3A

[54]. The Lagrangian of a mechanical system can be defined as a function of the generalized

coordinates:

L = T − U (A.9)

where T and U respectively denote the total kinetic energy and potential energy of the

system. The Lagrange equations are expressed by:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= τi i = 1,2,3 (A.10)

x3

y3Point in consideration

q
1

y0

x0o0

o3

(a)

q
2

Point in consideration

x1

y1

o1
(b)

Figure A.1. Solving the inverse kinematics problem utilizing the (a) Top view, and (b)
Front view.
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where τi is the generalized force associated with the generalized coordinate qi. Equation

A.10 can be written in compact form as

d

dt

(
∂L

∂~̇q

)T
−
(
∂L

∂~q

)T
= ~τ (A.11)

where for a manipulator with an open kinematic chain, the generalized coordinates are

gathered in the vector of variables ~q. The kinetic energy T and potential energy U of link

i are computed as:

Ti =
1

2
mli ~̇q

TJ
(li)T
P J liP ~̇q +

1

2
~̇qTJ

(li)T
O (0I li)J

li
O~̇q (A.12)

Ui = −mli
0~gT ~pi (A.13)

where ~pi is the position vector of the center of mass mli of link i with respect to the base

frame, 0Ili represents the inertia tensor of link i relative to the center of mass of link i when

expressed in the base frame, and iIli is the inertia tensor when expressed in the link’s frame

(iIli is a constant inertia tensor). 0Ili can be expressed in terms of iIli as:

0I li = Ri
iI liR

T
i (A.14)

where Ri is the rotation matrix from the link i frame to the base frame. JP and JO are the

position and orientation Jacobians, written with respect to some link i, and are computed

as:

J
(li)
P = [

(li)
P1 · · · 

(li)
Pi 0 · · · 0] (A.15)

J
(li)
O = [

(li)
O1 · · · 

(li)
Oi 0 · · · 0] (A.16)

with

~
(li)
Pj =

{
~zj−1 for a prismatic joint
~zj−1 × (~pli − ~pOi) for a rotary joint

(A.17)

~
(li)
Oj =

{
~0 for a prismatic joint
~zj−1 for a rotary joint

(A.18)

and 0~g = [g1 g2 g3]
T is the gravity acceleration vector with respect to O0.

The Coriolis terms (according to Lagrange) can be found as follows. The generic element

of C is

cij =

n∑
k=1

cijkq̇k (A.19)

where the coefficients

cijk =
1

2

(
∂Mij

∂qk
+
∂Mik

∂qj
−
∂Mjk

∂qi

)
(A.20)

where M is the n× n inertia matrix for an n-joint manipulator.
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A.3.1 Inertia Tensor Equation

Before formulating the equations for dynamics, we must compute the inertia tensor 0Ili

for all the three links of the manipulator. Let the constant inertia tensor be defined as

iIli =

iIi11 iIi12
iIi13

iIi21
iIi22

iIi23
iIi31

iIi32
iIi33

 (A.21)

Links 1 and 2 of the Kleindiek MM3A manipulator are both symmetric with respect to

two planes passing through their respective centers of mass, and link 3 is symmetric with

respect to all three planes passing through its center of mass, thus the inertia tensor iIli

is diagonal (i.e., all off-diagonal terms are equal to zero). The inertia tensor of link i with

respect to the base frame can be expressed as:

0Ili =

0Ii11
0Ii12

0Ii13
0Ii21

0Ii22
0Ii23

0Ii31
0Ii32

0Ii33

 (A.22)

Combined with Eq. A.14, we compute the inertia tensor 0Ili as:

0Il1 ≡

0I111
0I112

0I113
0I121

0I122
0I123

0I131
0I132

0I133

 = 0R1
1Il1

0RT1 (A.23)

where

0I111 = 1I111c
2
1 + 1I133s

2
1 (A.24)

0I112 = 1I111s1c1 − 1I133s1c1 (A.25)

0I113 = 0 (A.26)

0I121 = 1I111s1c1 − 1I133s1c1 (A.27)

0I122 = 1I111s
2
1 + 1I133c

2
1 (A.28)

0I123 = 0 (A.29)

0I131 = 0 (A.30)

0I132 = 0 (A.31)

0I133 = 1I122 (A.32)

Similarly,

0Il2 =

0I211
0I212

0I213
0I221

0I222
0I223

0I231
0I232

0I233

 ≡ 0R2
2Il2

0RT2 (A.33)
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where

0I211 = 2I211c
2
1c

2
2 + 2I222s

2
1 + 2I233c

2
1s

2
2 (A.34)

0I212 = 2I211s1c1c
2
2 − 2I222s1c1 + 2I233s1c1s

2
2 (A.35)

0I213 = 2I211c1s2c2 − 2I233c1c2s2 (A.36)

0I221 = 2I211s1c1c
2
2 − 2I222s1c1 + 2I233s1c1s

2
2 (A.37)

0I222 = 2I211s
2
1c

2
2 + 2I222c

2
1 + 2I233s

2
1s

2
2 (A.38)

0I223 = 2I211s1s2c2 − 2I233s1s2c2 (A.39)

0I231 = 2I211s2c1c2 − 2I233c1s2c2 (A.40)

0I232 = 2I211s1s2c2 − 2I233s1s2c2 (A.41)

0I233 = 2I211s
2
2 + 2I233c

2
2 (A.42)

and

0Il3 =

0I311
0I312

0I313
0I321

0I322
0I323

0I331
0I332

0I333

 ≡ 0R3
3I3

0RT3 (A.43)

where all the elements of 0Il3 are analogous to those of 0Il2 (since 0R3 =0 R2), except that

the elements of 2Il2 are replaced by 3Il3 .

A.3.2 Derivation of Dynamic Equation

The mass of link i is expressed as mi. We formulate the position and orientation

Jacobians as follows. For link 1, we assume that m1 is located at a distance r1 from

O0 along ~x1, and calculate:

J
(l1)
P =

−r1s1 0 0
r1c1 0 0

0 0 0

 (A.44)

J
(l1)
O =

0 0 0
0 0 0
1 0 0

 (A.45)

For link 2, we assume that m2 is located at a distance r2 from O1 along ~z2, and calculate:

J
(l2)
P =

−a1s1 + r2s1s2 −r2c1c2 0
a1c1 − r2c1s2 −r2s1c2 0

0 −r2s2 0

 (A.46)

J
(l2)
O =

0 s1 0
0 −c1 0
1 0 0

 (A.47)
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For link 3, we use a different convention, and assume that m3 is located at a distance r3

from O3 along −~z3, and calculate:

J
(l3)
P =

 (l2 + q3 − r3)s1s2 − a1s1 −(l2 + q3 − r3)c1c2 −c1s2
−(l2 + q3 − r3)c1s2 + a1c1 −(l2 + q3 − r3)s1c2 −s1s2

0 −(l2 + q3 − r3)s2 c2

 (A.48)

J
(l3)
O =

0 s1 0
0 −c1 0
1 0 0

 (A.49)

Next, we compute the kinetic and potential energy. In the case of link 1,

T1 =
1

2
m1r

2
1 q̇

2
1 +

1

2
0I133q̇

2
1 (A.50)

U1 = −m1r1g1c1 −m1r1g2s1 (A.51)

and for link 2,

T2 =
1

2
m2(a1 − r2s2)2q̇21 +

1

2
m2r

2
2 q̇

2
2 +

1

2
[0I233q̇

2
1 + q̇22(0I211s

2
1

+0I222c
2
1 − (0I221 + 0I212)s1c1) + q̇1q̇2(

0I213s1 − 0I223c1

+0I231s1 − 0I232c1)] (A.52)

U2 = −m2g1(a1c1 − r2c1s2)−m2g2(a1s1 − r2s1s2)−m2g3r2c2 (A.53)

and for link 3,

T3 =
1

2
m3[(a1 − (l2 + q3 − r3)s2)2q̇21 + (l2 + q3 −R)2q̇22 + q̇23] +

1

2
[0I333q̇

2
1 + q̇22(0I311s

2
1 + 0I322c

2
1 − (0I321 + 0I312)s1c1)

+q̇1q̇2(
0I313s1 − 0I323c1 + 0I331s1 − 0I332c1)] (A.54)

U3 = −m3g1(a1c1 − (l2 + q3 − r3)c1s2)

−m3g2(a1s1 − (l2 + q3 − r3)s1s2)−m3g3(l2 + q3 − r3)c2 (A.55)

The Lagrangian becomes:

L =

3∑
i=1

Ti −
3∑
i=1

Ui (A.56)

Proceeding with equation A.10, we first formulate the inertial terms. For link 1:
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∂L

∂q̇1
= q̇1[m1r

2
1 + 0I133 + 0I233 + 0I333 +m2(a1 − r2s2)2 +m3(a1

−(l2 + q3 − r3)s2)2] + 0.5q̇2[s1(0I213 + 0I231 + 0I313 + 0I331)

−c1(0I223 + 0I232 + 0I323 + 0I332)] (A.57)

d

dt

∂L

∂q̇1
= q̈1[m1r

2
1 + 0I133 + 0I233 + 0I333 +m2(a1 − r2s2)2 +m3(a1

−(l2 + q3 − r3)s2)2] + 0.5q̈2[s1(0I213 + 0I231 + 0I313

+0I331)− c1(0I223 + 0I232 + 0I323 + 0I332)] (A.58)

For link 2:

∂L

∂q̇2
= 0.5q̇1[s1(

0I213 + 0I231 + 0I313 + 0I331)− c1(0I223 + 0I232

+0I323 + 0I332)] + q̇2[m2r
2
2 + s21(

0I311 + 0I211) + c21(
0I322

+0I222)− s1c1(0I321 + 0I312 + 0I221 + 0I212)] +m3q̇2(l2 + q3

−r3)2 (A.59)

d

dt

∂L

∂q̇2
= 0.5q̈1[s1(

0I213 + 0I231 + 0I313 + 0I331)− c1(0I223 + 0I232 + 0I323

+0I332)] + q̈2[m2r
2
2 + s21(

0I311 + 0I211) + c21(
0I322 + 0I222)

−s1c1(0I321 + 0I312 + 0I221 + 0I212)] +m3q̈2(l2 + q3 − r3)2 (A.60)

and for link 3:

∂L

∂q̇3
= m3q̇3 (A.61)

d

dt

∂L

∂q̇3
= m3q̈3 (A.62)

From equation A.61,A.59, and A.57, we can formulate the inertia matrix

M =

M11 M12 M13

M21 M22 M23

M31 M32 M33

 (A.63)

where
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M11 = m1r
2
1 + 0I133 + 0I233 + 0I333 +m2(a1 − r2s2)2

+m3(a1 − (l2 + q3 − r3)s2)2 (A.64)

M12 = 0.5[s1(
0I213 + 0I231 + 0I313 + 0I331)

−c1(0I223 + 0I232 + 0I323 + 0I332)] (A.65)

M13 = 0 (A.66)

M21 = 0.5[s1(
0I213 + 0I231 + 0I313 + 0I331)

−c1(0I223 + 0I232 + 0I323 + 0I332)] (A.67)

M22 = m2r
2
2 + s21(

0I311 + 0I211) + c21(
0I322 + 0I222)

−s1c1(0I321 + 0I312 + 0I221 + 0I212) +m3(l2 + q3 − r3)2 (A.68)

M23 = 0 (A.69)

M31 = 0 (A.70)

M32 = 0 (A.71)

M33 = m3 (A.72)

Next, we formulate the centrifugal and coriolis terms. We first calculate the Christoffel

symbols of the first kind, cijk, as defined in equation A.20.

For link 1:

c111 =
1

2

(
∂M11

∂q1
+
∂M11

∂q1
− ∂M11

∂q1

)
= 0 (A.73)

c112 =
1

2

(
∂M11

∂q2
+
∂M12

∂q1
− ∂M12

∂q1

)
= s2c2(

2I211 + 3I311 − 2I233 − 3I333)−m2r2c2(a1 − r2s2)

+m3(s2c2(l2 + q3 − r3)2 − a1c2(l2 + q3 − r3)) (A.74)

c113 =
1

2

(
∂M11

∂q3
+
∂M13

∂q1
− ∂M13

∂q1

)
= m3(l2 + q3 − r3)s22 −m3a1s2 (A.75)
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c121 =
1

2

(
∂M12

∂q1
+
∂M11

∂q2
− ∂M21

∂q1

)
= s2c2(

2I211 + 3I311 − 2I233 − 3I333)−m2r2c2(a1 − r2s2)

+m3(s2c2(l2 + q3 − r3)2 − a1c2(l2 + q3 − r3)) (A.76)

c122 =
1

2

(
∂M12

∂q2
+
∂M12

∂q2
− ∂M22

∂q1

)
= 0 (A.77)

c123 =
1

2

(
∂M12

∂q3
+
∂M13

∂q2
− ∂M23

∂q1

)
= 0 (A.78)

c131 =
1

2

(
∂M13

∂q1
+
∂M11

∂q3
− ∂M31

∂q1

)
= m3(l2 + q3 − r3)s22 −m3a1s2 (A.79)

c132 =
1

2

(
∂M13

∂q2
+
∂M12

∂q3
− ∂M32

∂q1

)
= 0 (A.80)

c133 =
1

2

(
∂M13

∂q3
+
∂M13

∂q3
− ∂M33

∂q1

)
= 0 (A.81)

For link 2:

c211 =
1

2

(
∂M21

∂q1
+
∂M21

∂q1
− ∂M11

∂q2

)
= −0.5[2s2c2(

2I211 + 3I311 − 2I233 − 3I333)]

+m2r2c2(a1 − r2s2)−m3(s2c2(l2 + q3 − r3)2

−a1c2(l2 + q3 − r3)) (A.82)

c212 =
1

2

(
∂M21

∂q2
+
∂M22

∂q1
− ∂M12

∂q2

)
= 0 (A.83)

c213 =
1

2

(
∂M21

∂q3
+
∂M23

∂q1
− ∂M13

∂q2

)
= 0 (A.84)

c221 =
1

2

(
∂M22

∂q1
+
∂M21

∂q2
− ∂M21

∂q2

)
= 0 (A.85)

c222 =
1

2

(
∂M22

∂q2
+
∂M22

∂q2
− ∂M22

∂q2

)
= 0 (A.86)

c223 =
1

2

(
∂M22

∂q3
+
∂M23

∂q2
− ∂M23

∂q2

)
= m3(l2 + q3 − r3) (A.87)

c231 = 0 (A.88)

c232 =
1

2

(
∂M23

∂q2
+
∂M22

∂q3
− ∂M32

∂q2

)
= m3(l2 + q3 − r3) (A.89)

c233 = 0 (A.90)
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For link 3:

c311 =
1

2

(
∂M31

∂q1
+
∂M31

∂q1
− ∂M11

∂q3

)
= −m3(l2 + q3 − r3)s22 +m3a1s2 (A.91)

c312 = 0 (A.92)

c313 = 0 (A.93)

c321 = 0 (A.94)

c322 =
1

2

(
∂M32

∂q2
+
∂M32

∂q2
− ∂M22

∂q3

)
= m3(l2 + q3 − r3) (A.95)

c323 = 0 (A.96)

c331 = 0 (A.97)

c332 = 0 (A.98)

c333 = 0 (A.99)

Thus, the coriolis and centrifugal terms can be computed as:

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 (A.100)

with

C11 = q̇1c111 + q̇2c112 + q̇3c113

= q̇2[s2c2(
2I211 + 3I311 − 2I233 − 3I333)−m2r2c2(a1 − r2s2)

+m3(s2c2(l2 + q3 − r3)2 − a1c2(l2 + q3 − r3))]

+q̇3[m3(l2 + q3 − r3)s22 −m3a1s2] (A.101)

C12 = q̇1c121 + q̇2c122 + q̇3c123

= q̇1[s2c2(
2I211 + 3I311 − 2I233 − 3I333)−m2r2c2(a1 − r2s2)

+m3(s2c2(l2 + q3 − r3)2 − a1c2(l2 + q3 − r3))] (A.102)

C13 = q̇1c131 + q̇2c132 + q̇3c133

= q̇1[m3(l2 + q3 − r3)s22 −m3a1s2] (A.103)

C21 = q̇1c211 + q̇2c212 + q̇3c213

= q̇1[−0.5[2s2c2(
2I211 + 3I311 − 2I233 − 3I333)] +m2r2c2(a1

−r2s2)−m3(s2c2(l2 + q3 − r3)2 − a1c2(l2 + q3 − r3))] (A.104)
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C22 = q̇1c221 + q̇2c222 + q̇3c223

= q̇3[m3(l2 + q3 − r3)] (A.105)

C23 = q̇1c231 + q̇2c232 + q̇3c233

= q̇2[m3(l2 + q3 − r3)] (A.106)

C31 = q̇1c311 + q̇2c312 + q̇3c313

= q̇1[−m3(l2 + q3 − r3)s22 +m3a1s2] (A.107)

C32 = q̇1c321 + q̇2c322 + q̇3c323

= q̇2[m3(l2 + q3 − r3)] (A.108)

C33 = q̇1c331 + q̇2c332 + q̇3c333

= 0 (A.109)

Next, we formulate the gravity terms:

G(~q) =

G1

G2

G3

 (A.110)

with

G1 =
∂U

∂q1
= m1r1g1s1 −m1r1g2c1 +m2g1(a1s1 − r2s1s2)−m2g2(a1c1

−r2c1s2) +m3g1(a1s1 − (l2 + q3 − r3)s1s2)−m3g2(a1c1

−(l2 + q3 − r3)c1s2) (A.111)

G2 =
∂U

∂q2
= m2r2g1c1c2 +m2r2g2s1c2 +m2g3r2s2 +m3(l2 + q3 − r3)g1c1c2

+m3(l2 + q3 − r3)g2s1c2 +m3g3(l2 + q3 − r3)s2 (A.112)

G3 =
∂U

∂q3
= m3g1c1s2 +m3g2s1s2 −m3g3c2 (A.113)

Using the inertial, coriolis, and gravitational terms formulated above, as well as the

Jacobian, we compute the equation for the dynamics of the MM3A as:

M(~q)~̈q + C(~q, ~̇q)~̇q +G(~q)− JT (~q)~f = ~τ (A.114)
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