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Abstract Piezoelectric stick-slip actuators have become the foundation of modern
micromanipulation. Due to difficulty in closed-loop control with manipulators that
use piezoelectric stick-slip actuators, methods for open-loop control with a human
in the loop have been developed. The utility of such methods depends directly on
the accuracy of the open-loop models of the manipulator. Prior research has shown
that modeling of piezoelectric actuators is not a trivial task as they are known to
suffer from nonlinearities that degrade their performance. In this paper, we study the
effect of static (non-inertial) loads on a prismatic and a rotary piezoelectric stick-slip
actuator, and obtain a model relating the step size of the actuator to the load. The
actuator-specific parameters of the model are calibrated by taking measurements in
specific configurations of the manipulator. Results comparing the obtained model to
experimental data are presented.

1 Introduction

Micromanipulation deals with small motions on the order of 10−3 to 10−6 m. Un-
der the guidance of electron and optical microscopes, micromanipulation is now
commonly used in the areas of MEMS construction and characterization, isolation
and characterization of individual materials, and manipulation of single cells. The
development and use of commercial manipulators like the Kleindiek MM3A [3],
the Zyvex Nanomanipulator [5], Imina Technologies miBot [2], SmarAct Actuators
[4], and the Attocube Nanopositioners [1] has increased with the demand for precise
standardized tools for micromanipulation.

Piezoelectric stick-slip actuators have become the foundation of modern micro-
manipulation due to their simple structure, high positional accuracy, unlimited mov-
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able distance, and high stability due to support by guiding surfaces [10]. Due to their
useful characteristics, these actuators have been extensively used in manipulation of
micro/nano-sized objects, medical devices, camera lens actuation systems, and in
bio-sciences [7, 19]. These actuators consist of a piezoelectric element and a sliding
mass that moves relative to the piezoelectric element (Fig. 1). Typically, these actu-
ators have no sensor feedback (with the exception of SmarAct Actuators [4]), and
hence, the individual joints of the manipulators are controlled open-loop, using one
knob per joint. Due to difficulty in implementing real-time closed-loop controller-
s (which are generally based on vision feedback [9, 11]) for micromanipulators,
methods to control them open-loop that capitalize on the intelligence of the human
user are being developed [17, 20]. The utility of such methods depends directly on
the accuracy of the open-loop models of the manipulator used.

Modeling of piezoelectric actuators is not a trivial task as they are known to
suffer from nonlinearities such as hysteresis, creep, and drift, which degrade their
performance [14, 12, 16]. A number of researchers have mathematically modeled
the dynamics of piezoelectric stick-slip actuators [6, 8]. Peng et al. [18] used a pre-
sliding friction model to explain the dynamics of stick-slip actuators, and obtained
an empirical model for the effect of end-effector mass on the step size of the actuator.
Lockwood et al. [15] found that when gravitational force was acting parallel to the
axis of their stick-slip actuator, the step size and corresponding displacement rate
in the downward direction was observed to be 14.7% greater than in the upward
direction. Thus, it is known that static (i.e., noninertial) loads in the direction of
motion of the actuator increases the step size and vice-versa. However, this effect
has not been well characterized in the past.

In this paper, we study the effect of static loads on a prismatic and a rotary piezo-
electric stick-slip actuator, obtain an empirical model relating the step size to the
load, and develop a method to calibrate the parameters of the empirical model us-
ing measurements from the actuators. The modeling experiments presented herein
were performed for the coarse (stepping) mode of operation of the actuator (Fig.
1). The empirical models derived can be used with algorithms developed in [17] to
perform intuitive teleoperation of the micromanipulator’s end-effector, rather than
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Fig. 1 Functional description of a piezoelectric stick-slip actuator. A saw-tooth voltage is applied
to the piezoelectric element. As the voltage slowly increases from 1 to 2, the piezoelectric element
stretches by a distance D, and due to friction between the piezoelectric element and the sliding
mass, the sliding mass also advances (stick phase). When the voltage is quickly reduced from
2 to 3, the piezoelectric element quickly shrinks, but the inertia of the sliding mass prohibits it
from moving backward as quickly, resulting in a net forward displacement of the sliding mass of
d < D (slip phase). This is also known as the coarse mode of operation of the actuator. In the fine
(traditional) mode, the voltage signal between 1 and 2 is controlled to achieve fine positioning.



Static-Loading Effects on Micromanipulators 3

controlling individual joints. With piezoelectric stick-slip actuators, the step size is
stochastic, with a hard-to-model variance about a load-dependent mean. The method
presented in this paper deals with modeling this mean. The method is primarily de-
signed to provide an accurate estimate of the size of the next commanded step, such
that a user’s desired motion command can be accurately mapped to a required num-
ber of joint steps. Having a more accurate model of joint stepping could also lead to
a method to estimate the joint configuration in manipulators without joint sensing,
but such estimation methods would be subject to drift, and as such would need to
incorporate additional sensing methods to be useful in practice.

2 Technical Approach

The commonly used Kleindiek MM3A manipulator is used in this study (Figs. 2 and
3). It has three degrees of freedom (DOF) with two rotary joints and one prismatic
joint, which use piezoelectric stick-slip actuators. Due to the discrete step nature
of these actuators, as well as the MM3A’s controller, commands are given in the
form of number of steps to be taken along a given joint. The joints of the MM3A
lack sensor feedback, hence, it is difficult to obtain accurate measurements of the
step size. To study the effect of static loads on the step size of a joint j, we use the
average step size given by:

γ ji =
R j

N ji
(1)

where R j is the total range of joint j (4π/3 rad for the rotary joints and 12 mm for
the prismatic joint), N ji is the total number of steps required by joint j to travel
through R j, and i ∈ {+,−} indicates the direction of joint motion.

As the step size for each joint is small (on the order of 1 µm), it is difficult
to visually detect when a joint reaches its end of travel. However, the actuators
make a distinct noise when they hit a mechanical stop. This knowledge is used
to develop an audio limit switch that detects the end of travel for a joint. Custom
software monitors the sound from a microphone at each instant and computes the
Fast Fourier Transform (FFT) of the audio signal. The change in sound when a joint
hits a mechanical stop is detected as a peak in the power of the FFT. The frequency
at which this peak occurs, and the intensity of the peak, is different for each joint
and has to be tuned before each experiment.

By measuring γ ji at different configurations of the manipulator, we study the
effect of gravitational loads on the rotary and the prismatic joint (no other external
forces are acting on the manipulator). Because an individual joint cannot distinguish
a gravitational load due to the distal links from an equivalent load due to a force
applied at the end-effector (passing through the manipulator’s Jacobian), our results
generalize to all static (i.e., noninertial) loads. Nonlinear regression is used to fit a
function, based on our knowledge of the load acting on the actuator, to the empirical
data, to obtain a relation for the step size of the form γ ji = Γji(g,α ji), where α ji is a
set of actuator specific parameters, and g is the gravity vector. The actuator specific
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parameters α ji of the model are then calibrated for by using γ ji measurements at
selected configurations for each joint. Significance of unmodeled factors such as
change in environmental conditions from day to day are analyzed by performing
ANOVA on the data obtained for γ ji.

3 Results

This section contains the main empirical modeling results of this paper. The experi-
ments that were conducted to obtain these results are detailed in Section 4.

3.1 Effect of unmodeled factors

Environmental conditions (e.g., temperature, humidity) are uncontrolled in our ex-
periments, so we will not incorporate these factors into our model (although it is
possible that they could be incorporated in the future [13]). To minimize these un-
modeled effects on the open-loop control of the Kleindiek MM3A, we propose to
calibrate the joints before each session of use. This assumes that there is a significant
change from day to day that warrants such recalibration. To substantiate this claim,
the average step size for prismatic joint 3 and the rotary joint 2 in the positive (γ3+
and γ2+) and negative (γ3− and γ2−) directions were taken on two different days,
which would incorporate a change in environmental conditions. The positive direc-
tion for the prismatic joint means moving out from 0 mm to 12 mm as defined by the
z2 direction. For the rotary joint, the positive direction is defined by the right-hand
rule about the z1 axis. For the prismatic joint, the configuration of the manipulator
was kept constant at q2 =−π/2, θ = 0, and ψ = 0 on both days, and three readings
each of the step size values γ3+ and γ3− were taken on each day. For the rotary
joint, γ2+ and γ2− was recorded at q3=0 mm, θ = −π/2, and ψ = 0. In these con-
figurations, there is no effect of gravity on the joint being investigated, isolating the
unmodeled factors of interest.

Fig. 2 Kleindiek MM3A. With the
z0 axis initially vertical, the base
frame is rotated by θ about x0 and
then rotated by ψ about the new y0.
(a) Isometric view at θ = 90◦. No
gravitational loads acting on joints
2 or 3. (b) Side view at θ = 0◦, with
gravitational loads acting on both
joints 2 and 3. ζ = ψ−q2.
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Fig. 3 The Kleindiek MM3A manipulator is shown at different orientations. (a) q2 =−π/2, θ = 0,
and ψ = 0; (b) q2 =−π/2 and ψ = 0 at a particular θ ; (c) q2 =−π/2 and θ = 0 at a particular ψ .

An ANOVA test on the data shows that the difference in step size on different
days is statistically significant (p < 0.05) for both positive and negative directions
for both the prismatic and the rotary joints. The ANOVA test also shows a significant
difference in the step size between the positive and negative directions within a given
day for both joints. Thus, calibration is recommended each time the manipulator is
to be used, and different calibration parameters should be found for each direction
of motion.

3.2 Modeling of a prismatic joint

Fig. 4 shows the results for the modeling experiments on the prismatic joint. The
gravitational load on the prismatic joint is varied by changing the angles q2, θ , and
ψ (see Fig. 2). Curve 1 in Fig. 4a shows γ3+ recorded at θ =−π/2 such that there
is no load due to gravity along the joint regardless of q2. At q2 = −π/2 on curve
1, the entire structure of the manipulator is aligned with the axis of the prismatic
joint, absorbing the recoil caused due to the quick stepping nature of the actuator,
resulting in a maximum value for γ3+. The result from curve 1 is converted into an
efficiency factor as:

ηi(q2) = 1−bi|cosq2| (2)

Joint 3 has a maximum stepping efficiency of 1 at q2 = −π/2. The reduced step
size (i.e., the reduction in stepping efficiency) at values of q2 other than −π/2 is
likely due to the component of the recoil force of the actuator acting perpendicular
to the link connecting joint 1 to joint 2 causing a small deflection in the link (which
is not infinitely rigid). This effect is captured by the |cos(q2)| term in ηi(q2). The
free parameter bi captures the loss of stepping efficiency when the prismatic joint is
fully perpendicular to the maximum-efficiency configuration.

To isolate the effect of gravity without any loss of stepping efficiency due to
recoil, q2 is fixed at −π/2 such the manipulator arm is always outstretched, and the
gravitational load is changed by varying ψ; results of this experiment are shown by
curve 2, which is the pure effect of gravity on γ3+. Results for γ3− are similar to
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Fig. 4 (a) Experimental data for the step size of the prismatic joint (γ3i) as a function of ζ , plotted
at θ = 0 and −π/2, with data recorded on three different days. (b) Model equation fitted to exper-
imental data for a single day (Day 1) at θ = 0 and −π/3, with ψ = 0. Calibrated parameter values
of a+ = 972, b+ = 0.27, c+ = 372, a− = 899, b− = 0.25, and c− = −436 were found using the
three calibration configurations described in the text.

γ3+, but mirrored about ζ = π/2 as can be been from curves 3 and 4 in Fig. 4a,
indicating that moving joint 3 outward with ζ = 0 is equivalent to moving joint 3
inward at ζ = π .

We hypothesized a model that combines the information in curves 1 and 2 as:

γ3i = ηi(q2)(ai− ci cos(ζ )cos(θ)) (3)

The model has six actuator-dependent parameters (α3 = {a+,a−,b+,b−,c+,c−})
that can be identified by measuring γ3+ and γ3− at the three different configurations:
(q2,θ ,ψ) = (−π/2,0,0), (0,−π/2,0), and (0,0,0). This process of finding the
free parameters for the prismatic joint is explained in Section 3.3. The parameter
ai represents the basic step size of the joint when no gravitational load or recoil
inefficiency is acting on the joint, measured at (−π/2,0,0). It can be seen that curve
1 and curve 2 intersect at the value of ai. The term ci cos(ζ )cos(θ) is a function of
the component of the gravitational load due to the weight of the distal link acting
along the axis of the joint. The parameter bi was defined above.

3.3 Calibration procedure for a prismatic joint

The step size model for the prismatic joint as described in Eq. 3 has six unknown
parameters that can be calibrated for by taking six measurements of γ3i as shown in
Fig. 5. For simplicity, the average step size at a known configuration of q2, θ , and
ψ is denoted by γ3i(q2,θ ,ψ). The following procedure is used to identify the six free
parameters α3 = {a+,a−,b+,b−,c+,c−} of the prismatic joint:
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Fig. 5 Calibrating configurations (in sequence) for identifying the six unknown parameters of the
model of the prismatic joint (joint 3). (a) ai is calculated by measuring γ3i at (q2,θ ,ψ) = (-π/2,0,0),
(b) bi is calculated using ai calculated in the previous step and γ3i at (q2,θ ,ψ)= (0,-π/2,0), and (c)
ci is calculated using the values of ai and bi above, and γ3i at (q2,θ ,ψ)= (0,0,0).

1. First, γ3+(−π/2,0,0) and γ3−(−π/2,0,0) are measured at (q2,θ ,ψ) = (−π/2,0,0)
and by substituting in Eq. 3, we find parameter ai of the model by the following
relation:

ai = γ3i(−π/2,0,0) (4)

2. Next, γ3+(0,−π/2,0) and γ3−(0,−π/2,0) are measured at (q2,θ ,ψ) = (0,−π/2,0)
and using Eq. 3 and the calculated value of ai, we find parameter bi using the
following relation:

bi = 1−
γ3i(0,−π/2,0)

ai
(5)

3. Finally, γ3+(0,0,0) and γ3−(0,0,0) are measured at (q2,θ ,ψ) = (0,0,0), and by sub-
stituting these values in Eq. 3 along with ai and bi, we find parameter ci using the
following relation:

ci = ai−
γ3i(0,0,0)

1−bi
(6)

The order of the three steps above, which correspond to steps (a), (b), and (c),
respectively, does not have to be carried out in any specific order. In practice, it may
be more efficient to conduct the calibration in a different order that requires less
joint movements (e.g., (b), (c), (a)).

Fig. 4b shows the model plotted against experimental data for a single day at
θ = 0 and −π/3 with ψ fixed at 0. The value of θ = −π/3 is not included as one
of the calibration configurations mentioned above, yet the model captures the step
size of the joint as a function of the configuration. We observe similar results in oth-
er configurations. Thus, the calibrated parameters can completely characterize the
effect of the load due to gravity on the prismatic joint in any arbitrary configuration
of the manipulator.



8 Aayush Damani, Manikantan Nambi, and Jake J. Abbott

3.4 Modeling of a rotary joint

Two experiments were performed to study the effect of gravitational loads on the
rotary joint 2 (in an effort to study static loading in general). In experiment 1, θ is
kept at −π/2 such that there is no load due to gravity on the joint, in an attempt to
verify that the joint has a consistent behavior throughout its range of motion if other
factors are controlled. Variation in γ2i is studied in different sub-ranges of q2, for
q3 = 0 mm and 12 mm. From the results of experiment 1, it is safe to conclude that
the step size of the rotary joint is relatively constant throughout its range of motion
when no load due to gravity is acting on the joint, since the variation in step size
for different values of q2 in this configuration is found to be less than ±2%, with no
discernible trend in the data. Fig. 6 shows the experimental results for experiment 2
in which θ is kept at zero such that there is load due to gravity on the joint; here the
gravitational load on joint 2 is a function of its own position q2.

The model for static loading on the rotary joint is derived based on the physics
that, if θ = 0, the torque on joint 2 is related to gravitational loads as τ2 ∝ gsin(q2),
where g is the acceleration due to gravity; the constant of proportionality is related
to the mass and lengths of the distal links, which are unknown to us. The empirical
model to predict the step size for the rotary joint is formulated as:

γ2i = γ2i,θ=±π/2 +di sin(ζ ) (7)

where γ2i,θ=±π/2 denotes the direction-dependent step size of the rotary joint when
there is no effect of gravity on the link (i.e., at θ =±π/2), di is a free parameter that
denotes the maximum increase in step size over the baseline step size γ2i,θ=±π/2, and
ζ = ψ − q2 as described in Fig. 2. We assume that the step size at θ = −π/2 and
θ = π/2 would be equal to the step size at q2 = 0 and q2 = −π when ψ = θ = 0,
since there is no torque due to gravity on the joint in any of these cases.
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Fig. 6 Step size (a) γ2− and (b) γ2+ as a function of ζ at q3 = 0 and 12 mm, ψ = 0, and θ = 0. γ2i
is recorded for intervals of π/6 from −π/6 to 7π/6 and is plotted at the midpoint of each interval
as explained in Section 4.
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It can be seen that the nature of step size in the positive direction is an inverted
form of its nature in the negative direction. This is attributed to the fact that the
load due to gravity acts against the direction of motion of the joint in the positive
direction, and with it in the negative direction. Hence, the step size obtained in
the positive direction, γ2+, will be less than that obtained at θ = −π/2 where no
gravitation load is acting on the joint. The opposite holds true for the step size in
negative direction, γ2−. In other words, downward steps are bigger that horizontal
steps, which in turn are bigger than upward steps, as we would expect.

If the manipulator were to be tilted by an angle θ 6= 0, then the torque due to
gravity on joint 2 would become proportional to the cosine of the gravitational com-
ponent, such that the model of Eq. 7 should be modified as:

γ2i = γ2i,θ=±π/2 +di sin(ζ )cos(θ) (8)

3.5 Calibration procedure for a rotary joint

Fig. 7 shows the calibration sequence for rotary joint 2, which gives us values for
the joint-specific parameters, di and γ

2i,θ=±π/2
, for the rotary joint in the positive and

negative directions. For simplicity, the average step size at a known configuration
of q3, θ , and ψ is denoted by γ2(q3,θ ,ψ) unless otherwise mentioned. The following
procedure is followed to obtain the free parameter:

1. γ2−(0,0,0) and γ2+(0,0,0) are measured by driving joint 2 across its range from
q2 = π/6 to −7π/6 in the negative direction and then in the positive direction at
(q3,θ ,ψ) = (0,0,0).

2. The prismatic joint is then fully extended. γ2−(12,0,0) and γ2+(12,0,0) are measured
by driving joint 2 across its range from q2 = π/6 to−7π/6 in the negative direc-
tion and then in the positive direction at (q3,θ ,ψ) = (12mm,0,0).

3. The manipulator is then tilted by setting θ =−π/2 such that there is no gravita-
tional torque on joint 2. γ2−(12,−π/2,0) and γ2+(12,−π/2,0) are measured by driving
joint 2 across its range from q2 = π/6 to −7π/6 in the negative direction and
then in the positive direction at (q3,θ ,ψ) = (12mm,−π/2,0).

4. The prismatic joint is then fully retracted. γ2−(12,−π/2,0) and γ2+(12,−π/2,0) are
measured by driving joint 2 across its range from q2 = π/6 to−7π/6 in the neg-
ative direction and then in the positive direction at (q3,θ ,ψ) = (0mm,−π/2,0).

Since γ2 is a function of q2 at each instant, it not a trivial task to calculate the
parameter di from Eq. 8 by using the average step size values (γ2i) that are available
to us based on the entire range of motion. A simulation of the model shown in Eq.
8 was implemented wherein a number of different values of the free parameters
γ2i,θ=−π/2 and di were given to the simulation as inputs, and the simulation returns
the step size at each instant and the total number of steps required to move through
the joint’s entire range. The total number of steps obtained is then used to calculate
the simulated average step size γ2i,θ=0.
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Fig. 7 Calibrating configurations (in sequence) for identifying the six unknown parameters of the
model of the rotary joint 2. q2 is driven across its full range from π/6 to -7π/6 in the negative and
positive directions at (a) q3 = 0 mm, θ = 0, and ψ = 0; (b) q3 = 12 mm, θ = 0, and ψ = 0; (c)
q3 = 12 mm, θ =−π/2, and ψ = 0; and (d) q3 = 0 mm, θ =−π/2, and ψ = 0.

93

94

95

96

97

98

γ 2
-

ζ (rad)
π5π/62π/3π/2π/3π/60−π/6 7π/6

(µ
ra

d)

(a)

110
112
114
116
118
120
122
124

γ 2+
(µ

ra
d)

π5π/62π/3π/2π/3π/60
 ζ (rad)

−π/6 7π/6

(b)

Fig. 8 Simulated model of the step size of joint 2 in (a) the negative direction, and in (b) the positive
direction. The values of γ2,θ=0 and γ2,θ=−π/2 are fixed, and θ was kept at zero in simulation. The
nature of data obtained in simulation agrees with experimental results shown in Fig. 6.

Fig. 8 shows the simulation results obtained for the rotary joint after stepping q2
through its full range of motion from π/6 to−7π/6 for fixed arbitrary (typical) val-
ues of γ2i,θ=−π/2 and di. The figure shows the dependence of step size on the current
configuration. This validates our model of the rotary joint 2 with data observed in
experiments (Fig. 6). It was found that the difference between the two average step
size values γ2i,θ=0 and γ2i,θ=−π/2 have a quadratic relation with the free parameter
di as shown in Fig. 9. Irrespective of the individual values of γ2i,θ=0 and γ2i,θ=−π/2,
the free parameter value di remains the same (difference of less than 1 µrad) for the
same difference between the two step size values. The simulation was performed
such that the range of values for γ2i,θ=0− γ2i,θ=−π/2 obtained in simulation was
from −9.2 µrad to 9.2 µrad, because this was the range of γ2i,θ=0− γ2i,θ=−π/2 ob-
served in experiments. A relation for computing di was formulated by fitting the
simulation results obtained to a quadratic function as shown in Fig. 9. The equation
formulated using nonlinear least-squares regression is:

di = 3.41(γ2i,θ=0− γ2i,θ=−π/2)
2 +0.025(γ2i,θ=0− γ2i,θ=−π/2)

+6.42×10−7 (9)

From Fig. 6, we see that γ2i,θ=−π/2 and di are a function of q3, as q3 changes
the inertial load on joint 2. Different values of di can be calculated when q3 = 0
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Fig. 9 Variation of the free parameter di with respect to change in difference between γ2i,θ=0
and γ2i,θ=−π/2 at different values of γ2i,θ=−π/2. The vertical dash lines represent the range of this
difference as observed in experiments.

and 12 mm using Eq. 9, and the effect of changing q3 is reflected in the values of
γ2i,θ=0 and γ2i,θ=−π/2. The relation between di and q3 cannot be derived with just
two data points, and this change in step size due to inertial loading will be studied
in the future, but we find a simple linear interpolation provides accurate results.

Fig. 10a-d shows the predicted model for γ2i after computing di via calibration
against experimental data collected on a single day with q3 = 0 and 12 mm. Fig.
10e-f shows the data collected at θ =−π/4 which is used to test the validity of the
model for θ 6= 0. The predicted models obtained after calibration are found to be
accurate to within 1 µrad (±2%). Thus, the free parameters for the rotary joint can
be calibrated for by using eight γ2i measurements.

4 Experiments
The experiments in this paper were designed to isolate and study the effect of static
loads on the rotary and prismatic joints of a Kleindiek MM3A. The gravitational
load acting on the prismatic joint (joint 3) along the direction of its motion can be
described by the angles q2, θ , and ψ (Fig. 2). To study the effect of gravity on the
prismatic joint, data was recorded in two different experiments. For each value of
q2, θ , and ψ , γ3+ was first recorded followed by γ3−. In experiment 1, γ3+ and
γ3− were recorded at different values of q2 and θ in the range of 0 to π and 0
to −π/2, respectively, in increments of π/6 with ψ fixed at 0. For each value of
q2, data was recorded for different values of θ before moving on to the next value
of q2. In experiment 2, q2 was fixed at −π/2 (outstretched) and the gravitational
load was varied by changing ψ , with θ = 0. γ3+ and γ3− were recorded for one
condition in experiment 1 followed by the corresponding condition in experiment
2, before recording data for the next condition in both experiments. This distributes



12 Aayush Damani, Manikantan Nambi, and Jake J. Abbott

99

98

97

96

95

94   
   

 γ
2-

 (µ
ra

d)

ζ (rad)
π5π/62π/3 π/2π/3π/60

Exp. data: γ2- at q3=0 mm 
Pred. model: γ2- at q3=0 mm 

(a)

 

116

114

112

110   
   

 γ
2+

 (µ
ra

d)

ζ (rad)
π5π/62π/3 π/2π/3π/60

Exp. data: γ2+ at q3=0 mm 
Pred. model: γ2+ at q3=0 mm 

(b)

100

95

90

85

80

   

   

   
   

 γ
2-

 (µ
ra

d)

ζ (rad)
π5π/62π/3 π/2π/3π/60

Exp. data: γ2- at q3=12 mm 
Pred. model: γ2- at q3=12 mm 

(c)

90

85

80

75

   
   

 γ
2+

 (µ
ra

d)

ζ (rad)
π5π/62π/3 π/2π/3π/60

Exp. data: γ2+ at q3=12 mm 
Pred. model: γ2+ at q3=12 mm 

(d)

98

97

96

95

94

93

  

     

   
   

 γ
2-

 (µ
ra

d)

ζ (rad)
π5π/62π/3 π/2π/3π/60

Exp. data: γ2- at q3=0 mm 
Pred. model: γ2- at q3=0 mm 

(e)

116

114

112

110

   
   

 γ
2+

 (µ
ra

d)

ζ (rad)
π5π/62π/3 π/2π/3π/60

Exp. data: γ2+ at q3=0 mm 
Pred. model: γ2+ at q3=0 mm 

(f)

Fig. 10 (a) Model equation fitted to experimental data taken on a single day for γ2i at (a) q3 =
0 mm, θ = 0, ψ = 0 in the negative direction, with d−=3.83 µrad (b) q3 = 0 mm, θ = 0, ψ = 0 the
in positive direction, with d+=-8.15 µrad (c) q3 = 12 mm, θ = 0, ψ = 0 in the negative direction,
with d−=23.94 µrad(d) q3 = 12 mm, θ = 0, ψ = 0 in the positive direction, with d+=-19.40 µrad
(e) q3 = 0 mm, θ = −π/4, ψ = 0 in the negative direction, with d−=6.91 µrad (f) q3 = 0 mm,
θ =−π/4, ψ = 0 in the positive direction, with d+=-10.24 µrad.

any drift in γ3+ and γ3− due to time equally in both experiments. One trial for
each condition in both experiments was taken per day for three consecutive days
to take into account the effect of unmodeled changes in environmental conditions.
Curves 1 and 3 in Fig. 4a are obtained from γ3+ and γ3−, respectively, recorded in
experiment 1 using the values when θ = −π/2, for all three days. Curves 2 and
4 are obtained from γ3+ and γ3−, respectively, recorded in experiment 2. Fig. 4b
shows γ3+ and γ3−for experiment 1 recorded on Day 1 when θ = 0 and−π/3. Data
from experiments 1 and 2 performed on the same day were used to derive the model
parameters shown in Fig. 4b.
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For modeling a rotary joint, two experiments were performed on joint 2. Initially,
γ2+ and γ2− was measured for the entire range of motion for the joint with q3 =
0 mm and 12 mm. Using a custom-made fixture, joint 2 was then moved in intervals
of π/6 for q2 from 0 to π and γ2i was calculated for each interval. The average step
size of each interval is assumed to be the step size at the midpoint of the interval
as shown in Fig. 6. This allows us to study the variation in γ2i as a function of q2.
γ2i was recorded in both negative (γ2−) and positive (γ2+) directions. In experiment
1, the mentioned sequence of collecting data was performed at θ = −π/2. When
θ = −π/2, there is no torque due to gravity on the rotary joint, and the step size
observed is purely due to the inertial load on the joint and the inherent properties of
the actuator. In experiment 2, θ is kept at zero. A gravitational torque is present on
the rotary joint, and the step size obtained is influenced by gravitational loading on
the joint. One set of data for both experiments was recorded on three different days.
Fig. 6 shows the results for γ2i in experiment 2 for all three days, with θ = 0. Fig.
10a-d shows the data for γ2i from experiment 2 for a single day with the predicted
model fitted to the experimental data. An additional set of data was recorded at
θ =−π/4 to check the validity of the model described in Eq. 8, the results of which
are shown in Fig. 10e-f.

5 Main Experimental Insights
From the experiments performed in this paper, it was concluded that the step
size of a piezoelectric stick-slip actuator can be modeled as having two summed
components—a baseline step size that occurs when there is no static load acting on
the joint, and a positive/negative contribution due to any static load acting on the
joint—and that this two-component step size must be modified to account for the
manipulator being in a configuration in which its compliance decreases the efficien-
cy of the stick-slip movement.

Models relating the step size to the static loads were developed for a prismatic
(joint 3) and a rotary joint (joint 2) of the Kleindiek MM3A. The actuator-specific
parameters of the model can be calibrated for by taking 14 measurements of the
average step size (6 for the prismatic joint and 8 for the rotary joint) in specific
configurations of the manipulator. The models can accurately predict the step size
of the joints at a given manipulator configuration. Kleindiek does not provide spec-
ifications for step size of the joints of the MM3A, so we compare the accuracy of
our model to a simpler constant-step-size model when there is no static load acting
on the joints, i.e., γ3i at (q2,θ ,ψ)=(−π/2, 0, 0) for the prismatic joint, and γ2i at
(q3,θ ,ψ)=(0,0,0) for the rotary joint. The maximum error in the developed model
is approximately 15% for the prismatic joint, and 2% for the rotary joint, as com-
pared to 40% and 7% for the prismatic and rotary joints, respectively, when using
the constant-step-size model. Changes in environmental conditions have an effect
on the parameters of the model; consequently, the model for the joint parameters
should be recalibrated each day.
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Fig. 6 shows that there is a significant effect of the joint 3 variable q3 on the
step size of the rotary joint 2. Also, γ2i,θ=−π/2 and di are functions of q3. This is
expected, as a change in q3 will lead to a change in inertial load on joint 2 and a
change in the step size of joint 2. The effect of inertial loads on the step size are not
addressed herein and will be studied in the future.

Joint 1 is another rotary joint with the same range as joint 2 and having the
same properties except for the change in static load value. Hence, the model and
calibration routine for joint 2 can be extended to joint 1. The only difference in the
calibration routine would be that at θ = 0 there is no effect of gravity on joint 1,
while at θ = −π/2 the gravity is perpendicular to the joint axis. So, in short, the
definition of the terms, γ2i,θ=0 and γ2i,θ=−π/2 would be interchanged.

Models developed in this paper for the step size of piezoelectric stick-slip actua-
tors are not perfect. Hence, when these models are used in teleoperation algorithms
like the one proposed in [17], there will be drift in the position of the end-effector
due to the accumulation of error in the model. However, this problem can be over-
come as recently developed piezoelectric actuators have sensors with micro- and
nanometer resolution [4]. This sensor feedback could be used to remove drift in the
position, but the models of step size will still be necessary to command multiple
steps in a single command to the joint before sensor feedback is obtained.

The experiments in this paper were performed in a room without tight climate
control. When using the manipulator inside an SEM, frequent recalibration might
not be necessary, since the manipulator will be in a vacuum. However, the audio
limit switch used to detect end of travel will not work in a vacuum, and will need to
be replaced by an accelerometer-based sensor mounted on the manipulator (when
sensor feedback is not available) to detect the end of travel during calibration.The
experiments in this paper were performed using a Kliendiek MM3A, but we expect
the results to generalize to other similar devices that utilize peizoelectric stick-slip
actuators.
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