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Hue/Saturation channels are used in order to segment the

lumen, nerves and endoscope in the spinal coord, and in

[12], Hue and Homogeneity are used to segment endoscopic

images. We are mainly interested in tracking microtools in

the posterior of the human eye. In this paper colorspace

selection is performed as a preprocessing step based on

training data.

A. Colorspace Evaluation

The object of interest Ωoj
is manually segmented from j =

1 . . . k images. The complement of this region, Ωbj
, corre-

sponds to the background in the images. Using the segmented

regions, the object’s and background’s joint-histograms for

the channels/colorspace of interest are calculated, resulting

in the probabilities P
(

u | x ∈ Ωo

)

, and P
(

u | x ∈ Ωb

)

,

where x is the pixel of interest, Ωo is the object region, Ωb

is the background region, and u(x) ∈ R
n is the observed

intensity values vector for the n channels of interest. We

define an extended region Ωej
= Ωoj

⊕ ω where ω is the

structural element of preference, such that Ωoj
⊂ Ωej

. The

set Ωnj
= Ωej

\ Ωoj
corresponds to the background in the

object neighborhood in image j.

The simplest object-from-background separation criterion

is a decision function F (u(x)) : R
n → R, where the pixel

x is classified as belonging to the object (F > 0) or as

belonging to the background (F < 0). The value of this

function is based on the previously calculated probabilities.

The desired colorspace is the one that minimizes the

misclassifications of background pixels as object pixels,

while maximizing the correct classifications. We consider as

object pixels the region Ωoj
in each image. The colorspace

quality for each image j is calculated by:

rj = co + cn − mo − mn (1)

where co is the ratio of correct object classifications to object

size (in pixels), cn is the ratio of correct neighborhood

classifications to neighborhood size, and mo, mn the re-

spective misclassification ratios. By comparing the mean and

variance of r for different colorspaces, the most appropriate

colorspace can be selected.

B. Maximum Separability Thresholding

The classification of a pixel as belonging to the object or

the background depends on the value of the decision function

F . Instead of using a binary criterion for the classification,

we estimate decision thresholds above which a pixel is

treated as part of the object, and below which a pixel is

considered as part of the background. For values between the

two thresholds, no direct decision should be made. However,

a decision can be made based on the neighbors, similar to the

hysterisis thresholding of Canny’s algorithm. The thresholds

are estimated by minimizing, for each segmented image and

colorspace, the objective function:

rj(tl, th) = (co − 1)2 + (cn − 1)2 + m2
o + m2

n (2)

where tl and th are the lower and higher thresholds, respec-

tively. Minimizing this function for each image for different
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Fig. 2. The sets of pixels where the level-set function is updated. C
is the propagating front. This level-set function could represent a tracked
microrobot and an erroneously segmented part of the background.

colorspaces ensures the maximum correct classifications and

the minimum misclassifications. The thresholds for each

colorspace are finally averaged and can be used for more

accurate pixel classification, together with the appropriate

colorspace representation. Depending on the significance of

each term of (2), weights can be added.

III. LEVEL SET TRACKING USING STATISTICAL

COLOR/SHAPE INFORMATION

The most common approaches in tracking use active

contours, evolving either as parameterized snakes [13], or

as higher-order level-set functions [14]. The first approach

is computationally efficient, but needs explicit methods to

handle reparameterization and topology changes. The second

approach is independent of topology and parametrization,

but is computationally more complex. Recently, a real-time

tracking algorithm based on level sets has been proposed

[15], and thus, the computational complexity of tracking

using level sets can be overcome.

A. Real-Time Tracking Using Level Sets

The efficacy of the algorithm in [15] lies in the idea

that instead of updating the full level-set function, one can

update pixels near the propagating front, similarly to the

narrow band algorithm presented in [14], or the HERMES

algorithm presented in [16]. The algorithm [15] also avoids

the computational overhead of solving the curve evolution

PDE. The propagating front pixels belong to two sets (see

Fig. 2):

Lout = {x | φ(x) > 0, ∃y ∈ N4(x) such that φ(y) < 0},

Lin = {x | φ(x) < 0, ∃y ∈ N4(x) such that φ(y) > 0}

where N4(x) are the 4-connectivity neighbors of x, and φ

is a level-set function:

φ(x) =



















+3 if x is an exterior pixel,

+1 if x ∈ Lout,

−1 if x ∈ Lin,

−3 if x is an interior pixel.

Two procedures switch in() and switch out() are defined:

• switch in(x) switches the pixel x ∈ Lout to Lin, and

adds its 4-neighboring exterior pixels to Lout.
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• switch out(x) switches the pixel x ∈ Lin to Lout, and

adds its 4-neighboring interior pixels to Lin.

The evolution of the sets is carried out in two cycles:

• Cycle One: The decision whether a pixel x from Lin

and Lout should be switched depends on function F . A

decision function can be F = log
(

P (u(x)|Ωo)
P (u(x)|Ωb)

)

, where

u(x) is the feature vector defined at pixel x, Ωo is the

object of interest, and Ωb is the background. The prob-

abilities are calculated based on the joint-probability

histograms that are determined in the training phase,

and the features used correspond to the channels of the

colorspace that exhibited the maximum quality in Sec.

II-A. A pixel x belonging to Lout is passed to switch in

if F (x) > th, and a pixel x belonging to Lin is passed

to switch out if F (x) < tl. The thresholds tl and th are

calculated in the preprocessing step of Sec. II-B. This

is a deviation from the original algorithm of [15], and

increases the tracking robustness.

• Cycle Two: The switches occur depending on smooth-

ness restrictions. Instead of smoothing the whole level-

set function, only the values at Lout and Lin are

smoothed (see [15] for details).

The presented tracking algorithm makes use of statistical

color information based on training images, but does not

use information about the shapes of the objects of interest.

We further increase the tracking robustness by adding a third

evolution cycle so that the evolving curve resembles a known

shape. In this way, desired objects can be segmented from

noisy environments using both color and shape information.

B. Creating a Statistical Shape Model

Algorithms that use known shape information (shape

prior) consist of three stages. At the first stage, a training

set is created from representations of the desired object.

These object representations can be the ones that are used in

order to create the joint-probability histogram required for

tracking. In order for the images to be used for the shape

prior extraction, they should be registered. We register the

level-set surfaces corresponding to the binary images of the

segmented objects [17], using the method presented in [18]

for the 2D translation registration, followed by scale and

rotation registration.

The second stage consists of creating a model of the

desired object. In [19], the singular value decomposition

of a matrix consisting of the vectorized registered level-set

functions results in the extraction of eigenshapes. A linear

combination of eigenshapes creates a shape prior with the

desired precision:

φ̄(a,p) = µ(p) +
k
∑

i=1

aivi(p) (3)

where φ̄ is the shape prior, µ is the mean level-set function, p

is a vector containing pose parameters, vi are the k extracted

eigenshapes, and a = {a1, . . . , ak} are the weights of the

eigenshapes. This representation of the shape prior enables

it to be used in a statistical fashion, and in accordance with

the level-set tracking algorithm of Sec. III-A.

The third stage consists of estimating the most probable

shape prior (i.e. estimate its eigenweights a and pose param-

eters p) based on the current evolving level-set function. In

[19], this problem is formulated as an a posteriori probability

maximization problem. We reformulate this approach in or-

der to make it fit the probabilistic evolution of the presented

tracking algorithm.

The best estimates for the shape eigenweights a, and pose

parameters p are given as:

〈a⋆,p⋆〉 = arg max
a,p

P (a,p | φ, I) (4)

where φ is the current level-set function, and I represents im-

age information (e.g. gradient, histogram). Based on Bayes’

rule, the previous equation can be rewritten as:

P (a,p | φ, I) =
P (φ | a,p)P (I | a,p, φ)P (a)P (p)

P (φ, I)
(5)

where for simplification it is assumed that pose and shape

are independent (no projective distortion), and thus, P (a)
and P (p) can be calculated separately.

Term P (φ | a,p) is the probability that a given level-set

function φ is observed based on shape-prior parameters a and

p (the estimated shape prior is φ̄(a⋆,p⋆) = φ⋆). Contrary

to [19], since the shape prior will be used for tracking, we

cannot assume that the evolving zero level set of φ lies inside

the estimated zero level set of φ⋆. The term can be equal to

the Laplacian of the difference between the current level-set

function, and the estimated shape prior:

P (φ | a,p) = exp(− ‖ φ − φ⋆ ‖) (6)

which takes its maximum value when φ and φ⋆ are identical.

Term P (I | a,p, φ) is the probability of observing certain

image features given the current and estimated level-set

functions. In [19], the observed feature in the image is the

gradient, whereas here, the features are the intensity values

of the channels of the chosen colorspace. The interior of the

estimated shape prior φ⋆ should have a color histogram that

is similar to the one of the evolving level-set function φ. As

a result, the value of this term can be the Laplacian of this

similarity:

P (I | a,p) = exp(− ‖ h − h⋆ ‖) (7)

where h and h⋆ are the joint-probability histograms for the

objects segmented by φ and φ⋆ respectively.

For the terms P (a) and P (p) in (5), we use [19]:

P (a) =
1

√

(2π)k | Σk |
exp

(

−
1

2
a
TΣ−1

k a

)

(8)

P (p) = U(−∞,∞) (9)

where Σk is a k × k diagonal matrix containing the eigen-

values corresponding to the extracted eigenshapes, and U

denotes the uniform distribution.

The denominator term of (5) has no dependency on

shape or pose, and can be disregarded from the probability

maximization.
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Fig. 5. Quality measure for the (a) RGB colorspace, and (b) HSV
colorspace. The lowest points in the graphs correspond to images where
the microrobot is occluding or in the vicinity of a retinal vein.

TABLE II

COLORSPACE MEAN QUALITY AND VARIANCE FOR DIFFERENT

CHANNEL COMBINATIONS

1 − 2 2 − 3 1 − 3

RGB 1.66 ± 0.03 0.53 ± 0.06 1.61 ± 0.05

YUV 1.52 ± 0.08 1.63 ± 0.05 1.64 ± 0.04

YIQ 1.63 ± 0.04 1.63 ± 0.03 1.56 ± 0.03

HSV 1.41 ± 0.06 1.66 ± 0.07 1.58 ± 0.06

XYZ 1.59 ± 0.06 1.50 ± 0.07 1.59 ± 0.06

nRGB 1.49 ± 0.05 1.47 ± 0.05 1.49 ± 0.05

channel combinations of typical colorspaces. The channels

R-G of the RGB colorspace are the most suitable for track-

ing, since they have the highest mean quality, and the lowest

quality variance. Another good selection is the channels Y-

V of the YUV colorspace. We also perform an experiment

using the H-S channels of the HSV colorspace, since this

selection is appropriate for other biomedical applications.

Figure 6(a) shows tracking results for the R-G channels, and

Fig. 6(c) shows the results for the Y-V channels; using the

best channels/colorspace leads to reduced vein segmentation.

Tracking in H-S leads to very poor results (see Fig. 6(e)).

Next, we impose calculated thresholds to the R-G (tl =
−0.17, th = 1.71), the Y-V (tl = −0.11 , th = 1.69), and

the H-S (tl = −0.77 , th = 0.77) tracking cases. Successfull

tracking occurs at ∼ 25 fps, and typical frames can be seen in

Fig. 6(b), Fig. 6(d), and Fig. 6(f), respectively. It can be seen

that in the R-G, and Y-V cases (i.e. when the chosen chan-

nels/colorspace exhibits high quality) thresholding increases

the tracking robustness. In the H-S case, the thresholds result

in the tracker losing the microrobot.

To accurately estimate the accuracy achieved, we establish

ground truth values by manually segmenting the microrobot

in 40 equally spaced frames. The microrobot’s contour is

an ellipse, and the relative errors are calculated with respect

to the ellipse’s center (Xc, Yc), the major (A) and minor

(B) axis, and the orientation angle (φ). Moreover, in order

to quantify the importance that thresholding has on a non-

optimal colorspace, we track the microrobot using the Y-U

channels of the YUV colorspace (tl = −0.13 , th = 1.64).

The errors can be seen in Table III, and show that even

though thresholding has a great impact on proper tracking,

carefully selecting both the colorspace and thresholds leads

to the best results.

Frame 44/250

3 mm

4.1 fps

(a)

Frame 44/250

3 mm

20.7 fps

(b)

Frame 44/250

3 mm

2.5 fps

(c)

Frame 44/250

3 mm

21.0 fps

(d)

Frame 44/250

3 mm

1.2 fps

(e)

Frame 40/250

3 mm

0 fps

(f)

Fig. 6. Tracking using (a), (b) the R-G channels of the RGB colorspace
without and with thresholds, respectively, (c), (d) the Y-V channels of the
YUV colorspace without and with thresholds, respectively, (e), (f) the H-S
channels of the HSV colorspace without and with thresholds, respectively.

TABLE III

TRACKING ERRORS FOR DIFFERENT COLORSPACES

δXc (pix) δYc (pix) δA (pix) δB (pix) δφ (deg)

RG 2.15 2.06 2.36 1.65 7.62

YV 2.03 2.20 2.38 1.82 8.26

YU 3.72 9.30 2.96 2.70 18.30

C. Tracking in a Model Eye Using Color/Shape Information

In the last experiment, we demonstrate the effect of track-

ing in the best colorspace using shape information. Although

the method presented in Sec. III-B may not be most appro-

priate for rigid bodies that exhibit projective distortion, in our

case, the shape variability of the microrobot projections can

be effectively captured with the extracted eigenshapes (we

use 4 eigenshapes). We track the microrobot using the R-G

channels of the RGB colorspace, and we impose relatively

lesser thresholds (tl = 0, th = 0.6) since this ensures

that the full microrobot is always detected even with some

misclassifications. The misclassifications are discarded by

the shape information. Figure 7 compares tracking in R-G,

and tracking in R-G using shape information; when shape

information is incorporated the results are improved.

3938



Color

Color/Shape

Frame 162 Frame 163 Frame 164 Frame 165 Frame 166 Frame 167 Frame 168 Frame 169 Frame 170 Frame 171

Original

Fig. 7. Tracking using color information and color/shape information, for different frame sequences.
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Fig. 8. Simulation for the localization algorithm of [6]. The different
surfaces correspond to common sensor position dls in mm, for uniform
sensor steps of ∼ 2.1 mm. The curves correspond to common pixel distances
from the optical axis for uniform steps of ∼ 2.3 mm.

V. CONCLUSIONS

In this paper we presented a complete approach to tracking

intraocular devices. Starting from colorspace evaluation, we

selected the colorspace and channels that carry the most

information. To decrease the chances of erroneous track-

ing, we introduced thresholds to maximize the object-from-

background separation. We extended an available real-time

level-set tracking algorithm to handle the thresholds and

shape information. The colorspace and threshold selection,

and the shape-prior extraction can be completed off-line.

We showed the effectiveness of our approach by tracking a

biomedical microrobot in silicone oil and in a model eye. For

realism, we used a custom-made ophthalmoscopic system,

available ophthalmic lenses, and an illumination apparatus

based on the transscleral illumination principles.

This tracking system will be incorporated into a system

to localize biomedical microdevices in the posterior of the

human eye. Since it tracks robustly under defocus, it can

provide focus information of the object of interest for input

to the algorithm of [6]. The position of the in-focus sensor

and the on-image position of the device will give the 6-DOF

pose of the tracked microdevice (see Fig. 8).
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