
DESIGN TOOLS FOR PULSE-FREQUENCY-MODULATED

CONTROL SYSTEMS: ERROR ANALYSIS AND

LIMIT-CYCLE PREDICTION

by

Jake J. Abbott

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

The University of Utah

December 2001

Copyright  Jake J. Abbott 2001

All Rights Reserved

ABSTRACT

The human nervous system uses pulse frequency modulation (PFM) to transmit

information. In PFM, a continuous signal is converted into a pulse stream with a

frequency that is proportional to the magnitude of the continuous signal. In an effort to

create electromechanical prostheses that better approximate human behavior, an

experimental neuroprosthetic arm has been designed to use the PFM signals obtained

directly from nerves for control. Control system design and analysis tools are needed for

systems containing PFM signals, which are poorly understood from a controls-

engineering perspective. This research gives qualitative and quantitative insight into the

behavior of PFM control systems.

This thesis is divided into four parts. First, three methods of pulse frequency

modulation that have previously been proposed are compared and found to be equivalent

for the control of a neuroprosthesis. Second, three methods of pulse frequency

demodulation (PFD) are considered, and the errors encountered with each method are

compared for frequencies relevant to the control of a neuroprosthesis. Unlike the PFM

methods considered, the PFD methods are not equivalent, and some methods are

obviously better choices than others. Third, a graphical limit-cycle prediction method is

developed for PFM control systems. This method uses a tabular frequency-dependent

describing function, and is shown to be accurate for many systems. Finally, the wrist of

the Experimental Neural Arm is modeled, and the limit cycles seen in experiments with

the wrist are compared to those predicted by the graphical limit-cycle predictor. The

predictor works well with the actual neuroprosthesis.

CONTENTS

ABSTRACT...iv

LIST OF TABLES...viii

ACKNOWLEGMENTS...ix

1. INTRODUCTION..1

2. COMPARISON OF PULSE FREQUENCY
 MODULATION METHODS...5

2.1 Sigma Pulse Frequency Modulation..6
 2.1.1 Integral Pulse Frequency Modulation..7

 2.1.2 Neural Pulse Frequency Modulation...9
 2.2 Voltage-to-Frequency Converter...11
 2.3 Unified States Sample & Hold...14
 2.4 Pulse Frequency Modulation Method Equivalency...19
 2.5 Effect of Discrete Sampling on Pulse Frequency Modulation.........................21
 2.6 Parallel-Path Single-Signed Pulse Frequency
 Modulation/Demodulation...24

3. COMPARISON OF PULSE FREQUENCY
 DEMODULATION METHODS..26

3.1 Period Measurement..27
 3.1.1 Idealized Period Measurement...28
 3.1.2 Effect of Discrete Sampling on Period Measurement..........................32

 3.2 Low-Pass Filtering of Pulses...36
 3.2.1 First-Order Low-Pass Filtering..37
 3.2.2 Second-Order Low-Pass Filtering..41

 3.2.3 Finite-Impulse-Response Filtering...46
 3.3 Fixed-Time Sampling Window..51
 3.4 Error Comparison of Pulse Frequency Demodulation Methods......................53

4. GRAPHICAL LIMIT-CYCLE PREDICTION..56

 4.1 Description of Graphical Method (Simple Loop)..56
 4.2 Tabular Describing Function with Post-Filtering Method...............................59
 4.3 Simple-Loop Examples with Simulation Comparisons...................................65

 4.4 Limit-Cycle Prediction Algorithm for Complex Loops...................................70
 4.5 Complex-Loop Examples with Simulation Comparisons................................72

5. GRAPHICAL LIMIT-CYCLE PREDICTION WITH
 EXPERIMENTAL NEURAL ARM WRIST..75

 5.1 Human/Arm System Model...77
 5.2 Wrist Model...78
 5.3 Two-Computer Amputee Simulation...87
 5.4 Graphical Limit-Cycle Prediction vs. Experimental Results...........................88

6. FUTURE WORK..97

6.1 Develop Better Model of Human/Arm System...97
 6.2 Consider Logarithmic Pulse Frequency
 Modulation and Demodulation..98
 6.3 Consider Demodulation of “Noisy” PFM Signals...98
 6.4 Include Stiffness Control...99
 6.5 Use Limit-Cycle Matching to Determine Human Parameters.........................99
 6.6 Use Error Envelopes for H-Infinity Design...100

7. CONCLUSIONS..101

Appendices

 A. PULSE FREQUENCY MODULATION SIMULINK MODELS
 AND MATLAB SCRIPTS..103

 B. PERIOD-MEASUREMENT PFD SIMULINK MODEL
 AND MATLAB SCRIPTS..112

 C. POST-FILTERING METHOD SIMULINK MODEL AND
 MATLAB SCRIPT..117

 D. GRAPHICAL LIMIT-CYCLE PREDICTION
 MATLAB SCRIPTS..122

REFERENCES..135

LIST OF TABLES

Table Page

 1. Equivalent Parameters of Equivalent PFM Methods...20

 2. Comparison of Errors for PFD Methods with 0.1-Second Settling Times54

 3. PPSSPFMD Equivalent Gain...63

 4. PPSSPFMD Equivalent Phase-Lag (degrees)..64

 5. Comparison of Graphically-Predicted and Simulated
 Limit Cycles for Simple Loop (kM = 20)...69

 6. Comparison of Graphically-Predicted and Simulated
 Limit Cycles for Complex Loop (kM = 20)..74

 7. Comparison of Graphically-Predicted and Experimental
 Limit Cycles in Experimental Neural Arm Wrist (kM = 200)................................96

ACKNOWLEDGMENTS

I would like to thank the Center for Engineering Design for generously funding

this research. I would like to thank Dr. Sanford Meek for giving me guidance when I

needed it, but freedom to choose the direction from which to approach this problem. I

would like to thank Mark Colton for help with a lot of little things that can quickly add

up. Finally, I would like to thank my wife Katie for her love and patience.

1

1. INTRODUCTION

The Utah Arm 2 is an electromechanical prosthetic arm that is currently

controlled using electromyographic (EMG) signals measured from the surface of the skin.

These EMG signals arise from the electrical activity in the muscles below the skin. The

Utah Arm 2 has been modified to use electrical signals obtained directly from nerves,

using sensors developed by Dr. Ken Horch’s lab in the Department of Bioengineering at

the University of Utah. This modified arm will be referred to as the Experimental Neural

Arm. Control of the Experimental Neural Arm with nerve signals would be more natural

than control using EMG signals because the nerves used for control would be the same

nerves that would control a real arm, and this would theoretically make the performance

of the artificial arm approach that of a real arm.

The human body is not fully understood, and interfacing electromechanical

prostheses with it requires techniques that are not commonly used in control systems

engineering. The human nervous system uses what can be approximated as pulse

frequency modulation (PFM) to transmit information through nerves. A PFM signal is a

sequence of pulses of nearly uniform amplitude and very short duration whose frequency

carries the signal’s data. When pulse frequency modulating a continuous signal,

information about the original signal is necessarily lost due to the discretized nature of

the PFM signal; nothing is known about any changes in the continuous signal until the

occurrence of a new pulse.

2

Tools are needed to help analyze and design control systems containing PFM

signals, specifically the Experimental Neural Arm. It is desirable to understand if the

system is stable or not. It is also desirable to understand the transient and steady-state

behavior of the system. Ideally there would be tools, like those available in classical and

nonlinear controls, that would assist in the analysis and design of systems containing

PFM signals.

PFM signals occur in the human nervous system because of the creation and

propagation of action potentials [1]. However, PFM signals are rarely used in

engineering applications because they are very inefficient; much of the information

contained in a continuous signal is lost during the modulation process. Pulse frequency

modulators are also highly nonlinear, and are therefore not mathematically well defined

or understood. PFM signals are very insensitive to noise, but this seems to be their only

positive attribute.

A model of pulse frequency modulation in the human nervous system is needed

for two purposes. First, because experimental time with real amputees is very rare, a

model of an amputee is needed to help design new Neural Arms and arm controllers.

Second, to feed back information into the nervous system through afferent nerves, it is

necessary to send information in a form that the brain understands.

Several methods of pulse frequency modulating a signal have been proposed over

the years [2-7]. When creating a model that includes the pulse frequency modulation of

the nervous system, it is not obvious which is the best method to choose. In Chapter 2,

four different pulse frequency modulation methods that have been proposed are

compared to one another; these methods are Integral PFM, Neural PFM (these two

3

methods fall under a larger PFM class known as ΣPFM [2]), voltage-to-frequency

conversion [3-5], and Unified States Sample & Hold [6]. All of the methods, with the

exception of Neural PFM, are only subtly different from one another, and can be

considered equivalent for the control of a neuroprothesis. The problems encountered

when pulse frequency modulating a signal using a digital computer are also discussed in

Chapter 2.

Using PFM signals from thousands of nerves to control a motor-driven artificial

arm is impractical, due to the difficulty and invasiveness of implanting sensors in nerve

endings. For this reason, it is necessary to demodulate as few as one PFM signal for

control of the arm. Demodulating a PFM signal to recreate the original signal, which is

assumed to be continuous, poses interesting problems. The demodulation of a PFM

signal can be accomplished in many ways, each of which has problems from a control

system design perspective.

Most PFM methods are equivalent to one another, but the various methods of

pulse frequency demodulating (PFD) are distinct, each having advantages and

disadvantages. In Chapter 3, five different pulse frequency demodulation methods are

compared to one another; these methods are period measurement, first-order low-pass

filtering, second-order low-pass filtering, finite-impulse-response filtering, and counting

pulses in a fixed-time window. The advantages and disadvantages of each method are

discussed. The errors encountered using each method are quantified and compared; this

includes the errors encountered when using a digital computer to demodulate a PFM

signal.

4

Because pulse frequency modulators and demodulators are not time-invariant,

traditional describing function techniques cannot be applied to systems containing PFM.

In Chapter 4, a method is developed to graphically predict the existence of limit cycles in

systems containing pulse frequency modulation and demodulation; the method also

predicts the amplitude and frequency of the limit cycle, if it exists. This method is based

on a tabular describing function, and it works well when compared to Simulink

simulations.

The graphical limit-cycle predictor of Chapter 4 works well when compared to

simulations, but it is desirable to prove the validity of the method with a real system. In

Chapter 5, a model of the Experimental Neural Arm wrist is created. The interface of the

Experimental Neural Arm wrist to an amputee is simulated using two computers

communicating to each other using only PFM signals; one computer acts as a wrist

controller, while the other computer simulates an amputee. The wrist model is then used

to validate the graphical limit-cycle predictor of Chapter 4 by comparing predicted limit

cycles to actual limit cycles seen in the wrist. The predictions match the limit cycles seen

in the wrist well.

In Chapter 6, some possible future-work topics that could use the results of this

research are presented.

5

2. COMPARISON OF PULSE FREQUENCY MODULATION METHODS

Engineers have been proposing methods of pulse frequency modulation (PFM) for

nearly forty years [2-7], and in many cases the purpose was to model the human nervous

system. When modeling a system that contains PFM elements, it is not obvious which

PFM method is best to use. Every PFM method is very nonlinear and complicated to

analyze in anything but the most basic scenarios. Every PFM method uses integration in

some form, which leads to a low-pass filtering behavior of all PFM methods. The

purpose of this chapter is not to redo the work that has been previously done on PFM, but

rather to compare the various available methods, and to show that for all practical

purposes many methods are equivalent to each other and can be used when modeling

PFM with no loss of generality. The three methods of PFM considered here are Sigma

Pulse Frequency Modulation [2], voltage-to-frequency conversion [3-5], and Unified

States Sample and Hold [6].

 The first method of PFM considered is Sigma Pulse Frequency Modulation

(ΣPFM) [2]. The most widely investigated method of PFM is integral pulse frequency

modulation (IPFM), which is a subclass of ΣPFM. IPFM is mathematically

straightforward and easy to understand. Another class of ΣPFM is neural pulse frequency

modulation, which may better represent the way the nervous system works than IPFM.

A voltage-to-frequency (V/F) converter [3-5] is a common electrical circuit that

basically behaves like IPFM. Because it is a physical circuit, a V/F converter does not

6

behave ideally like the mathematical expressions of other PFM methods, but it can

actually be implemented in an analog circuit.

The Unified Steps Sample and Hold method of PFM [6] uses a highly nonlinear,

but continuous, mathematical function to replace the discontinuities in IPFM, allowing

easier closed-form analysis of PFM systems. Simulink simulations of all three PFM

methods are found in Appendix A.

2.1 Sigma Pulse Frequency Modulation

The PFM method known as ΣPFM was first proposed by Pavlidis and Jury [1].

ΣPFM is a very general pulse frequency modulator, encompassing IPFM and NPFM.

The equations for ΣPFM are:

 (1)

 (2)

 x ≡ Modulator Input

 y ≡ Output Pulse Stream

 p ≡ Integral of x – g(p)

 g(p) ≡ Any Function of p

 r ≡ Threshold Value of Integral

 sgn() ≡ signum function

 δ ≡ Unit Impulse

 rsgn(p)δ(|p|-r) ≡ Integrator Reset

)()()sgn(pgrpprx
dt
dp −−−= δ

)()sgn(rppy −= δ

7

A unit-area ideal impulse occurs when the magnitude of p reaches the threshold r. At the

occurrence of a pulse, the integral p is reset to zero. The sign of the output pulse is the

same as the sign of p when |p| reaches r, allowing for negative pulses. This is known as

double-signed PFM.

If the domain of x is known, it is possible to bias x such that p is never decreasing.

This results in only positive pulses, and is known as single-signed PFM.

2.1.1 Integral Pulse Frequency Modulation

IPFM is the most widely investigated PFM method, probably because it is the

simplest. IPFM is a special cased of ΣPFM where g(p) = 0 in Eq. (1). In this case, p is

simply the integral of the input x. When this integral reaches a threshold r, a pulse is

emitted at the output, and the integral is reset to zero.

The output pulses to a step input of x0 will have a pulse frequency f in Hertz and a

period between pulses T in seconds given by:

 (3)

 (4)

If the integral p is not zero at the occurrence of the step input, the initial pulse period will

differ from T, but the pulse period will be equal to T for all time thereafter.

Figure 1 shows an IPFM pulse output to a 1-Hz unit-amplitude squarewave input.

The pulses have been reduced to a unit height for graphical purposes, but true IPFM

actually outputs ideal unit impulses (infinite height, zero width). For this figure, x0 = +/-

1, r = 1. Equation (3) and Eq. (4) give f = 10 Hz and T = 0.1 seconds, respectively. Also,

r
xf 0=

0x
rT =

8

at start-up, p = 0. Because p(0) = 0, a time delay of T seconds exists before the first pulse

is emitted. The input transition from –1 to 1 shows a delay longer than T seconds

between the input transition and the first positive pulse. This is due to the negative value

of p at the time of the input transition. In general, the first pulse occurring after an input

step from a negative to a positive value (or vice versa) has a delay between T and 2T

seconds.

 Figure 2 shows an IPFM pulse output to a 1-Hz 0.5-amplitude squarewave input

that has been biased by 1.5. The pulses have again been reduced to a unit height for

graphical purposes. This is an example of single-signed IPFM, because the integral p is

never decreasing, and no negative pulse is ever emitted. Using Eq. (3) and Eq. (4) gives f

Fig. 1 1-Hz Squarewave Input and Output Pulses for IPFM with
Threshold r = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
ni

t
S

qu
ar

ew
av

e
In

pu
t

an
d

U
ni

t
P

ul
se

s

Time (sec)

Input x
Output y

Long Delay
After Input
Sign Change

9

= 10 Hz and T = 0.1 seconds when x0 = 1, and f = 20 Hz and T = 0.05 seconds when x0 =

2. In this single-signed scheme, the time delay between an input change and the next

pulse is less than or equal to the new value of T. This gives one pulse period that is at a

transitional value somewhere between the previous and subsequent values of T.

2.1.2 Neural Pulse Frequency Modulation

Neural PFM (NPFM), also known as relaxation PFM, is a special cased of ΣPFM

[2] where g(p) = cp in Eq. (1), and c is a constant. If Eq. (1) is analyzed just after the

emission of a pulse, it becomes:

 (5)cpx
dt
dp −=

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

Time (sec)

0.
5-

A
m

pl
itu

de
 S

qu
ar

ew
av

e
w

ith
 1

.5
-B

ia
s

an
d

U
ni

t
P

ul
se

s Input x
Output y

Fig. 2 1-Hz Squarewave Input with Bias and Output Pulses for IPFM with
Threshold r = 0.1

10

which can be written in Laplace domain as:

 (6)

Neural PFM acts as a first-order low-pass filter with a time constant and a DC gain of 1/c

between the modulator input and the output p. The input needs to be at least c times

larger than the threshold r for the modulator to ever emit a pulse. The fundamental

reason for using NPFM, rather than IPFM, is that for small inputs no pulses are emitted.

This lends to steady-state errors, but eliminates sustained oscillations in a closed-loop

system, which may be a desirable trade-off.

The output pulses to a step input of x0 have a pulse frequency f in Hertz and a

period between pulses T in seconds given by:

 (7)

 (8)

These equations are obviously more nonlinear than those of IPFM.

Figure 3 shows Eq. (7) for various values of c, again for constant inputs. The

value of c is determined by looking at the value of x/r when the frequency breaks away

from zero. For example, the frequency becomes nonzero for the plot where c = 2 at the

point (2,0). The pulse frequency becomes more nonlinearly related to the input when the

)(1)(sx
cs

sp
+

=







−

=

crx
x
cf

0

0ln







−

=
crx

x
c

T
0

0ln1

11

input value is near the threshold value, and as c increases. Note that IPFM is achieved

when c = 0.

2.2 Voltage-to-Frequency Converter

A voltage-to-frequency (V/F) converter [3-5] is a practical circuit used to

implement PFM. This circuit is often referred to as a voltage-controlled oscillator

(VCO), but when used as a pulse frequency modulator, the actual description of the

circuit used is a V/F converter, not a VCO [3-4]. There is only a subtle difference

between the two circuits; the output of a VCO can be any waveform (squarewave,

sinusoid, etc.) with a frequency proportional to the input voltage, while a V/F converter

specifically outputs pulses with a frequency proportional to the input voltage [3].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x/r (Input/Threshold)

f (
F

re
qu

en
cy

 in
 H

z)

x /r-ax is-intercept = c

Fig. 3 NPFM Frequency vs. x/r

12

VCOs and V/F converters are circuits that many engineers are familiar with –

even those engineers with no experience with PFM. While a pulse frequency modulator

would probably never be modeled as a V/F converter in a simulation, it is important to

show that a V/F converter is equivalent to other PFM methods, if for nothing else, than to

give engineers something they are familiar with when considering PFM methods.

A V/F converter is not as simple as ΣPFM, and the mathematical equations

describing it are not as elegant, but the circuit can actually be implemented. There are no

infinitely-high, zero-width pulses required in a V/F converter; there are no operations that

must take place infinitely fast either.

There is no universally-recognized definition of a V/F converter, but most

examples have similar components. Some form of op-amp integrator is used. Also, there

is some method of switching between the input voltage being modulated and some

negative voltage used to reset the integrator at the occurrence of a pulse.

Figure 4 shows a V/F converter circuit that is an adaptation of Fig. 1.36 in Nack

[5]. The V/F converter in Fig. 4 uses elements found in [4] and in [5]. It behaves very

similar to that of [5], but has a more-linear relationship between the input voltage and the

output pulse frequency.

The V/F converter of Fig. 4 contains an op-amp integrator, an op-amp

comparator, a timer, and a digital buffer. The input voltage being modulated is labeled

Vi, the negative voltage used to reset the integrator is labeled –Vr, and the integrator

output voltage is labeled Vo. The comparator’s noninverting input is grounded, and its

output is low when the inverting-input voltage is higher than ground. A constant positive

Vi causes Vo to have a constant negative slope, decreasing until Vo = 0, at which point the

13

output of the comparator goes high. This triggers the pulse timer, which is a standard

timer circuit with an output that stays high for τ seconds. As long as the timer output is

high, the input is switched to the negative reset voltage, and the V/F converter’s output

voltage goes high for τ seconds, which is the duration of an output pulse.

Figure 4 includes a characteristic plot of Vo as a function of time. Assuming the

various voltages in the system are grounded before system start-up, a pulse is emitted at

start-up. This pulse emitted at start-up is really the only practical difference between the

V/F converter and IPFM. For a constant input, the output pulse frequency in Hertz is

given by:

 (9)
i

r

V
VR

Rf
τ1

2=

_

+

_

+

PULSE TIMER

DIGITAL BUFFER

INTEGRATOR

COMPARATOR

Vi

-Vr

R1

C

PULSE OUTPUT

Vo

R2

Fig. 4 V/F Converter

14

This frequency equation assumes that the pulse duration τ is negligible compared with

the pulse period; this is a false assumption if the parameters of Eq. (9) are not chosen

carefully.

It may be noted that the capacitor value has no effect on the pulse frequency, but

it does affect the maximum voltage that Vo reaches during its charging and discharging

cycle. This is important during practical implementation of the circuit. Also note that

this circuit only works for single-signed operation, where Vi is never negative.

2.3 Unified States Sample and Hold

The Unified States Sample and Hold (USSH) method was first proposed by Frank

and Turski [6]. The USSH method is an integral scheme that uses a so-called serraphile

function, which is a continuous function that approximates a saw-tooth function. The

serraphile function is defined as:

 (10)

Figure 5 shows how the serraphile function approaches a saw-tooth function as ρ

approaches 1.

For the first step of the USSH method, the signal to be modulated, e, is integrated

and multiplied by a gain b. In Laplace domain:

 (11)







+

= −

→ −)cos(1
)sin(tan2lim)(1

1 αρ
αρ

π
α

ρ
ser

)()(se
s
bsp =

15

Next, the integrated input is run through Frank and Turski’s USSH, utilizing the

serraphile function:

 (12)

The value of q is a constant throughout the linear regions of the serraphile function. At

the quickly changing region of the serraphile function (the saw-tooth), the value of q

quickly changes to a new value, and is then constant for the next gently sloping region of

the serraphile function. The final step in the USSH method involves differentiating q. In

Laplace domain:

 (13)

)2(
2
1 pserpq π−=

)()()(sGssqsu =

0 1 2 3 4 5 6 7 8 9
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

α

se
r(α

)

ρ = 0.4
ρ = 0.6
ρ = 0.8
ρ = 0.99999

Fig. 5 Serraphile Function

16

Here u is the output pulse stream, and G(s) is the Laplace form of the shape of the desired

pulse g(t). For the purposes of this thesis, G(s) = 1 which gives a pure impulse as the

desired pulse shape.

The output pulses to a step input of e0 have a pulse frequency f in Hertz and a

period between pulses T in seconds given by:

 (14)

 (15)

These frequency and period values are valid for a constant input, but the shape of the

serraphile function makes the first pulse come with a delay of only half of the steady-

state period:

 (16)

Figure 6 shows a USSH pulse output to a 1-Hz unit-amplitude squarewave input.

The pulses have been reduced to a unit height for graphical purposes, but true USSH

actually outputs pulses with height and width that are a function of ρ (Eq. (10)) and G(s)

(Eq. (13)). For this figure, e = +/-1, b = 10. Equations (14) and (15) give f = 10 Hz and

T = 0.1 seconds, respectively. Also, at start-up, p = 0. Because p(0) = 0, a time delay of

T0 = 0.05 seconds exists before the first pulse is emitted.

0bef =

0

1
be

T =

20
TT =

17

The input transition from –1 to 1 shows an identical period between the last

negative pulse and the input transition, and between the input transition and the first

positive pulse. This behavior is due to the nature of the serraphile function. If p is

increasing, the serraphile function in Fig. 5 is analyzed from left to right. If p is

decreasing, Fig. 5 is analyzed from right to left. With a squarewave input, whatever time

has elapsed since passing a serraphile “tooth” in one direction will be exactly matched

when backtracking in the serraphile function. In Fig. 6 it appears that the delay before

and after an input transition may be the same as T0, but this is coincidental. In general,

the first pulse occurring after an input step from a negative to a positive value (or vice

versa) has a delay less than T seconds.

Fig. 6 1-Hz Squarewave Input and Output Pulses for USSH with Gain b = 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

U
ni

t
S

qu
ar

ew
av

e
In

pu
t a

nd
 U

ni
t P

ul
se

s

Input x
Output y

Equal
Periods
Before and
After Input
Transition

18

 Figure 7 shows a USSH pulse output to a 1-Hz 0.5-amplitude squarewave input

that has been biased by 1.5. The pulses have again been reduced to a unit height for

graphical purposes. This is an example of single-signed USSH, because the integral p is

never decreasing, and no negative pulse is ever emitted. Using Eqs. (14) and (15) gives f

= 10 Hz and T = 0.1 seconds when e0 = 1, and f = 20 Hz and T = 0.05 seconds when e0 =

2. In this single-signed scheme, the USSH behaves like single-signed IPFM after the

initial period T0.

 One detail about the USSH method that should be noted is that, if the input has a

DC value, the integral p will grow to infinity. Practically this could lead to overflow

problems. The flexibility of software would probably make this problem solvable, but no

Fig. 7 1-Hz Squarewave Input with Bias and Output Pulses for USSH
with Gain b = 10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

0.
5-

A
m

pl
itu

de
 S

qu
ar

ew
av

e
w

ith
 1

.5
-B

ia
s

an
d

U
ni

t P
ul

se
s

Time (sec)

Input x
Output y

19

solution will be sought here.

2.4 Pulse Frequency Modulation Method Equivalency

Various methods of PFM have been introduced, each with its own strengths and

weaknesses. ΣPFM is very mathematically defined. It is also relatively easy to

implement on a digital computer, where resetting an integral is not difficult to do. A V/F

converter is not as elegantly-defined mathematically as other PFM methods, but it is a

common circuit with which engineers are familiar. The USSH method needs no form of

integrator reset, but certain variables could grow to infinity if a USSH is implemented in

a real-time controller. The greatest benefit of the USSH method is its complete lack of

discontinuities.

Each PFM method has different behavior at start-up, and each PFM method will

behave differently at very high frequencies. The various PFM methods, with the

exception of NPFM, will behave equivalently in DC and low-frequency situations, after a

brief discrepancy at start-up. Table 1 shows the system parameters of the three

equivalent PFM methods. If a modulation constant kM is defined as the gain between a

constant modulator input signal and the resulting constant pulse frequency in Hertz, then

for IPFM

 (17)

for a V/F converter

 (18)

r
kM

1=

r
M VR

Rk
τ1

2=

20

Table 1 Equivalent Parameters of Equivalent PFM Methods

IPFM V/F Converter USSH

Input Variable x Vi e

Frequency f

Pulse Height Logic
HI

Pulse Duration

First
Pulse
Delay

T 0

Constants Threshold
r

Pulse-Timer
Duration

τ

Reset Voltage
Vr

Integrator
Gain

b

and for USSH

 (19)

Practically, for modeling and control of the Experimental Neural Arm, any of these PFM

methods will work, with the modulation constant being the only important factor.

NPFM is not equivalent to the other three PFM methods considered here; it is

much more nonlinear. Pavlidis and Jury [2] claim that NPFM better approximates the

way the nervous system works than does IPFM, but current information about the

nervous system does not seem to suggest that NPFM models the nervous system any

better than does IPFM. Current information suggests a logarithmic relationship between

the modulator input and the pulse frequency [8], but NPFM does not have this behavior.

r
x

i
r

V
VR

R
τ1

2 be

∞ ∞

τ0 0

2
T

bkM =

21

It does not seem at this time that using NPFM to model the nervous system gives any

additional benefit over the three integral PFM schemes.

2.5 Effect of Discrete Sampling on Pulse Frequency Modulation

This section deals with pulse frequency modulation using a digital computer with

a fixed, known sampling rate. As with any digital-to-analog signal conversion, the faster

the computer’s sampling rate is relative to the signal’s frequency, the better the computer

can accurately represent the signal. Only DC signals will be considered while trying to

quantify errors due to digital modulation because any other signals become far too

complex, but the results translate well to low frequency signals because the errors found

here are instantaneous errors that are based on the instantaneous desired pulse frequency.

Let f and T be the desired output pulse frequency in Hertz and the desired output

pulse period in seconds of the signal being modulated, let fm and Tm be the actual

modulator output pulse frequency and period, and let fs and Ts be the computer’s

sampling frequency and period. Figure 8 shows how a desired pulse period is necessarily

extended due to the discrete nature of the computer. Every output pulse occurs at a

computer sample. For any instantaneous desired pulse period T, the first actual output

pulse always occurs at a computer sample, and the computer then measures time forward

from this point. Because of the causal nature of digital pulse frequency modulation, the

second actual output pulse always occurs at the computer sample that follows when the

desired output pulse should occur to give a period T.

The relationships characterized in Fig. 8 are

 (20)TTTT ms >>+

22

 (21)

where n is a positive integer. Dividing Eq. (21) by Ts and rearranging for frequency

rather than period gives:

 (22)

Let an error in the modulator output pulse frequency be defined as:

 (23)

Notice that an underestimate in the modulator frequency will cause a positive error (the

modulator frequency is always an underestimate). Figure 9 shows the error of Eq. (23) as

nTTnTTnT smss =⇒−>>)1(

n
f
f

n
f
f

n
m

ss =⇒−>> 1

f
ff m

m
−

=ε

T

Tm Dashed Lines are Sampling Times

T + Ts > Tm > T

Ideal Second Pulse

Fig. 8 Pulse Frequency Modulation with Discrete Samples

23

a percentage of desired frequency f, using the relation of Eq. (23). The actual error goes

to zero at points, but they are not shown on a log-log plot; this is unimportant, because

only the high errors are of any concern. The straight line made by the top of the plot

should be used as an error envelope for a given ratio fs/f.

Figure 10 shows how digital PFM will work on a computer with a 3000-Hz

sampling rate. The output pulse frequency is always lower than the desired pulse

frequency, and the error grows as the desired frequency increases. Figure 10 is

characteristic of how the normalized errors of Fig. 9 will appear with any fixed sampling

rate.

10
1

10
2

10
-1

10
0

10
1

Digital Sampling Frequency / Desired Pulse Frequency (fs /f)

P
er

ce
nt

ag
e

E
rro

r
in

 D
ig

ita
l O

ut
pu

t F
re

qu
en

cy
 1

00
(f-

f m
)/f

Fig. 9 Error in Digital Output Frequency vs. Normalized Desired Output Frequency

24

2.6 Parallel-Path Single-Signed Pulse Frequency

Modulation/Demodulation

Li and Jones [7] proposed the idea of parallel-path single-signed pulse frequency

modulation/demodulation (PPSSPFMD) as a way to transmit a double-signed signal

when only positive pulses may be transmitted, such as in the nervous system.

PPSSPFMD is different from single-signed PFM, which biases the original double-signed

input signal so that the input to the modulator is always positive. Single-signed PFM

results in a stream of positive pulses, but knowledge of the bias must be known to

demodulate the pulse stream. Also, as can be seen in Fig. 2 and Fig. 7, the pulse-

frequency behavior is not symmetric for biased signals; the portions of the signal with

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250

300

350

400

450

500

Des ired Output Pulse Frequency f

D
ig

ita
lly

 O
ut

pu
t

P
ul

se
 F

re
qu

en
cy

 f d

fd

Ideal fd = f

Fig. 10 Digital Output Frequency vs. Desired Output Frequency for fs = 3000 Hz

25

low magnitudes have a low frequency, and hence a long delay (see Chapter 3).

Figure 11 shows a PPSSPFMD setup. The nonlinearities that precede the pulse

frequency modulators allow the positive portion of the input signal to pass through the

upper pulse frequency modulator and demodulator (demodulators are covered in Chapter

(3)), and allow the negative portion to pass through the lower pulse frequency modulator

and demodulator after being multiplied by a gain of –1. The bottom demodulator output

is then multiplied by –1 again and summed with the top demodulator output to give the

reconstructed input signal. The nonlinearities preceding the modulators act as either/or

switches in this setup, but in general they may weigh the portion of the input going

through each path.

The PPSSPFMD setup is used to model the control of a joint in the human body.

Because the nervous system can only transmit pulses of one sign, and because muscles

can only apply forces in contraction, it takes two sets of muscles pulling in opposite

directions to control the movement of a joint. An example is the biceps and triceps

opposing each other to control the elbow joint. PPSSPFMD is a cumbersome acronym,

but it will be repeated frequently enough in this thesis to warrant its existence.

Fig. 11 Parallel-Path Single-Signed Pulse Frequency
Modulator/Demodulator

PFM

PFDPFM

PFD

+
_

26

3. COMPARISON OF PULSE FREQUENCY

DEMODULATION METHODS

Pulse frequency demodulation (PFD) is even more integral to the control of the

Experimental Neural Arm than is PFM. It is conceivable that the arm could be run open-

loop (with only visual feedback), which requires no pulse frequency modulation, but PFD

is always needed to decode the signals coming from the nervous system.

Many PFM methods were found to be basically equivalent to one another in

Chapter 2, but the various ways to demodulate a PFM signal are very different from one

another, and the advantages and disadvantages of each become very evident when they

are qualitatively and quantitatively compared.

Period measurement is the first pulse frequency demodulation (PFD) method

considered. This method reacts quickly when demodulating a high pulse frequency

signal, but with relatively large errors, and it reacts slowly when demodulating a low

pulse frequency signal, but with relatively small errors.

Low-pass filtering is the next PFD method considered. It is proposed as a way to

mimic the way the nervous system demodulates a PFM signal. This method has an

adjustable constant delay, but the error in the demodulated frequency grows when this

delay is reduced. The error also grows as the pulse frequency decreases. Three types of

low-pass filtering are considered: first-order low-pass filtering, second-order low-pass

filtering, and finite-impulse-response filtering.

27

The final PFD method considered measures the number of pulses that occur

during a fixed-time sampling window, and approximates the pulse period by dividing the

sampling window by the number of pulses. The primary advantage of using this PFD

method is that the sampling time is fixed, so traditional discrete control system design

techniques can be employed. The primary disadvantage of this method is that the time

delay is unnecessarily large when the pulse frequency is high. This PFD method has

relatively large errors when demodulating low-frequency signals and relatively small

errors when demodulating high-frequency signals.

Because the ultimate goal of this thesis is to help control an artificial arm with the

human nervous system, only the PPSSPFMD system of Section 2.6 will be considered.

From a demodulation perspective, this means demodulating two separate single-signed

PFM signals, and then summing the effect of these two signals, so this chapter will only

deal with the demodulation of single-signed pulse streams.

3.1 Period Measurement

Probably the most basic way of determining pulse frequency is by, at the

occurrence of each pulse, measuring the period between the current pulse and the

previous pulse, and then updating the demodulated frequency as the inverse of this

period. The demodulated frequency only changes at the occurrence of a pulse.

This method updates the demodulated frequency at every pulse occurrence with

the exception of the first pulse. Because no pulse has come before the first pulse, it acts

as a marker that will not be used until the second pulse comes. This acts as a time delay

of one pulse period in the demodulated frequency. This time delay is in addition to any

time delay coming from the PFM method used. For a step input, the IPFM method gives

28

an additional delay of one pulse period, the USSH method gives an additional delay of

one-half of one period, and the V/F converter gives no additional delay. When

demodulating single-signed pulse streams, these delays are only seen at start-up.

3.1.1 Idealized Period Measurement

Figure 12 shows a stream of pulses along with its demodulated frequency. This

pulse stream is initially at a frequency of 0.5 Hz, and steps up to a 1-Hz signal. The

demodulated signal steps up at the 9-second mark, but the original signal that was pulse

frequency modulated stepped up at the 8-second mark to create this pulse stream. This

shows the time delay due to demodulation of 1 second (the new pulse period).

 Figure 13 shows another stream of pulses with its demodulated frequency. This

Fig. 12 Demodulation by Pulse Period Measurement for Input Step Up

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Time (sec)

In
pu

t
P

ul
se

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

Time (sec)

D
em

od
ul

at
ed

 F
re

qu
en

cy
 (

H
z)

29

pulse stream is initially at a frequency of 1 Hz, and steps down to a 0.5-Hz signal. The

demodulated signal steps down at the 6-second mark, but the original signal that was

pulse frequency modulated stepped down at the 4-second mark to create this pulse

stream. The time delay is longer when stepping-down in pulse frequency, but the real

problem with this method of PFD is what occurs after the pulse at the 10-second mark.

No pulse occurs after this pulse, but the demodulated frequency never changes because

the next pulse never comes. By the 12-second mark, the pulse frequency is obviously

smaller than 0.5 Hz, but the demodulation method does not account for this.

There are two primary methods of dealing with the problem that is encountered

when stepping down in pulse frequency. One of these methods is a relaxation method,

Fig. 13 Demodulation by Pulse Period Measurement for Input Step Down

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tim e (sec)

In
pu

t
P

ul
se

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

Tim e (sec)

D
em

od
ul

at
ed

 F
re

qu
en

cy
 (

H
z)

30

which uses knowledge of the previous pulse period to demodulate a signal in a more

intelligent way. With the relaxation method, if a time t has passed since the last pulse,

and t is greater than the previous pulse period, then the demodulated frequency in Hertz

is:

 (24)

Figure 14 shows how Fig. 13 would look using period measurement with relaxation as

the PFD method. The demodulated frequency will never reach zero with relaxation, but

will only decay to an asymptote at zero. Practically, this may lead to steady-state errors,

but may also be too negligible (very close to zero) to affect the performance of a real

Fig. 14 Demodulation by Pulse Period Measurement with Relaxation
for Input Step Down

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Time (sec)

In
pu

t
P

ul
se

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

Time (sec)

D
em

od
ul

at
ed

 F
re

qu
en

cy
 (

H
z)

t
fTt dprev

1=⇒>

31

system.

The other method used to correct the problem encountered when stepping down in

pulse frequency is a deadband method. With the deadband method, all pulse frequencies

smaller than a designated deadband frequency will be demodulated as a zero; more

practically, if a time t passes, since the last pulse, that is greater than the designated

deadband period Tdead (the inverse of the deadband frequency), then the demodulated

frequency is set to zero:

 (25)

Figure 15 shows how Fig. 13 would look using period measurement with a deadband of

0.4 Hz.

0=⇒> ddead fTt

Fig. 15 Demodulation by Pulse Period Measurement with 0.4-Hz Deadband
for Input Step Down

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

Time (sec)

In
pu

t
P

ul
se

s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

Time (sec)

D
em

od
ul

at
ed

 F
re

qu
en

cy
 (

H
z)

32

 A combination of relaxation and deadband together may be the best option. This

method would work especially well when stepping down from a large pulse frequency to

a very small or zero pulse frequency; here the relaxation would react quickly, while the

deadband would eventually drive the demodulated frequency to zero.

For period measurement PFD, knowledge of the modulation constant (see Chapter

2, Eqs. (17) through (19)) is needed to reconstruct the original modulated signal. If x is

the original signal that was pulse frequency modulated, then let the reconstructed signal

after demodulation, xd, be defined as:

 (26)

The reconstructed signal will only be absolutely correct for scenarios where the input to

the modulator is a constant. For any varying input signal, the reconstructed signal will be

only be an approximation of the original, but this is unavoidable due to the filtering

nature of the integrators in the pulse frequency modulators and due to the discretized

nature of the PFM signal.

3.1.2 Effect of Discrete Sampling on Period Measurement

This section deals with demodulation of a PFM signal using a digital computer

with a fixed, known sampling rate. As with any analog-to-digital signal conversion, the

faster the computer’s sampling rate is relative to the signal’s frequency, the better the

computer can accurately reconstruct the signal. Only DC signals will be considered

while trying to quantify errors due to digital demodulation because any other signals

become far too complex, but the results translate well to low frequency signals because

M

d
d k

f
x =

33

the errors found here are instantaneous errors that are based on the instantaneous pulse

frequency.

Let f and T be the actual pulse frequency in Hertz and the actual pulse period in

seconds of the pulse stream being demodulated, let fd and Td be the demodulated

frequency and period, and let fs and Ts be the computer’s sampling frequency and period.

A pulse is always detected late (it is impossible to detect early); this is the nature of

analog-to-digital conversion. Pulses are always detected late by a period ∆, where:

 (27)

Figure 16 shows the worst-case scenarios that would cause the largest errors in

the demodulated period. From this figure, the value of the demodulated period will fall

somewhere in the range:

0>∆≥sT

T

T

Tw

Tw

Dashed Lines Show SamplingWindow

Largest Overestimate of T
Tw = (n+1)T

Largest Underestimate of T
Tw = (n-1)T

Fig. 16 Period-Measurement PFD with Discrete Samples

34

 (28)

Each pulse is detected late, so for any given period measurement it is equally likely that

the period will be overestimated or underestimated.

Note that an underestimate in period leads to an overestimate in frequency, and

vice verse. If an error in the demodulated frequency εd is defined as:

 (29)

Using Eq. (28), εd will be found inside an error envelope with

 (30)

where, after some manipulation, the maximum possible overestimate and underestimate

in the measured frequency are found as

 (31)

 (32)

These equations have been normalized to look at the error as a function of the

relationship between sampling frequency and pulse frequency. Figure 17 plots the

sds TTTTT −>>+

f
ff d

d
−

=ε

underdover εεε ≥≥

1
1

+
−=

f
f

f
f

s

s

overε

1
1

−
−=

f
f

f
f

s

s

underε

35

magnitudes of the error envelopes given in Eqs. (31) and (32) as a percentage of the pulse

frequency.

 Laboratory experiments show a pulse frequency range in the nervous system in

the range of approximately 10-200 Hz [8]. Figure 18 shows the error envelopes for a

3000-Hz sampling rate; the frequency could be overestimated by as much as 6.3% or

underestimated by as much as 7.1% when measuring a 200-Hz pulse stream, or could be

overestimated or underestimated by as much as 0.33% when measuring a 10-Hz pulse

stream, when using a computer with a 3000-Hz sampling rate.

A Simulink simulation of pulse measurement PFD is given in Appendix B. This

simulation uses a 10-Hz deadband, and can demodulate single- or double-signed signals.

Fig. 17 Error in Period-Measurement PFD vs. Normalized Frequency

10
1

10
2

10
3

10
-1

10
0

10
1

10
2

Digital Sampling Frequency / Pulse Frequency (fs /f)

P
er

ce
nt

ag
e

E
rr

or
 in

 D
em

od
ul

at
ed

 F
re

qu
en

cy
 (

 1
00

(f d-f)
/f

)

|εover| Maximum Overestimate Error

|εunder| Maximum Underestimate Error

36

3.2 Low-Pass Filtering of Pulses for Pulse Frequency Demodulation

The human nervous system seems to use a type of low-pass filtering as its PFD

method. Each electrical pulse causes a muscle twitch. If these twitches come close

enough together, they result in an aggregate muscle movement [9]. In an effort to mimic

the way the human body works, it is desirable to investigate low-pass filtering as a PFD

method.

It seems possible that a pulse stream may be demodulated with a filter for some

type of PFD. Each pulse would create an impulse response in the filter, which is an

instantaneous increase in the filtered signal followed by a decay to zero. If a second

pulse occurs before the first pulse decays away, the convolution of the two pulses will

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

Pulse Frequency (Hz)

P
er

ce
nt

ag
e

E
rr

or
 in

 D
em

od
ul

at
ed

 F
re

qu
en

cy
 1

00
(f d-f)

/f |εover| M axim um Overes tim ate Error

|εunder| M axim um Underestimate Error

Fig. 18 Error in Period-Measurement PFD vs. Frequency for a
3000-Hz Sampling Rate

37

create a net filter response. This behavior seems to mimic the twitch response of a

muscle.

Three types of low-pass filtering are considered here: first-order low-pass filtering,

second-order low-pass filtering, and finite-impulse-response filtering.

3.2.1 First-Order Low-Pass Filtering

Consider a first-order low-pass filter as pulse frequency demodulator, in Laplace

domain:

 (33)

where δ is the incoming pulse stream to be modulated, with a pulse frequency f and pulse

period T, and y is the demodulator output. The output is not labeled as the demodulated

frequency fd because there is no indication of how the output of the filter is related to the

input pulse frequency. Figure 19 shows the response of the filter of Eq. (33) when α = β

= 50 and f = 100 Hz. The time constant τ of the filter (the inverse of α) is 0.02 seconds.

It is seen from this plot that the output y has an aggregate response of a step input to the

low-pass filter with a time constant of what appears to be 0.02 seconds and with a

“steady-state” value that jitters, but appears to be centered around 100, which is the value

of f. Changing the DC gain of the filter, β/α, would only scale the response linearly.

These properties seem encouraging for use of a low-pass filter for PFD.

 The impulse response of the filter of Eq. (33) is:

 (34)

)()(s
s

sy δ
α

β
+

=

tety α
δ β −=)(

38

which means that each impulse causes an instantaneous increase of β in the output as is

seen in Fig. 19. The total response y at a time ∆ ≤ T since the last pulse, due to all

previous pulses, is given by:

 (35)

 (36)

 (37)

If αT > 0, then y(∆) can be written as:

...)()2()(+++=∆ +∆−+∆−∆− TT eeey ααα βββ

...)1()(2 +++=∆ −−∆− TT eeey αααβ






=∆ ∑

∞

=

−∆−

0

)(
k

Tkeey ααβ

Fig. 19 Response of Unity-Gain First-Order Filter with 5/α = 0.1 Seconds to a
100-Hz Pulse Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

120

Tim e (sec)

D
em

od
ul

at
or

 O
ut

pu
t

F
re

qu
en

cy
 (

H
z)

39

 (38)

Equation (38) assumes that pulses have been coming at a constant frequency for

an infinite amount of time. Remembering the nature of exponential decay, only the

pulses occurring in the past five time constants (using a 99% settling time) have any

measurable effect on the total response. This means that Eq. (38) is always an

approximation, but it is a good approximation after five time constants past the last

change in input frequency.

Keeping in mind the shape of the plot in Fig. 19, define the highest value of y in

the "steady-state" (occurring just at an impulse) as yh, and define the lowest value of y in

the "steady-state" (occurring just before an impulse) as yl. Using Eq. (38):

 (39)

 (40)

Are yh ≥ f and yl ≤ f always true statements for a unity-gain (β = α) first-order

filter? First look at the statement about yh:

 (41)

Because αT > 0, the last statement of Eq. (41) can be written as:







−

=∆ ∆−

1
)(T

T

e
eey α

α
αβ

1
0

−
=⇒=∆ T

T

h e
ey α

αβ

1−
=⇒=∆ Tl e

yT α

β

1
1

11 ≥
−

⇒≥⇒≥⇒≥ T

T

h
h

h e
eTTy

f
yfy α

αα

40

 (42)

This statement is always true for αT ≥ 0, therefore the statement yh ≥ f is always true with

the assumptions given previously. With a similar methodology, it can easily be shown

that yl ≤ f.

Do yh → f and yl → f as f → ∞? If so, yh/f → 1 and yl/f → 1 as f → ∞:

 (43)

Use l’Hopital’s Rule:

 (44)

Therefore yh → f as f → ∞. With a similar methodology, it can easily be shown that yl →

f as f → ∞.

Figure 20 shows the maximum errors, defined in Eq. (29), due to the output highs

and lows of Eqs. (39) and (40). Notice that Eqs. (39) and (40), and Figure 20, match

what is seen in Fig. 19 well, predicting the saw-toothed oscillation between

approximately 77 and 127 Hz.

Because the demodulation error increases proportionally with α/f, low-pass filter

demodulation works better for high- rather than low-pulse-frequency signals, and works

better when the filter’s time constant is longer rather than shorter.

1)1(−≥− TeT αα

0
0

1
lim

1
limlim

0
=





−

=


























−

=





→∞→∞→ T

T

T

T

T

f

h

f e
eT

f
e

e

f
y

α

αα

α

α
α

1)1(limlim
0

2

0
=+=




 +
→→

T
e

eTe
TT

TT

T
α

α
αα

α

αα

41

Figure 21 shows the maximum errors for a first-order filter with 5/α = 0.1

seconds. For this filter, the error can be as high as 400% when demodulating a 10-Hz

signal, and is still large when demodulating a 200-Hz signal.

3.2.2 Second-Order Low-Pass Filtering

A first-order low-pass unity-gain filter can be used as a pulse frequency

demodulator. The output of the demodulator jitters around the input frequency value

with a known error in the “steady-state,” and it reaches the “steady-state” based on the

time constant of the filter. A low-pass filter of higher order may give more desirable

results by smoothing out the response seen in Fig. 19.

10
-2

10
-1

10
0

10
1

10
-1

10
0

10
1

10
2

10
3

α /f

P
er

ce
nt

ag
e

E
rro

r i
n

D
em

od
ul

at
ed

 F
re

qu
en

cy
 1

00
(f

d-f)
/f |εh|

|ε l|

Fig. 20 Error in Unity-Gain First-Order Low-Pass Filter vs. Normalized
Frequency

42

Consider a second-order low-pass unity-gain filter as demodulator, in Laplace

domain:

 (45)

where δ is the incoming pulse stream to be modulated, with a pulse frequency f and pulse

period T, and y is the demodulator output. The output is labeled as the demodulated

frequency fd, unlike in Eq. (33), because it was proven in Section 3.2.1 that the filter

output is the best value to use for fd for a unity-gain filter. For the same reason, the β in

the numerator of the first-order filter of Eq. (33) has been changed in Eq. (45) to force the

)(
)(

)(2

2

s
s

sfd δ
α

α
+

=

Fig. 21 Error in First-Order Filtering PFD vs. Frequency with
5/α = 0.1 Second

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

Pulse Frequency (Hz)

P
er

ce
nt

ag
e

E
rr

or
 in

 D
em

od
ul

at
ed

 F
re

qu
en

cy
 1

00
(f d-f)

/f |εh| Maximum Error from Oscillation Peak

|ε l| Maximum Error from Oscillation Trough

43

filter to have unity-gain. Figure 22 shows the response of the filter of Eq. (45) when α =

76.4 and f = 100 Hz. This response is much smoother than that of the first-order filter.

The impulse response of the filter in Eq. (45) is given by:

 (46)

which starts a zero, climbs up to a peak value, and then decays away to zero, all with no

discontinuities. The peak value of the impulse response occurs at t = 1/α seconds, which

is the time constant of the first-order filter, but is a time-to-peak of the second-order

filter. Let the time for the impulse response of a second-order filter to decay be measured

relative to the value of the response at the peak (t = 1/α seconds). The time for the

ttety α
δ α −= 2)(

Fig. 22 Response of Unity-Gain Second-Order Filter with 7.64/α = 0.1 Seconds
to a 100-Hz Pulse Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

120

Time (sec)

D
em

od
ul

at
or

 O
ut

pu
t

F
re

qu
en

cy
 (

H
z)

44

impulse response to decay 95%, 98%, and 99% of the way to zero are found to be:

 (47)

 (48)

 (49)

The second-order response appears much smoother than the first-order response, but Eqs.

(47) through (49) show that having the same α is not a satisfactory method to compare

the first- and second-order responses, but rather α should be chosen to make the two

filters have the same speed of response.

The total response y at a time ∆ ≤ T since the last pulse, due to all previous pulses,

is given by:

 (50)

 (51)

 (52)

 (53)

 (54)

α
74.5

%95 =t

α
83.6

%98 =t

α
64.7

%99 =t

...)2()()()2(2)(22 ++∆++∆+∆=∆ +∆−+∆−∆− TT
d eTeTef ααα ααα

...))2()(()(22 ++∆++∆+∆=∆ −−∆− TT
d eTeTef αααα

...)2...()(222 ++++∆+∆+∆=∆ −−−−∆− TTTT
d TeTeeeef αααααα












+





∆=∆ ∑∑

∞

=

−
∞

=

−∆−

00

2)(
k

Tk

k

Tk
d keTeef αααα







−

+
−

∆=∆ ∆−
2

2

)1(1
)(T

T

T

T

d e
Te

e
eef α

α

α

α
αα

45

Equation (54) assumes that pulses have been coming at a constant frequency for an

infinite amount of time, but only the pulses occurring in the past 7.64/α seconds have any

measurable effect on the total response, using a 99% settling time. This means that Eq.

(54) is always an approximation, but it is a good approximation after 7.64/α seconds past

the last change in input frequency.

Keeping in mind the shape of the plot in Fig. 22, define the highest value of fd in

the "steady-state" (occurring at an impulse response peak) as fdh, and define the lowest

value of fd in the "steady-state" (occurring at an impulse) as fdl. Using Eq. (54):

 (55)

To find fdh, differentiate Eq. (54) with respect to ∆ and set equal to zero. This gives the

value of ∆ at the peak:

 (56)

Substituting Eq. (56) into Eq. (54) gives the value of fdh, which is not given in closed

form here, due to its complexity.

 (57)

Figure 23 shows the maximum errors due to the output highs and lows of Eqs.

(55) and (57). Notice that Figure 23 matches what is seen in Fig. 22 well, predicting the

saw-toothed oscillation between approximately 95 and 103 Hz.

2

2

)1(
,0

−
=⇒=∆ T

T

dl e
TefT α

αα

1
1

−
−=∆ Tpeak e

T
αα

)(peakddh ff ∆=

46

Figure 24 shows the maximum errors for a second-order filter with 7.64/α = 0.1

seconds. This filter gives a 180% error when demodulating a 10-Hz signal, compared

with 400% with the first-order low-pass filter. The error is also smaller at high

frequencies.

3.2.3 Finite-Impulse-Response Filtering

Another proposed filter for PFD is a finite-impulse-response (FIR) filter, purely

designed for use on a digital computer. This method of PFD involves storing the last N

samples of the incoming pulse stream in a stack, where N is some constant integer. A

pointer cycles through the stack, moving one stack element per computer sample, adding

N to the stack element if a pulse is detected. Between each computer sample, the entire

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

α /f

P
er

ce
nt

ag
e

E
rr

or
 in

 D
em

od
ul

at
ed

 F
re

qu
en

cy
 1

00
(f

d-f)
/f |εh|

|ε l|

Fig. 23 Error in Unity-Gain Second-Order Low-Pass Filter vs.
Normalized Frequency

47

stack is cycled through, and each nonzero element is reduced by 1. The output of the

demodulator at each computer sample is the sum of all the stack elements.

This PFD method creates a low-pass filter whose impulse response decays away

linearly to zero, rather than exponentially like a first-order low-pass filter. With this

method, any pulses occurring more than N computer samples ago have no effect on the

output, where a low-pass filter theoretically feels the effect of all previous pulses.

 Figure 25 shows the response of an FIR filter with a 0.1-second decay to a 100-

Hz input frequency. This FIR filter seems to have a similar response as that of the first-

order low-pass filter. Note that with an FIR filter the decay between individual pulses is

linear, rather than exponential. The same sort of discontinuities are seen in the response,

and they have a similar behavior in the “steady-state.” Probably the largest difference

Fig. 24 Error in Second-Order Filtering PFD vs. Frequency for
7.64/α = 0.1 Seconds

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Pulse Frequency (Hz)

P
er

ce
nt

ag
e

E
rr

or
 in

 D
em

od
ul

at
ed

 F
re

qu
en

cy
 1

00
(f d-f)

/f |εh
| Maximum Error from Oscillation Peak

|ε l
| Maximum Error from Oscillation Trough

48

between the FIR filter and the first-order low-pass filter is that, for a first-order low-pass

filter with unity DC gain, the aggregate response approaches a “steady-state” equal to the

pulse frequency in Hertz, but the FIR filter does not show this behavior.

Because of the nonlinearity of the FIR filter, a closed-form general solution of the

filter’s response to a constant-frequency input pulse stream is not found here. A solution

can be found, however, that works for a limited number of input/filter combinations, and

this solution can be used as an approximation for other cases. Consider an FIR filter with

a n output y to an input pulse stream of constant frequency f and period T. Let the filter

have an impulse response that decays away in ∆ seconds, with:

 (58)sNT=∆

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

250

300

350

400

450

500

550

Tim e (sec)

F
IR

 F
ilt

er
 O

ut
pu

t

Fig. 25 Response of an FIR Filter with a 0.1-Second Decay to a
100-Hz Pulse Frequency

49

where N is the number of computer samples that it takes for an impulse response to decay

to zero, and Ts is the computer sampling period. Let the input pulse period be defined as:

 (59)

where n is an integer. This restricts the possible input frequencies, but this is a necessity

of the approximation. The FIR filter has an aggregate response, which was found

empirically, given by:

 (60)

So, for a given FIR filter, y is linearly proportional to f, and Eq. (60) can be written as:

 (61)

Figure 26 shows the same response of Fig. 25, but the constant of Eqs. (60) and (61) is

accounted for. Now the aggregate filter output is the demodulated frequency.

 Equation (60) accurately predicts the mean value between the saw-toothed

oscillation highs and lows in the “steady-state.” These output highs and lows are found

by the equations:

 (62)

 (63)

snTT =

f
T

T
y s

s








∆
+∆= 15.0

2

∑
=

−+=
hk

i
hh inNky

1

)1(

)1(
2

)1(+−+= h
h

hh knkNky

fky FIR=

50

 (64)

 (65)

 (66)

 (67)

The floor() function returns the closest integer to the quantity in the parenthesis, in the

direction of negative infinity.






=

n
Nfloorkh

∑
=

−+=
lk

i
ll inkNy

1

)1(






 +=

n
Nfloorkl

1

)1(
2

)1(+−+= l
l

ll k
nk

kNy

Fig. 26 FIR Filter PFD with a 0.1-Second Decay to a 100-Hz Pulse Frequency

0 0.05 0.1 0.15 0.2 0.25 0.3
0

20

40

60

80

100

120

Tim e (sec)

D
em

od
ul

at
ed

 F
re

qu
en

cy
 y

/k FI
R

 (
H

z)

51

Using the definition of error from Eq. (29), the errors due to the “steady-state”

highs and lows of Eqs. (63) and (66) are plotted in Fig. 27; this plot is specifically for an

FIR filter with a 3000-Hz sampling rate and a 0.1-second impulse decay.

3.3 Fixed-Time Sampling Window

Another way to demodulate a PFM signal is by counting the number of pulses that

occur in a fixed-time sampling window. This method has the advantage of using

traditional digital design techniques, because the fixed-time sampling window becomes

the sampling period. If the sampling window is Tw seconds, and N pulses occur in a

given window, the demodulated period is defined as:

 (68)
N
TT w

d =

Fig. 27 Error Band for a 3000-Hz FIR Filter with a 0.1-Second Decay

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Pulse Frequency f (Hz)

P
er

ce
nt

ag
e

E
rr

or
 in

 D
em

od
ul

at
ed

 F
re

qu
en

cy
 1

00
(f d-f)

/f |εh| Maximum Error from Jitter Peak

|ε l| Maximum Error from Jitter Trough

52

This gives a demodulated frequency of:

 (69)

Figure 28 shows the worst-case demodulation scenarios that can occur using Eq. (68). In

the portion of the figure showing the largest underestimate of T, pulses occur just inside

the edges of the sampling window. The window is divided into three equal parts, but four

pulses occur in the window, so Eq. (68) will divide Tw into four parts, which

underestimates the period. In the portion of the figure showing the largest overestimate

of T, pulses occur just outside the edges of the sampling window. The window is still

divided into three equal parts, but only two pulses occur in the window, so Eq. (68) will

divide the Tw into two parts, which overestimates the period.

Figure 28 and Eq. (68) put the demodulated pulse period in the range:

wd Nff =

T

T

Tw

Tw

Dashed Lines Show SamplingWindow

Largest Overestimate of T
Tw = (N+1)T

Largest Underestimate of T
Tw = (N-1)T

Fig. 28 Fixed-Time Sampling Window

53

 (70)

If an error in the demodulated frequency is defined as in Eq. (29), a little manipulation of

Eqs. (29) and (68) yields a bounded error:

 (71)

 (72)

Th error of Eq. (29) is given as a fraction of f, so a window frequency of 5 Hertz and a

pulse frequency of 50 Hertz would lead to an error in the demodulated frequency of as

much as ±10% of f. This method only works if f > fw. If f ≤ fw, the demodulated

frequency will jitter between zero (when no pulses occur in a window) and fw (when one

pulse occurs in a window).

Fixed-Time Sampling Window PFD has large errors when demodulating small

pulse frequencies, and small errors when demodulating large pulse frequencies; the

opposite of the behavior seen with period measurement PFD.

3.4 Error Comparison of Pulse Frequency Demodulation Methods

To compare the various PFD methods, it is necessary the find some way to

compare equivalent demodulators, because the behavior of each demodulator is

fundamentally different from the others. The method used here will be to compare

demodulators with the same settling time. Because the lowest pulse frequency seen in

T
N

NTT
N

N
d 





 −≥≥





 + 11

f
f

f
f w

d
w −≥≥ ε

w
d

w T
T

T
T

−≥≥ ε

54

the nervous system is approximately 10 Hz [8], the pulse-period measurement method

will have a deadband of 10 Hz, giving a settling time of 0.1 seconds (worst-case). The

fixed-time sampling window of Tw = 0.1 seconds will also be used. For the two

continuous low-pass filters, α will be chosen to give a 99% settling time of 0.1 seconds.

For the FIR filter, ∆ is chosen to give a decay of 0.1 seconds. Table 2 quantifies the

errors from these PFD methods.

It appears from Table 2 that pulse measurement may be the best overall method.

It has low errors across applicable frequencies, and an added benefit of small time delays

at high frequencies, when it is most important. Second-order low-pass filtering is

probably the second-best method, but the FIR filter and fixed-time window have lower

errors at low frequencies than the second-order low-pass filter.

While the human body demodulates incoming pulses through some form of low-

pass filtering, the sheer number of nerves transmitting information in parallel and

Table 2 Comparison of Errors for PFD Methods with 0.1-Second Settling Times

PFD
Method

Settling Time
Parameter

f = 10 Hz f = 100 Hz f = 200 Hz

Pulse
Measurement Deadband 0.0033 0.034 0.071

First-Order
Low-Pass

Filter
4.0 0.27 0.13

Second-Order
Low-Pass

Filter
1.8 0.047 0.012

FIR
Filter ∆ 1 0.09 0.04

Fixed
Sampling
Window

Tw 1 0.1 0.05

dε dεdε

α
64.7

α
5

55

asynchronously from one another would give an aggregate response that filters out the

bumpy response of any one nerve. This method works well in the human nervous

system, but it does not work as well if single PFM signals are being demodulated.

It should be noted that every PFD method in this chapter is evaluated with a

noise-free pulse stream. Here, noise would manifest itself as extra pulses. The period-

measurement PFD method appears to be the method that gives the lowest errors, but this

method is the most sensitive to extra pulses, which are demodulated as a very high

frequency for a very short duration. In practice, the period-measurement PFD method

would have to be followed by a filter. The low-pass filtering PFD methods are relatively

insensitive to extra pulses. This noise consideration is discussed further in Chapter 6.

The difference in behavior between the first-order low-pass filter and the second-

order low-pass filter is very large. By continuing to concatenate unity-gain first-order

filters, it may be possible to create a high-order low-pass filter demodulator with very

desirable characteristics.

56

4. GRAPHICAL LIMIT-CYCLE PREDICTION

The describing function is a common way to predict the existence of limit cycles

in a nonlinear system. The describing function of a nonlinearity is its equivalent gain and

phase-lag to a sinusoidal input of amplitude A, where the gain and phase-lag are a

function of A.

Pulse frequency modulators and demodulators are time-varying, meaning they are

not only amplitude dependent, but also frequency dependent. It would be desirable to be

able to predict the existence of limit cycles in systems containing pulse frequency

modulation. Developing a describing function for PFM systems has been attempted

before with limited success. Dymkov [10] attempted a describing function for a double-

signed IPFM, and Li and Jones [7] attempted a describing function for PPSSPFMD. The

results of these are so mathematically complicated that they cannot be easily applied to

any real application where pulse frequency modulators and demodulators are just a part

of a larger system.

4.1 Description of Graphical Method (Simple Loop)

Consider the simple loop of Fig. 29. This loop contains a nonlinear describing

function that is dependent on the amplitude and frequency of its input sinusoid, in series

with a linear element, connected with negative unity feedback. To look for the existence

of a self-sustained limit cycle, it is standard practice to set the input of the system to zero

57

and then disturb the system. From describing function analysis [11], a limit cycle will

occur if:

 (73)

For a describing function that is only a function of amplitude, limit-cycle prediction

involves finding the intersection of two loci of points � that of the Nyquist plot of the

linear plant G, and that of the negative inverse of the describing function N. The

amplitude of the limit cycle is taken from the describing function at the intersection, and

the frequency of the limit cycle is taken from the Nyquist plot of the linear plant at the

intersection.

Because the describing function in Fig. 29 is a function of amplitude and

frequency, an intersection of the Nyquist plot of the linear plant and the negative inverse

describing function will indicate a limit cycle only if the frequency taken from the

describing function matches the frequency of the Nyquist plot at the point of intersection.

),(
1)(

ω
ω

AN
jG −=

Fig. 29 Simple Loop with Frequency-Dependent Describing Function

N(A,ω) G(jω)_+

58

Figure 30 shows a possible way to think about this frequency-dependent

describing function analysis. The Nyquist plot of the linear plant is plotted as before.

Remember that the Nyquist plot is a locus of points, where each point represents the gain

and phase of the plant for a sinusoidal input of a given frequency, but the amplitude of

the sinusoid does not matter. For the describing function, each constant-frequency

negative inverse describing function is plotted as a locus of points. Each of these

constant-frequency loci acts as an independent negative inverse describing function that

is only dependent on amplitude. There are infinitely many of these constant-frequency

loci, because there are infinitely many frequencies, but practically only some n loci need

be plotted based on the resolution needed and the bandwidth of the system. A limit cycle

can occur only if the negative inverse describing function for a constant frequency ωn

crosses the Nyquist plot of the linear plant at the point representing the frequency ωn. If

Re

Im

G(jω)

),(
1

nAN ω
−

Image is reflected about the real axis.

A Increasing

ω Increasing

jω Increasing

Fig. 30 Nyquist Plot for Frequency-Dependent Describing Function

59

the intersection does not have a common frequency, the limit cycle will not sustain itself.

If there is a common-frequency intersection, this frequency is the frequency of the limit

cycle, and the amplitude of the limit cycle is taken from the negative inverse describing

function locus for the intersection frequency.

If no intersection that would create a self-sustaining limit-cycle is possible,

system stability can be determined. If every point of the negative inverse describing

function loci are encircled by the Nyquist plot of the linear plant, the system is unstable.

If no points are encircled, the system is stable.

This path of reasoning can now be applied to pulse frequency modulated systems;

the nonlinearity just needs to be explicitly defined as a pulse frequency

modulation/demodulation pair. The input to the modulator is the continuous output of the

plant, multiplied by a gain of �1. The output of the demodulator is the reconstructed

signal that may or may not represent the modulator input well after going through PFM

and PFD. This reconstructed signal will be a delayed, discretized, and distorted version

of its former self. To apply the amplitude and frequency dependent describing function

method shown in Fig. 30, the equivalent gain and phase-lag of the PFM/PFD pair is

developed in the next section.

4.2 Tabular Describing Function with Post-Filtering Method

To apply the graphical limit cycle prediction method described of Section 4.1 to

systems containing pulse frequency modulation, it is first necessary to determine which

type of PFM and PFD methods to use. Because the ultimate goal of this thesis is to

develop tools for use with the control of the Experimental Neural Arm, the PPSSPFMD

setup of Section 2.6 will be used here. Figure 29 becomes Fig. 31 when PPSSPFMD is

60

used. The conclusion of Section 2.4 is that all integration methods that have a linear

input-to-frequency relationship are equivalent. For this reason, the USSH method was

chosen here, because its delay at startup is halfway between the IPFM method and the

V/F converter. Remember, though, that this start up behavior is only seen at start up with

the single-signed PFM being used here, and that the other two PFM methods would have

worked just as well. The conclusion of Section 3.4 is that period measurement is

probably the best overall PFD method, though this is a debatable point. Its low errors at

low frequencies should help prevent jitter, and its small time delays at high frequencies

should help with tracking and stability.

Now that a model has been chosen, the equivalent describing function of the

PPSSPFMD nonlinearity can be found using a method that will be referred to as the post-

filtering method. The post-filtering setup is shown in Fig. 32. The PPSSPFMD setup

modulates and demodulates an input sinusoid x of amplitude A and frequency ω (rad/sec):

 (74))sin(tAx ω=

Fig. 31 Simple Loop with PPSSPFMD Describing Function

N(A,ω)

G(jω)_+

PFM

PFDPFM

PFD

+
-

61

The input to the low-pass filter is a reconstructed version of the input to the PPSSPFMD

xr, and the output of the filter y can be approximated as a sinusoid with a new amplitude

and phase-lag:

 (75)

For a given sinusoidal frequency, the gain kF and the phase-lag φF of the filter are known

quantities. Because they are known, the equivalent gain and phase-lag of the

PPSSPFMD nonlinearity defined above can be calculated with the equations:

 (76)

 (77)

Because the input to the filter is not purely sinusoidal, the output is not either. To

find the best sinusoidal approximation of the output, a three-step curve fit is employed.

First, the amplitude of the output is approximated by its highest peak. Second, using the

amplitude approximation, the best choice for φ is found with a least-squares method.

Third, using the phase-lag φ, the best choice for A is found by matching the RMS values

)sin(φω −= tAy y

F

y
N Ak

A
k =

FN φφφ −=

Fig. 32 Post-Filtering Method

PFM

PFDPFM

PFD
+

1
1
+s_x xr

y

62

of the output and the sinusoidal approximations. This three-step curve fit should give a

good sinusoidal approximation to a quasi-sinusoidal signal. The Simulink post-filtering

setup and associated MATLAB scripts are given in Appendix C.

This post-filtering method is only valid when the plant acts as a low-pass filter,

which is a valid assumption for mechanical plants. This is a limitation of the method, but

it is the same limitation found in traditional describing function analysis, where only the

lowest-frequency component of a Fourier analysis is considered.

Using the post-filtering method, the equivalent gain and phase-lag (in degrees) of

the PPSSPFMD were found, and are listed in Table 3 and Table 4, respectively. The data

were taken at various frequencies, and at various values of input amplitude multiplied by

modulation constant AkM (it can easily be seen that it is the combined value of these two

variables that matters, not either of them alone). The �NaN�s in the upper-right corner of

the tables stand for �not a number� (in MATLAB form), and they represent a case where

the output of the PPSSPFMD nonlinearity is not periodic, so no limit cycle is possible at

that combination of amplitude, modulation constant, and frequency. This characteristic is

expected with a combination of low amplitude and high frequency, considering the

integrating nature of the pulse frequency modulators.

The data in Table 3 and Table 4 could be fit into a describing-function equation,

but they can easily be used in tabular form by interpolating between the table values. The

columns of Table 3 and Table 4, along with interpolated �columns� which represent

frequencies between the data taken, can be plotted as separate loci of points to create a

plot like that of Fig. 30. More data could be taken, if it was deemed necessary, at higher

or lower frequencies, or at higher values of AkM. No data need be taken for lower values

Amplitude X 1 5 10 15 20 25 30 35 40
Modulation Constant rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec

13 0.79 0.76 NaN NaN NaN NaN NaN NaN NaN
14 0.81 0.84 0.86 0.8 NaN NaN NaN NaN NaN
15 0.87 0.94 0.9 0.84 NaN NaN NaN NaN NaN
20 0.95 0.98 0.99 1.04 1.29 NaN NaN NaN NaN
25 0.96 0.99 1.03 1.08 1.04 1.16 NaN NaN NaN
30 0.99 1 1.04 1.12 1.16 1.18 1.23 NaN NaN
40 0.99 1 1.04 1.11 1.13 1.16 1.14 1.12 1.14
60 1 1 1.03 1.06 1.04 0.99 0.96 0.94 0.89
80 1 1 1.02 1 0.97 0.92 0.86 0.85 0.76

120 1 1 1 0.97 0.89 0.84 0.72 0.82 0.86
180 1 1 0.99 0.95 0.85 0.74 0.65 0.55 0.55
240 0.99 0.99 0.98 0.93 0.83 0.78 0.69 0.63 0.61
300 0.99 0.99 0.98 0.92 0.83 0.72 0.64 0.55 0.43
360 0.99 0.98 0.95 0.9 0.81 0.75 0.6 0.77 0.59
420 0.98 0.97 0.94 0.89 0.8 0.74 0.59 0.51 0.63
500 0.94 0.94 0.91 0.86 0.78 0.68 0.62 0.6 0.72
600 0.8 0.8 0.77 0.73 0.67 0.56 0.47 0.51 0.6
800 0.62 0.61 0.59 0.55 0.49 0.45 0.36 0.48 0.43
1000 0.53 0.53 0.51 0.47 0.43 0.36 0.38 0.49 0.51

Table 3 PPSSPFMD Equivalent Gain

Amplitude X 1 5 10 15 20 25 30 35 40
Modulation Constant rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec rad/sec

13 6 28 NaN NaN NaN NaN NaN NaN NaN
14 6 27 54 70 NaN NaN NaN NaN NaN
15 5 27 51 74 NaN NaN NaN NaN NaN
20 5 24 45 72 87 NaN NaN NaN NaN
25 5 21 42 63 85 103 NaN NaN NaN
30 5 20 39 61 81 96 118 NaN NaN
40 5 17 36 55 75 91 111 131 148
60 4 14 30 49 66 83 102 117 140
80 4 11 26 43 59 74 96 107 133

120 3 9 21 36 48 61 77 86 101
180 3 6 17 31 38 47 58 58 52
240 3 6 15 26 32 39 45 45 32
300 2 6 13 24 26 33 35 33 24
360 2 5 12 19 25 30 31 21 20
420 2 5 11 18 23 29 27 20 17
500 2 4 10 17 21 25 24 18 15
600 1 5 11 17 22 25 25 18 15
800 1 5 11 18 25 28 25 15 16
1000 0 5 12 18 24 28 26 14 16

Table 4 PPSSPFMD Equivalent Phase-Lag (degrees)

65

of AkM at frequencies where a �NaN� is given; this would just result in more �NaN�s.

The data could also be retaken with a different post-filter to try to account for the

bandwidth of the linear plant being used; this would create a need for three-dimensional

interpolation (AkM, frequency, bandwidth). A few simulations were run with a unity-gain

low-pass post-filter with a bandwidth of 50 rad/sec, and the equivalent gain and phase-lag

of the PPSSPFMD nonlinearity changed very little, especially considering the intention

of the data is for use with a graphical method, where great precision is not needed.

The PPSSPFMD nonlinearity considered in the section used USSH as its PFM

method, and period measurement with a 10-Hz deadband as its PFD method, so the

tabular describing function data of Table 3 and Table 4 relate directly to this setup. No

other types of PFM or PFD will be considered here, but the post-filter method could be

used to recreate Table 3 and Table 4 using any combination of modulator and

demodulator.

4.3 Simple-Loop Examples with Simulation Comparisons

An algorithm can be used with the data in Table 3 and Table 4 to graphically

predict limit cycles in the simple loop of Fig. 31. The algorithm is performed by the

MATLAB script �Limit_Predictor.m,� found in Appendix D. In the MATLAB code, the

linear plant is defined as �SYS.� To best understand the algorithm used for limit-cycle

prediction, consider an example; see Fig. 33, which is the plot created by

�Limit_Predictor.m.� A second-order linear plant with two poles at �10 rad/sec and a DC

gain of 5 is used in this example, and the modulation constant is 20. The plant was

chosen because it is a simple system with a bandwidth near that of the Experimental

Neural Arm. The choice of modulation constant was arbitrary.

66

The solid line with �x� markers is the Nyquist plot of the linear plant, and each

�x� marks an integer frequency value; remember the frequency increases as the Nyquist

plot goes toward the origin. The dashed line is the unit circle. Because the gains in Table

3 are centered around 1 (ideally they would be 1), the algorithm uses the integer

frequency on the Nyquist plot that is closest to the unit circle as a first guess at the limit-

cycle frequency. This frequency is also labeled for the duration of the algorithm; notice

on the plot in Fig. 33 that a �20� is next to the closest �x� to the unit circle, indicating a

frequency of 20 rad/sec. To determine the values of the other �x�s, simply count away

from 20 by integer values. The remaining solid line is the amplitude-dependent negative

inverse describing function of the PPSSPFMD nonlinearity if only limit cycles of 20

-1.5 -1 -0.5 0
-1.5

-1

-0.5

0

 1
 1.5 2 3 4 5 6 7

 9
 11

 13
 15 18 21 25

 30

20

Real

Im
ag

in
ar

y

SYS = 5/(0.01s2+0.2s+1)

Fig. 33 Graphical Limit-Cycle Predictor

Unit
Circle

Negative
Inverse
Describing
Function

Nyquist
Plot of
Plant

67

rad/sec are considered. The numbers to the right of the dot markers on this line represent

different limit-cycle amplitudes (the values of AkM used from the table are divided by kM

before being printed to the screen).

If the negative inverse describing function crossed the Nyquist plot at 20 rad/sec,

it could be concluded that a limit-cycle would occur with a frequency of 20 rad/sec, and

with an amplitude obtained from describing function locus. The describing function does

not cross at 20 rad/sec though, and an iteration is required. The software prompts for a

new frequency, and 19.5 is entered because the Nyquist plot is crossed between the �x�s

representing 19 and 20 rad/sec. The software now plots the negative inverse describing

function plot if only limit cycles with a 19.5-rad/sec frequency are considered. This plot

still crosses the Nyquist plot at 19.5 rad/sec, so it can now be concluded that a limit cycle

will occur with a frequency of 19.5 rad/sec and an amplitude of 4.5, which was taken

from the describing function locus. This example took only one iteration to complete,

and most problems are just as simple.

To check the validity of these results, compare the graphical limit-cycle prediction

with a Simulink simulation of the system, which is given as Fig. 34. Because pulse

frequency modulation and demodulation are time-varying, no true limit cycle is ever

achieved; the magnitudes of the peaks vary, and the instantaneous frequency varies also.

Pavlidis and Jury [2] described this behavior as a �limit annulus,� because a phase-plane

plot of the plant output and its time derivative shows a response that always falls within a

distorted doughnut shape (not the true definition of an annulus), never growing too large

or decaying too small, but also never falling into a periodic orbit. Figure 35 shows the

same data in Fig. 34, but in phase-plane form, illustrating the �limit annulus.� This being

68

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

Tim e (sec)

O
ut

pu
t

of
 L

in
ea

r
P

la
nt

Fig. 34 Limit Cycle in Simulation of Simple Loop

-6 -4 -2 0 2 4 6
-100

-80

-60

-40

-20

0

20

40

60

80

100

y

dy
/d

t

Fig. 35 Phase-Plane Plot Showing Limit Annulus (In Bold)

69

said, the limit-cycle amplitude and frequency obtained from the graphical predictor are

only approximations of the behavior of the output. For this example, the graphical

predictor predicted an amplitude of 4.5, and the simulation shows peaks in the range of

about 4-5. The graphical predictor predicts a frequency of 19.5 rad/sec, and the

simulation shows frequecies between about 19 and 20 rad/sec. For this example, the

graphical predictor was nearly perfect, but this is not always the case; the prediction is

accurate enough, though, to understand the behavior of the system being analyzed.

Table 5 contains comparisons of predicted limit-cycle amplitudes and frequencies

with simulated limit-cycle amplitudes and frequencies. For this simple loop, the

graphical limit-cycle predictor is very accurate.

Table 5 Comparison of Graphically-Predicted and Simulated Limit Cycles
for Simple Loop (kM = 20)

SYS
Simulation
Amplitude

Simulation
Frequency
(rad/sec)

Predicted
Amplitude

Predicted
Frequency
(rad/sec)

2 16 2.2 16.9

4.5 19.5 4.5 19.5

14 29 14.3 29.8

None None None None

2.5 13 2.8 12.9

8.5 17 10 17.6

12.001.0
5.3

2 ++ ss

12.001.0
5

2 ++ ss

12.001.0
15

2 ++ ss

1011
100

2 ++ ss

1011
200

2 ++ ss

1011
400

2 ++ ss

70

4.4 Limit-Cycle Prediction Algorithm for Complex Loops

The tabular describing function was validated in the previous section as an

accurate depiction of a PPSSPFMD nonlinearity, but the simple loop that was analyzed is

unrealistically simple for use with any real applications, and was only used to develop the

method. Consider the feedback loop of Fig. 36; this loop is more complex than that of

Fig. 31, and more suited to real applications. This loop has a forward-path PPSSPFMD

nonlinearity and a linear plant G(jω) like the simple loop, but it also contains a feedback

PPSSPFMD nonlinearity and a linear transfer function H(jω), the input of which is the

error of the system. The form of this loop is not important; the algorithm developed here

is applicable to even more complex loops. The algorithm will be given explicitly for the

loop of Fig. 36, but the method is easily extrapolated. The MATLAB script

implementing this algorithm is �Limit_Predictor2.m,� given in Appendix D.

Like before, the Nyquist plot of the linear plant G(jω) is plotted, but now the line

that previously represented the negative inverse describing function of the PPSSPFMD

represents the negative inverse describing function of the concatenation of all the

remaining elements in the loop. The algorithm iterates through one frequency at a time,

with the initial guess chosen as before. Regardless of the elements in the loop, the

Fig. 36 Complicated Loop with PPSSPFMD Describing Functions

PPSSPFMD(A,ω) G(jω)_+

PPSSPFMD(A,ω)

H(jω)
y0

71

algorithm starts at the output y of the linear plant G(jω), and continues around the loop in

the clockwise direction. Assume the output y has the form:

 (78)

The gain Kfb and the phase-lag φfb of the feedback PPSSPFMD are found from

Table 3 and Table 4 for the amplitude-times-modulation-constant AkM and the frequency

ω. Now, the gain KH and the phase-lag φH of the linear element H(jω) are found for the

frequency ω. The output of the linear plant H(jω) has the form (approximately):

 (79)

The gain Kf and the phase-lag φf of the forward-path PPSSPFMD are now found

from Table 3 and Table 4 for the amplitude-times-modulation-constant AKfbKHkM and the

frequency ω. The concatenated describing function has a total gain Ktotal and a total

phase-lag φtotal of:

 (80)

 (81)

The final step is to plot a point at a distance 1/Ktotal away from the origin and φtotal

degrees away from the real axis, and label the point with the amplitude A. This is

repeated for different values of A to create the concatenated-negative-inverse-describing-

function locus.

)sin(tAy ω=

)sin(HfbHfb tKAKu φφω −−=

fHfbtotal KKKK =

fHfbtotal φφφφ ++=

72

Notice that the negative feedback is never explicitly considered. It is implicit in

the method that a single gain of �1 occur somewhere in between two of the concatenated

elements.

4.5 Complex-Loop Examples with Simulation Comparisons

The algorithm for complex loops presented in Section 4.4 is validated here by

comparing results of Simulink simulations to the graphical limit-cycle predictor. The

algorithm is performed by the MATLAB script �Limit_Predictor2.m,� found in Appendix

D. In the MATLAB code, the linear transfer function and linear plants H(jω) and G(jω)

of Fig. 36 are defined as �SYS1� and �SYS2�, respectively.

For an example, consider a situation where �SYS1� is defined as 200/(s + 200) in

Laplace form, and �SYS2� is defined as 400/(s2 + 11s + 10). �SYS2� was chosen

because it is a simple system that has approximately the same bandwidth of the

Experimental Neural Arm. �SYS1� was arbitrarily chosen as a simple filter. After

iterating through different frequency values, following the same method described in

Section 4.3, the graphical limit-cycle predictor code �Limit_Predictor2.m� results in the

plot given as Fig. 37. The limit-cycle predictor predicts a limit-cycle frequency of

approximately 14.7 rad/sec, and a limit-cycle amplitude of approximately 30. Figure 38

shows the Simulink simulation of the same system. The simulation shows limit-cycle

peaks occurring mostly in the range of 28-32, but occasionally dipping down as low as

24. This matches the prediction of 30 well. The simulation shows a limit-cycle

frequency of approximately 14 rad/sec; this also matches the prediction of 14.7 rad/sec

well.

73

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-40

-30

-20

-10

0

10

20

30

40

Tim e (sec)

O
ut

pu
t

of
 S

Y
S

2

Fig. 38 Limit Cycle in Simulation of Complicated Loop

-2 -1.5 -1 -0.5 0
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

 5 6 7 9 11 13 15
 18 22.5

 30

 35

 40
 45

 50

19

Real

Im
ag

in
ar

y

SYS1 = 200/(s+200) SYS2 = 400/(s2+11s+10)

Fig. 37 Graphical Limit-Cycle Predictor for Complex Loop

74

Table 6 contains comparisons of predicted limit-cycle amplitudes and frequencies

with simulated limit-cycle amplitudes and frequencies. For this complex loop, the

graphical limit-cycle predictor is still very accurate.

Table 6 Comparison of Graphically-Predicted and Simulated Limit Cycles
for Complex Loop (kM = 20)

SYS1

SYS2

Simulation
Amplitude

Simulation
Frequency
(rad/sec)

Predicted
Amplitude

Predicted
Frequency
(rad/sec)

1.7 8 2.1 8.1

8 11 10.7 11.9

30 14 30 14.7

None None None None

7.7 6 7 5.7

40 6 38 6.4

200
200
+s

200
200
+s

200
200
+s

5
5
+s

5
5
+s

5
5
+s

1011
200

2 ++ ss

1011
200

2 ++ ss

1011
100

2 ++ ss

1011
100

2 ++ ss

1011
50

2 ++ ss

1011
400

2 ++ ss

75

5. GRAPHICAL LIMIT-CYCLE PREDICTION WITH

EXPERIMENTAL NEURAL ARM WRIST

A graphical limit-cycle predictor method was developed in Chapter 4, but it was

verified only with Simulink models. Simulink models can be very informative regarding

basic system behaviors, but they still fail to fully embrace the complexity of a real

system. The model used will necessarily have errors that are unaccounted for. One

problem that occurs when pulse frequency modulating and demodulating a signal in a

Simulink model is that everything occurs on a common computer sample, which

synchronizes a normally asychronous PFM signal with its demodulator. This eliminates

the demodulation error of Section 3.1.2, but does account for the modulation error of

Section 2.5. This is not an accurate depiction of real systems containing PFM elements.

It is very desirable to validate the graphical limit-cycle predictor method with a

real system. Because the impetus of this thesis is to create control system design tools for

use with the Experimental Neural Arm, the method will be validated with the wrist of the

Experimental Neural Arm. The Experimental Neural Arm is shown as Fig. 39.

A wrist model, in the form needed for the limit-cycle prediction algorithm, is

developed here. The experimental setup is explained. The graphical limit-cycle predictor

works well for many experiments, but there are cases when the prediction loses accuracy

which will be discussed.

Fig. 39 Experimental Neural Arm

77

5.1 Human/Arm System Model

The loop of Fig. 36 may still be too simplistic for real systems, but as was stated

in Section 4.4, the graphical-limit-cycle algorithm is easily expanded to more

complicated loops. Consider the system of Fig. 40, which is a possible model of the

Experimental Neural Arm connected to an amputee. This loop contains afferent and

efferent time delays, plus a linear compensator C(jω). Here the transfer function H(jω)

represents a model of the brain�s function; Gossett et al. [12] use a PI controller to model

the brain in a similar loop. There are multiple ways to use the graphical limit-cycle

predictor with this system. One possible method would lump the controller and plant into

one transfer function for the Nyquist plot, and would lump the two time delays with the

transfer function H(jω), using Pade approximants [13] for the time delays. Another

possible method would plot the Nyquist plot of the plant G(jω), and every other element

in the loop would be lumped with the concatenated describing function with the

algorithm described in Section 4.4. It should be noted though, that a time delay of ∆

seconds can be written as a pure phase lag of ω∆ radians [13]. Because the limit-cycle-

predictor algorithm turns every element in the loop into an equivalent gain and phase-lag,

a time delay is very easily handled with the algorithm without the need for a Pade

Fig. 40 Model of Human Connected to Experimental Neural Arm

0
PPSSPFMD(A,ω) C(jω)G(jω)_+

PPSSPFMD(A,ω)

H(jω)
y

e-∆s

e-∆s

78

approximant.

5.2 Wrist Model

To use the graphical limit-cycle predictor algorithm of Section 4.4, there is great

freedom regarding the elements in the loop, but one constraint is that a linear plant model

is needed. It is this linear plant of which the Nyquist plot is plotted in the algorithm. The

model of the plant may contain nonlinearities, but they must be given in series with some

linear model; the nonlinearities can then be included in the concatenated describing

function for the loop. Many common nonlinearities can be modeled in this way,

including saturations and deadbands.

This being said, a model of Experimental Neural Arm wrist is needed. The wrist

model must take the form of a linear transfer function that may be preceded, in series, by

nonlinearities of any form.

Some wrist properties from Fukuyama [14] are used here without independent

validation. The wrist has a deadband do to stick-slip friction, whereby no voltage input

with a magnitude less than 0.24 volts causes any movement in the wrist. Also, the model

of the wrist should have a voltage-to-position transfer function with two poles (one

negative and one at the origin) and no zeros.

To obtain a transfer function of the wrist, a Hewlett-Packard 3562A Dynamic

Signal Analyzer was used. This signal analyzer drives the plant being modeled by a

sinusoid of adjustable amplitude (volts) and frequency (Hertz). The output of the plant is

fed back to the signal analyzer (volts). The instrument sweeps through many frequencies,

determining the frequency-dependant gains of the plant for a preset range of frequencies.

79

The signal analyzer fits a transfer function to the data taken based on user-determined

number of poles and zeros.

Attempts at obtaining an open-loop model were unsuccessful; the nonsymmetrical

properties of the wrist caused it to drift towards its mechanical stops during open-loop

testing. For this reason, the closed-loop model of the wrist was found, and the open-loop

wrist model was derived from it. The form of the open- and closed-loop models are

shown as Fig. 41, where W(jω) is the open-loop wrist model, WCL(jω) is the closed-loop

wrist model, x is the driving input sinusoid (volts) to the closed-loop system, e is the error

signal (volts) actually being applied to the wrist, and y is the wrist potentiometer output

(volts). For linear plants, where the gain is only dependent on ω, deriving the open-loop

model from the closed-loop model is perfectly valid. The deadband in the wrist creates

an amplitude dependency; sinusoids of small amplitude are greatly affected by the

W(jω)_+

WCL(jω)
y

y

r

r e

Fig. 41 Open- and Closed-Loop Wrist Models

80

deadband, where sinusoids of large amplitude are barely affected. The validity of the

open-loop derivation is investigated later in this chapter.

W(jω) and WCL(jω) are of the form:

 (82)

 (83)

The closed-loop poles are found with the signal analyzer, and Eq. (83) is used to derive

the open-loop poles. It is necessary to find the amplitude dependence of the wrist model.

The A/D card currently running the Experimental Neural Arm has a saturation of ±0.9

volts, so no amplitude above that value will be considered (it will be accounted for with a

saturation later). The deadband of ±0.24 volts means that no amplitude below this need

be considered. Five different closed-loop models were obtained for five different

amplitudes of the sinusoidal input r � 0.3, 0.4, 0.5, 0.7, and 0.9 volts:

 (84)

 (85)

 (86)

)()())((
)(

2121
2

21 Kss
K

ss
KjW

CLCL
CL ++++

=
++

=
σσσσσσ

ω

))((
)(

21 σσ
ω

++
=

ss
KjW

)238.0)(589.0(
0405.0)(3.0 ++

=
ss

jWCL ω

)216.0)(877.0(
137.0)(4.0 ++

=
ss

jWCL ω

)203.0)(10.1(
261.0)(5.0 ++

=
ss

jWCL ω

81

 (87)

 (88)

These models obtained from the signal analyzer have the poles given in Hertz, but the DC

gain is correct. After changing the poles to units of rad/sec, and changing K to keep the

DC gain the same, the open-loop models are found using Eq. (83). The open-loop model

for a 0.9-volt amplitude input is found to be:

 (89)

 Both poles are nonzero, as is the case for all five open-loop models, but the known form

of the wrist model is:

 (90)

The form of the model in Eq. (89) is simply due to numerical errors in the signal

analyzer. To force one of the poles to zero to match the form of the ideal open-loop wrist

model, a root-locus equivalency method is used. Figure 42 shows how the two open-loop

poles can be changed to one pole at the origin and one negative pole by matching the

oscillatory portion of the root-locus. The amplitude-dependent wrist models in the form

of Eq. (90), and with the pole in units of rad/sec, become:

)205.0)(17.1(
263.0)(7.0 ++

=
ss

jWCL ω

)185.0)(33.1(
271.0)(9.0 ++

=
ss

jWCL ω

)(
)(

σ
ω

+
=

ss
KjW

)107.0)(61.9(
7.10)(9.0 −+

=
ss

jW ω

82

 (91)

 (92)

 (93)

 (94)

 (95)

)20.5(
60.1)(3.0 +

=
ss

jW ω

)87.6(
41.5)(4.0 +

=
ss

jW ω

)20.8(
3.10)(5.0 +

=
ss

jW ω

)65.8(
4.10)(7.0 +

=
ss

jW ω

)50.9(
7.10)(9.0 +

=
ss

jW ω

σ1 σ σ2

)())((21 σσσ +
≈

++ ss
K

ss
K

Re(s)

Im(s)

Fig. 42 Root-Locus Equivalency Method

83

The model is very dependent on amplitude; for small amplitudes the gain of the wrist

transfer function is appears effectively smaller, and the pole appears slower.

As was previously mentioned, deriving the open-loop wrist model from the

closed-loop model is always valid if the plant is only dependent of ω, but the wrist is

dependent on amplitude as well. Refer to Fig. 41; the input amplitudes used in the wrist

models of Eqs. (91) through (95) are the amplitudes of r, but the amplitude of e is what is

needed to develop an amplitude-dependent open-loop wrist model. If the amplitudes of r

and e are nearly the same, deriving the amplitude-dependent open-loop model from the

amplitude-dependent closed-loop model is valid; otherwise it is not. The transfer

function between r and e is, in Laplace form:

 (96)

Figure 43 shows the Bode plot of the transfer function of Eq. (96). Plots are

shown for the 0.3-volt and the 0.9-volt wrist models. These plots indicate that for

frequencies greater than about 1 rad/sec r and e have the same magnitude, and the model

is valid. If, when using these wrist models with the graphical limit-cycle predictor, the

algorithm predicts a limit-cycle frequency less than 1 rad/sec, then the results could not

be trusted.

For use with the limit-cycle predictor algorithm, the wrist needs to be modeled as

a linear plant preceded by a nonlinearity. One method to incorporate Eqs. (91) through

(95) into one model is to use the 0.9-volt wrist model (the model least affected by the

)(
)(1

1)(sr
sW

se
+

=

84

deadband) as the linear plant, which is preceded by an amplitude-dependent nonlinearity.

The linear wrist, preceded by its amplitude-dependent nonlinearity, are:

 (97)

Here k(A) and p(A) are the amplitude-dependent gain and pole of the nonlinearity,

respectively. The nonlinearity accounts for the relative effect of the deadband during

oscillations of varying amplitudes. Figure 44 plots the gains (numerators) of Eqs. (91)

through (95), along with a third-order polynomial curve fit, which is found to be:

 (98)

Figure 45 plots the poles of Eqs. (91) through (95), along with a third-order polynomial

)50.9(
7.10

))((7.10
)50.9)((

+
⋅

+
+

ssAps
sAk

668.3481.18386.2454.108)(23 −+−= AAAAk

-80

-60

-40

-20

0

20

0.3-V olt Model
0.9-V olt Model

10-3 10-2 10-1 100 101 102
0

20

40

60

80

100

Frequency (rad/sec)

Ph
as

e
(d

eg
);

 M
ag

ni
tu

de
 (

dB
)

Fig. 43 Bode Plot to Check Validity of Derived Open-Loop Models

85

Nonlinear Wrist Gain vs. Amplitude
k(A) = 108.4A3 - 245.86A2 + 183.81A - 34.668

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

Amplitude

G
ai

n

Fig. 44 Curve Fit of Wrist Model Gain

Nonlinear Wrist Pole vs. Amplitude
p(A) = 49.77A3 - 102.77A2 + 72.33A - 8.6433

0
1
2
3
4
5
6
7
8
9

10

0 0.2 0.4 0.6 0.8 1

Amplitude

Po
le

Fig. 45 Curve Fit of Wrist Model Pole

86

curve fit, which is found to be:

 (99)

This amplitude-dependent nonlinearity can easily be incorporated into the graphical limit-

cycle predictor algorithm.

The effects of the deadband in the wrist were present during all of the modeling,

so no deadband describing function needs to precede the wrist model. No limit cycles

can occur, though, that would create a sinusoidal input to the wrist model with an

amplitude less than 0.24 volts; this needs to be accounted for in the algorithm. The

saturation was never encountered because the highest amplitude input considered in

modeling was not bigger than 0.9 volts. A hard-saturation describing function will need

to precede the wrist model in the algorithm. This hard-saturation describing function,

from Khalil [11], is:

 (100)

 (101)

The final wrist model for use with the graphical limit-cycle predictor is given in

Fig. 46. The linear plant is the last element of the wrist model. This linear plant is

preceded, from left to right, by a deadband, by a saturation, and by the nonlinear wrist

model of Eq. (97). Notice the deadband is not a describing function; it has no effective

gain that is a function of amplitude, but rather acts to only allow limit cycles with an

6433.833.7277.10277.49)(23 −+−= AAAAp

1)(9.0 =Ψ⇒≤ AA

















−+





=Ψ⇒> −

2
1 9.019.09.0sin2)(9.0

AAA
AA

π

87

amplitude greater than 0.24 volts to pass through. The saturation is a hard-saturation

describing function defined in Eqs. (100) and (101).

5.3 Two-Computer Amputee Simulation

Because amputees are not easily obtained for experiment, two computers are used

to simulate the loop of Fig. 40. One computer controls the wrist, and one computer

simulates an amputee. For the experiments here, the time delay ∆ was left at zero,

meaning no time delay was explicitly added in software. The setup of the two computers

is shown in Fig. 47. Two �efferent� lines and two �afferent� are used, giving a total of

four channels of PFM signals between the two computers, and no other method of

communication between them. This is most likely the way that the wrist of the

Experimental Neural Arm will be connected to an amputee.

The brain model, labeled �PI,� is a proportional-plus-integral controller. The

wrist controller, labeled �PV,� is a proportional-plus-velocity-feedback controller. A PI

controller may or may not be an accurate model of the brain, but the purpose here is not

to accurately model the brain, but rather to verify the graphical limit-cycle predictor of

Chapter 4.

Fig. 46 Final Wrist Model

Linear
WristDeadband

))((7.10
)50.9)((

Aps
sAk
+
+

)50.9(
7.10

+ss

Saturation
Ψ(A)

Wrist
Nonlinearity

88

The PFM method used on both computers is IPFM. The PFD method used in

both computers is period measurement with a 10-Hz deadband. Both computers have a

sampling rate of 3000 Hz. The software used was written in C++, and was largely an

adaptation of software created by Mark Colton [15].

5.4 Graphical Limit-Cycle Prediction vs. Experimental Results

The graphical limit-cycle predictor algorithm of Chapter 4 is ready to be tested on

a real system. The MATLAB code �Limit_Predictor2.m� was modified to include the

wrist model of Fig. 46, and is given as �Limit_Predictor3.m� in Appendix D. Because of

the desired form of the wrist model in the limit-cycle predictor algorithm, the PV

controller implemented in the actual system is modeled as a PD controller in the

algorithm. There is a subtle difference between the two, and the effect of this modeling

choice will be discussed later.

Fig. 47 Two-Computer Setup to Simulate Human Controlling the
Experimental Neural Arm Wrist

Amputee Simulator Computer

Wrist-
+

PFM

PFDPFM

PFD

+
-

PFM

PFMPFD

PFD

+
-

PV
0

PI

Controller Computer

89

Many experiments were performed with the two-computer setup of Fig. 47, with

various gains for the PI and PV controllers. All experiments ran for approximately 20

seconds before data was taken to ensure the transient effects of start-up were gone. A

few experimental data sets are compared to the graphical limit-cycle predictions of the

systems. They were chosen to reflect the strengths and weaknesses of the graphical limit-

cycle predictor.

Consider a system with a �brain� PI controller with gains Kp1 = 10 and Ki = 5,

with a PV controller with Kp2 = 20 and Kv = 0, and with a modulation constant of kM =

200. Figure 48 shows the experimental data of this system after a small disturbance. The

frequency of the limit cycle is approximately 9.2 rad/sec, and the amplitude of the limit

cycle falls in the range of 0.07-0.18 volts.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

B rain: K
p
 = 10, K

i
 = 5 W ris t: K

p
 = 20, K

v
 = 0 k

M
 = 200

Tim e (s ec)

W
ris

t
P

ot
en

tio
m

et
er

 V
ol

ta
ge

Fig. 48 Limit Cycle of Wrist Experiment #1

90

Figure 49 shows the graphical limit-cycle predictor after iterating frequencies

until a match was found. A frequency of 9.3 rad/sec and an amplitude of 0.12 volts is

predicted. For this example, the graphical predictor predicts the behavior of the real

system well. This level of accuracy is characteristic of a large number of experiments.

No other examples will be given where the prediction is highly accurate, because more

can be learned from the cases where the prediction is less precise.

Consider a system with a �brain� PI controller with gains Kp1 = 1 and Ki = 7, with

a PV controller with Kp2 = 10 and Kv = 0, and with a modulation constant of kM = 200.

Figure 50 shows the experimental data of this system. The frequency of the limit cycle is

approximately 2.2 rad/sec, and the amplitude of the limit cycle is approximately 0.7 volts.

Figure 51 shows the graphical limit-cycle predictor after iterating frequencies until a

match was found. A frequency of 2.9 rad/sec and an amplitude of 0.45 volts are

-0.1 -0.08 -0.06 -0.04 -0.02 0
-0.1

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.07050.0755

0.1005

0.1505

9

11

Real

Im
ag

in
ar

y

ω = 9.3 rad/s ec

Fig. 49 Graphical Limit-Cycle Prediction of Wrist Experiment #1

91

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Brain: Kp = 1, K i = 7 W ris t: Kp = 10, Kv = 0 km = 200

Time (sec)

W
ris

t
P

ot
en

tio
m

et
er

 V
ol

ta
ge

Fig. 50 Limit Cycle of Wrist Experiment #2

-0.4 -0.2 0 0.2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.06550.07050.0755
0.1005

0.1505

0.2005

 0.3

 0.4

 0.5

 0.6

 0.7

3

5

7

9
11

Real

Im
ag

in
ar

y

ω = 2.9 rad/sec

Fig. 51 Graphical Limit-Cycle Prediction for Wrist Experiment #2

92

predicted.

This prediction is less accurate than the previous case. Notice how the response

of the wrist deviates from a true sinusoid. This is due to the input saturation, which can

be seen in the long periods where the velocity is at a maximum, almost creating a triangle

wave. Because the tabular describing function for the PPSSPFMD was created using

sinusoidal inputs, the method does not predict limit-cycle amplitudes as accurately when

the signals deviate from sinusoids. This is also the case when using traditional describing

functions, which are also low-frequency sinusoidal approximations. Do note that the

predicted frequency is still fairly accurate. This is because, regardless of the wave shape

at any point in the loop, every element in the loop experiences some signal with a

common periodic nature if the limit cycle is self-sustaining.

Also, notice how close to parallel the Nyquist plot and the negative inverse

describing function are in this case. As in traditional describing function analysis, the

less perpendicular the intersection, the less accurate. This is due to the sensitivity of the

method when the lines are close to parallel; a small change in the position of the lines

causes a large change in the point of intersection. Figure 52 shows the graphical limit-

cycle predictor for a frequency of 2.2 rad/sec. Notice how close the amplitude of 0.7

volts is to intersecting with the Nyquist plot. In general, the more perpendicular the locus

is to the Nyquist plot at the point of intersection, the more robust the prediction. This

problem, along with the saturation problem previously mentioned, are problems that

occur with traditional describing functions as well, and do not reflect poorly on the

graphical limit-cycle predictor for PFM systems.

93

For the final example, consider a system with a �brain� PI controller with gains

Kp1 = 5 and Ki = 5, with a PV controller with Kp2 = 10 and Kv = 1.5, and with a

modulation constant of kM = 200. Figure 53 shows the experimental data of this system.

The frequency of the limit cycle is approximately 10 rad/sec, but it varies enough to see

the change in frequency with the naked eye. The amplitude of the limit cycle falls in the

range of 0.07-0.17 volts. Figure 54 shows the graphical limit-cycle predictor after

iterating frequencies until a match was found. A frequency of 13.1 rad/sec and an

amplitude of 0.074 volts are predicted.

The predicted amplitude is on the low end of the amplitudes seen, but still falls

within the correct range of possible values. The prediction of the frequency, however,

seems to be too high. This appears to be caused by replacing the actual PV controller

-0.4 -0.2 0 0.2
-0.8

-0.6

-0.4

-0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.9

3

Real

Im
ag

in
ar

y

ω = 2.2 rad/sec

Fig. 52 Sensitivity of Graphical Limit-Cycle Prediction of Wrist Experiment #2

94

Fig. 54 Graphical Limit-Cycle Prediction of Wrist Experiment #3

-0.07 -0.065 -0.06 -0.055 -0.05 -0.045 -0.04 -0.035 -0.03
-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

0.0705
0.0755

0.1005

11

Real

Im
ag

in
ar

y

ω = 13.1 rad/sec

Fig. 53 Limit Cycle of Wrist Experiment #3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2
Brain: Kp = 5, Ki = 5 W rist: Kp = 10, Kv = 2 km = 200

Time (sec)

W
ris

t
P

ot
en

tio
m

et
er

 V
ol

ta
ge

95

with a PD controller in the limit-cycle predictor algorithm. Using velocity feedback

stabilizes a system slightly better than using a PD controller, even though their behaviors

are similar in many ways. This is why the real system is more damped (it has a lower

frequency) than the PD approximation of the system.

This modeling problem occurs because the four-element wrist model of Fig. 46

prohibits using velocity feedback in the limit-cycle predictor algorithm. The velocity

feedback would have to be fed back to the first wrist element of Fig. 46 (the deadband),

but the algorithm, as it is currently posed, allows for elements only in series. This

problem is caused both by having a highly nonlinear wrist, and also by using an

algorithm that requires a loop structure that is not always valid.

In practice, velocity feedback is not needed in control of the Experimental Neural

Arm, because the friction in the arm creates enough dampening. If only proportional

feedback is used, the problems of this last example will not be seen.

Table 7 shows limit-cycle amplitudes and frequencies seen in experiments with

the wrist compared to the predicted limit-cycle amplitudes and frequencies. The table

gives values for different combinations of Kp1 and Ki (from the amputee brain simulator),

and Kp2 and Kv (from the wrist controller). The �limit annulus� behavior is seen in the

real wrist even more than in simulations, because the wrist does not have symmetric

properties; the experimental values given in the table show a range of amplitudes and

frequencies when the range is large.

96

Table 7 Comparison of Graphically-Predicted and Experimental Limit Cycles in
Experimental Neural Arm Wrist (kM = 200)

Brain
and Wrist

Gains

Experimental
Amplitude

(volts)

Experimental
Frequency
(rad/sec)

Predicted
Amplitude

(volts)

Predicted
Frequency
(rad/sec)

Kp1 = 1
Ki = 0

Kp2 = 10
Kv = 0

0.1-0.15 9.1 0.14 7.3

Kp1 = 1
Ki = 5

Kp2 = 10
Kv = 0

0.24-0.31 5 0.27 0.47

Kp1 = 10
Ki = 5

Kp2 = 20
Kv = 0

0.07-0.15 9.2 0.12 9.2

Kp1 = 1
Ki = 7

Kp2 = 10
Kv = 0

0.7 2.2 0.45 2.9

Kp1 = 5
Ki = 5

Kp2 = 10
Kv = 1.5

0.07-0.17 8.3-11.9 0.074 13.1

97

6. FUTURE WORK

The purpose of this thesis is to develop tools for control system analysis and

design of systems containing pulse frequency modulation. The primary intended

application of this thesis is for use with the Experimental Neural Arm, but no effort is

made here to develop more accurate models of the human central nervous system. For

the work of this thesis to be applied accurately, it is necessary to develop better models of

the human nervous system.

6.1 Develop Better Model of Human/Arm System

The model of the human central nervous system interfaced with an artificial arm,

seen in Fig. 40 is an adaptation of that of Gossett et al. [12], although they did not include

pulse frequency modulation in the model. This model uses position error in the forward

loop, and position in the feedback loop. It is entirely possible that this is not an accurate

model of a human interfacing with an artificial arm.

Stein [16] suggests that three different types of motoneurons transmit three

different types of information: alpha motoneurons transmit force information, static

gamma motoneurons transmit position information, and dynamic gamma motoneurons

transmit velocity information. It is very important to know which type of nerve is being

used to control the Experimental Neural Arm, but any of the three could theoretically be

used for control.

98

6.2 Consider Logarithmic Pulse Frequency

Modulation and Demodulation

From experiments with amputees, it appears there may be a logarithmic

relationship between the input pulse frequency to an afferent nerve and the “continuous”

signal sensed by the amputee [8]. Pulse frequency modulation in the nervous system

would then have the inverse relationship between input signal and efferent output pulse

frequency. This logarithmic model has not been quantified yet; it is simply a verbal

description given by amputees.

The tabular describing function of the PPSSPFMD could easily be recalculated

using the post-filter method of Section 4.2, by first calculating the logarithm of the signal

before passing it through the PPSSPFMD.

6.3 Consider Demodulation of “Noisy” PFM Signals

The PFD methods of Chapter 3 were analyzed only for the demodulation of noise-

free PFM signals. In this context, “noise” is the occurrence of an extraneous pulse or a

missing pulse. Period measurement was determined to be the best overall PFD method

with a fast sampling time, but this method would be the most sensitive to noisy PFM

signals. The low-pass filtering methods would be relatively insensitive to noisy PFM

signals.

It would be nice to know the level of noise that is needed before the errors

encountered in period measurement equal those encountered in low-pass filtering. It

would first be necessary to quantify this “pulse noise.” If the point when errors are the

same was known, the best PFD method could be chosen based on the level of noise in the

PFM signal.

99

6.4 Include Stiffness Control

It is possible that the rectifying nonlinearities of the PPSSPFMD setup of Fig. 11

should be remodeled. In the human body, two opposing muscles may be flexed at the

same time, not to move the joint, but rather to increase the stiffness of the joint. This

indicates that the “either/or” behavior of the rectifying nonlinearities used in this thesis

may need to be remodeled to allow activity in both the upper and lower paths of the

PPSSPFMD simultaneously.

Once better models of the rectifying nonlinearities are found, it may be possible to

recreate the stiffness control of the human body when pulses are seen simultaneously

from the nerves of opposing muscles. This could possibly be accomplished by increasing

controller gains in this situation.

6.5 Use Limit-Cycle Matching to Determine Human Parameters

The model of the human nervous system interfaced with an artificial arm, seen in

Fig. 40, has many modeled elements, each of which is subject to error. There is a model

of the brain (this could easily be oversimplified), there is a model of the time delays in

the nervous system (these could change from person to person, or even due to body

chemistry), there are models of the PFM and PFD methods used by the human body

(problems with these have been discussed previously), and finally there is the model of

the electromechanical prosthesis.

The easiest element to get an accurate model of is the prosthesis; traditional

controls engineering can be used here. It is also reasonable to assume the time delays of

the nerves can be modeled accurately, and data are available currently to build such a

model. As the remaining element models are improved upon, it may be possible to use

100

the limit-cycle prediction algorithm to determine the remaining human parameters. For

example, if a reasonable model of the human PPSSPFMD was found, the only remaining

element is the model of the brain. By matching predicted limit-cycle amplitudes and

frequencies with those seen in a prosthetic connected to an amputee, a functional brain

model could be developed.

6.6 Use Error Envelopes for H-Infinity Design

The maximum errors due to pulse frequency modulation and demodulation were

found in Chapters 2 and 3. It may be possible to use these maximum errors for H-Infinity

design of control systems with pulse frequency modulation. It should be noted that the

time delays due to pulse frequency modulation and demodulation would also need to be

accounted for in some way.

101

7. CONCLUSIONS

This thesis successfully developed new tools for control system analysis and

design of systems containing pulse frequency modulation.

Three methods of pulse frequency modulation (IPFM, V/F converters, and USSH)

were found to be equivalent, after a brief discrepancy at start-up, when used in a single-

signed scheme. When modeling PFM, none of these three methods is superior to the

others. The problems encountered when pulse frequency modulating a signal with a

digital computer were also quantified, showing large errors at high pulse frequencies.

Five methods of pulse frequency demodulation (period measurement, first-order

low-pass filtering, second-order low-pass filtering, finite-impulse-response filtering, and

fixed-time window) were analyzed and the errors encountered with each method were

quantified and compared. Period measurement was determined to be the best overall

method of PFD, but this is only when considering noise-free PFM signals; the presence

of noise could possible result in low-pass filtering being a better PFD choice.

A method was created to obtain the equivalent gain and phase-lag of any pulse

frequency modulation/demodulation system, creating a frequency-dependent tabular

describing function. An algorithm was developed that uses the tabular describing

function to graphically predict the existence (and amplitude and frequency if they exist)

of limit cycles in systems containing pulse frequency modulation. The graphical

predictions were compared to simulations and were found to be very accurate.

102

Two computers were used to simulate the interaction between an amputee and the

Experimental Neural Arm; one computer simulated the amputee, and the other directly

controlled the arm. The two computers communicated to each other only by parallel-path

single-signed pulse frequency modulation, much like a real amputee would control the

arm.

A nonlinear model of the Experimental Neural Arm wrist was created in the form

needed by the graphical limit-cycle prediction algorithm. Graphical limit-cycle

predictions were compared to actual limit cycles seen in the wrist being controlled by the

two-computer setup. The predictions matched the limit cycles seen in the wrist well.

APPENDIX A

PULSE FREQUENCY MODULATION SIMULINK MODELS

AND MATLAB SCRIPTS

Sigm a Pu lse Frequency M odu la tor

T h is i s a reconfigu rab le pu lse frequency m odu la tor. It can conve rt any ana log signa l in to a PFM signa l . Se tting "B ias" crea tes
sing le-signed PFM . Se tting "Gain" on the in teg ra l feedback loop crea tes Neura l PRM . Wi th no b ias o r feedback ga in ,

the system is a doub le-signed In teg ra l Pu lse Frequency M odu la tor.

z

1

Uni t De lay

.1 T hresho ld "r"

S tep

S igna l
Genera tor

Ram p

Output
Pu lses

s

1

In tegra to r

Input

M AT LAB
Function

Im pulse Genera tor
"Pu lse "

0Ga in

em

pulse_clock

Data S tore
Wri te

pu lse_clock

Data S tore
Read

pulse_clock

Data S tore
M em ory

0

Clock

0

B ias

Vol tage-to -Frequency Converter

T h is V /F converter is no t im p lem en ted l ike a physica l ci rcu i t. It i s basica l l y an IPFM schem e,
bu t a pu lse is em i tted a t start-up.

Outpu t
Pu lses

Step

S igna l
Generator

Ram p

Input

m

last_sign

Data S to re
Wri te2

pu lse_clock

Data S to re
Wri te

last_sign

Data S to re
Read2

pu lse_clock

Data S to re
Read

last_sign

Data S to re
M em ory2

pu lse_clock

Data S to re
M em ory

Clock
M AT LAB
Function

"VF_Converter.m "

Unified Steps Sam ple & Hold

T h is is the Uni fied Steps Sam ple & Hold m ethod o f PFM . T he serraph i le function i s not used here ; a "m oving threshold"
m ethod, wh ich is presented in the orig inal paper and is equivalent, is used instead.

z

1

Uni t De lay

M AT LAB
Function

Step T hresho ld Generator
"USSH_T hresho ld"

Step

Signa l
Generator

Ram p

Output
Pu lses

s

1

In tegra tor

Input

M AT LAB
Function

Im pulse Generator
"USSH_Pulse.m "

10

Gain "b"

em

threshold

Data Store
Wri te1

pulse_clock

Data Store
Wri te

threshold

Data Store
Read1

pulse_clock

Data Store
Read

threshold

Data Store
M em ory1

pulse_clock

Data Store
M em ory

0

Clock

0

Bias

107

% Pulse.m

% For use with the Sigma Pulse Frequency Modulator Simulink model.
% This function delivers a pulse of a magnitude defined below when the
% input crosses the threshold value. It can be used for double-signed PFM.

function demux = Pulse(mux)

mag = 1; % Magnitude of pulse.
pulse_clock = mux(1);
clock = mux(2);
input = mux(3);
last_out = mux(4);
threshold = mux(5);

if and(pulse_clock == 0, and(input < threshold, input > -threshold))
 out_pulse = 0;
 pulse_clock = 0;
elseif and(pulse_clock == 0, input >= threshold)
 out_pulse = mag;
 pulse_clock = clock;
elseif and(pulse_clock == 0, input <= -threshold)
 out_pulse = -mag;
 pulse_clock = clock;
else
 out_pulse = 0;
 pulse_clock = 0;
end

demux(1) = pulse_clock;
demux(2) = out_pulse;

108

% USSH_Pulse.m

% This function delivers a positive pulse of a magnitude % % defined below when the
input crosses the threshold value, % and a negative pulse when the input crosses
% (threshold - 1). To be used with Unified States Sample & % Hold Simulink model.

function demux = USSH_Pulse(mux)

mag = 1; % Magnitude of pulse.
pulse_clock = mux(1);
clock = mux(2);
input = mux(3);
threshold = mux(4);
last_out = mux(5);

if and(pulse_clock == 0, and(input < threshold, input > -threshold))
 out_pulse = 0;
 pulse_clock = 0;
elseif and(pulse_clock == 0, input >= threshold)
 out_pulse = mag;
 pulse_clock = clock;
elseif and(pulse_clock == 0, input <= (threshold-1))
 out_pulse = -mag;
 pulse_clock = clock;
else
 out_pulse = 0;
 pulse_clock = 0;
end

demux(1) = pulse_clock;
demux(2) = out_pulse;

109

% USSH_Threshold.m

% This function generates the new threshold value in the
% Unified Steps Sample & Hold PFM method.

function threshold = USSH_Threshold(mux)

threshold = mux(1);
input = mux(2);

if and(input < threshold, input > (threshold-1))
 threshold = threshold;
elseif input >= threshold
 threshold = threshold+1;
else
 threshold = threshold-1;
end

110

% VF_Converter.m

% This function is voltage-to-frequency converter. It delivers
% pulses at a frequency that is a function of the input signals magnitude.
% A pulse is given off at the beginning of the simulation.

function demux = VF_Converter(mux)

mag = 1; % Magnitude of pulse.
pulse_clock = mux(1);
clock = mux(2);
input = mux(3);
last_sign = mux(4);

freq = i2f_func(input);
period = 1/freq;
time_since = clock-pulse_clock;

if and(clock > 0, and(abs(freq) > eps, pulse_clock == 0))
 out_pulse = mag*sign(freq);
 pulse_clock = clock;
 last_sign = sign(freq);
elseif and(pulse_clock ~= 0, and(sign(freq) == last_sign, time_since >= abs(period)))
 out_pulse = mag*last_sign;
 pulse_clock = clock;
 last_sign = last_sign;
elseif and(sign(freq) ~= last_sign, pulse_clock ~= 0)
 out_pulse = mag*sign(freq);
 pulse_clock = clock;
 last_sign = sign(freq);
elseif and(abs(freq) <= eps, pulse_clock == 0)
 out_pulse = 0;
 pulse_clock = 0;
 last_sign = 0;
else
 out_pulse = 0;
 pulse_clock = pulse_clock;
 last_sign = last_sign;
end

demux(1) = pulse_clock;
demux(2) = out_pulse;
demux(3) = last_sign;

111

% i2f_func.m

% This is the relationship between magnitude of input and frequency of output for
% the V/F converter.

function freq = i2f_func(input)

k = 20; % Modulation Constant
freq = k*input;

APPENDIX B

PERIOD MEASUREMENT PFD SIMULINK MODEL

AND MATLAB SCRIPTS

Period M easurem ent Pulse Frequency Dem odula tor

sign

z

1

Uni t De lay
"pfm _last"

z

1

Uni t De lay

M AT LAB
Function

S ignal from
Frequency

"Freq2M ag.m "

M AT LAB
Function

Frequency and
Sign of PFM

"Freq.m "

m
Dem odu lated

Signal
sign

Data S tore
Wri te2

pu lse

Data S tore
Wri te1

pu lse_clock

Data S tore
Wri te

sign

Data S tore
Read2

pu lse

Data S tore
Read1

pu lse_clock

Data S tore
Read

sign

Data S tore
M em ory2

pu lse

Data S tore
M em ory1

pu lse_clock

Data S tore
M em ory

Clock

1

PFM
In

114

% Freq.m

% This function delivers the frequency of the PFM signal.
% This program can demodulate double-signed PFM signals.

function demux = freq(mux)

pulse_clock = mux(1);
clock = mux(2);
pfm = mux(3);
pfm_last = mux(4);
freq_last = mux(5);
sign_last = mux(6);
pulse = mux(7);
diff = pfm-pfm_last;

if and(pulse_clock == 0, abs(diff) <= eps)
 pulse_clock = 0;
 freq = 0;
 pulse_sign = 0;
 pulse = 0;
elseif and(abs(diff) > eps, pulse_clock == 0)
 pulse_clock = clock;
 freq = 0;
 pulse_sign = sign(diff);
 pulse = 1;
elseif and(and(abs(diff) > eps, pulse == 0), ...
 and(pulse_clock ~= 0, sign(diff) == sign_last))
 freq = 1/(clock-pulse_clock)*sign(diff);
 pulse_clock = clock;
 pulse_sign = sign(diff);
 pulse = 1;
elseif and(and(abs(diff) > eps, pulse == 0), ...
 and(pulse_clock ~= 0, sign(diff) ~= sign_last))
 freq = 0;
 pulse_clock = clock;
 pulse_sign = sign(diff);
 pulse = 1;
else
 temp = 1/(clock-pulse_clock);
 freq = min(abs(freq_last),temp)*sign_last;
 pulse_sign = sign_last;
 pulse = 0;
end

demux(1) = pulse_clock;

115

demux(2) = freq;
demux(3) = pulse_sign;
demux(4) = pulse;

116

% Freq2Mag.m

% Uses modulation contant to reconstruct modulated signal
% from demodulated frequency.

function mag = Freq2Mag(freq)

k = 20; % Modulation Constant
mag = freq/k;

APPENDIX C

POST-FILTERING METHOD SIMULINK MODEL

AND MATLAB SCRIPT

Post-Fi l te r

Run S in_Fi t.m after runn ing Post-Fi l te r
to find the equ iva lent phase and ga in o f
the PPSSPFM D for the inpu t sinuso id .

1

s+1

T ransfer Fcn

indata

T o Workspace1

ou tda ta

T o WorkspaceSigna l
Generator

Posi ti ve Path

PFM 1

PFM

PFD1

PFD

Negative Path

-1

Gain

119

% Sin_Fit.m
% Jake Abbott
%
% Runs phase_shift.m and gain_fit.m to find
% the best fit of a sinusiod to data.
%
% [total_phase,phase,gain] = Sin_Fit(indata,outdata,tout,omega,phi_max)
%
% "total_phase" is the phase lag between the input and the output
% "phase" is the phase lag of the PPSSPFMD
% "gain" is the gain of the PPSSPFMD
% indata is the reference sinusoid
% outdata is the data to be fit to a sinusoid
% tout is the time data
% omega is the frequency of the reference sinusoid (and the curve fit)
% phi_max is the largest possible phase lag considered, in degrees

function [total_phase,phase,gain] = Sin_Fit(indata,outdata,tout,omega,phi_max)

% Model of post-filter.
num = 1;
den = [1 1];
plant = tf(num,den);
[bode_gain,bode_phase] = bode(plant,omega);

% Only use second half of data to eliminate transient behavior.
N = round(length(indata)/2);
indata2 = indata(N:length(indata));
outdata2 = outdata(N:length(outdata));
tout2 = tout(N:length(tout));

% Find best sinusoidal fit.
indata_mag = max(indata2);
outdata_mag = max(outdata2);
total_gain = outdata_mag/indata_mag;
total_phase = phase_shift(indata2,outdata2,tout2,total_gain,omega,phi_max);
fit1 = outdata_mag*sin(omega*tout2+total_phase*pi/180);
RMS_fit1 = RMS(fit1);
RMS_outdata = RMS(outdata2);
fit_gain = RMS_outdata/RMS_fit1;
fit = fit1*fit_gain;
phase = total_phase-bode_phase;
gain = total_gain*fit_gain/bode_gain;

figure(1); clf;
plot(tout2,indata2,tout2,outdata2,tout2,fit)

120

% RMS.m
% Jake Abbott
%
% Calculates the RMS value of the input signal.

function RMS_value = RMS(signal)

sum = 0;
for i = 1:length(signal),
 sum = sum + signal(i)^2;
end

RMS_value = sqrt(sum/length(signal));

121

% phase_shift.m
% Jake Abbott
%
% Finds the best-fit sinusoid that is a pure phase-lag of a reference
% sinusoid, using a least-squares curve fit. Output is the phase-lag
% in degrees. Time spacing is 0.001 seconds.
%
% phase = phase_shift(indata,outdata,t,gain,omega,phi_max)
% "indata" is the reference sinusoid
% "outdata" is the data to be fit to a sinusoid
% "t" is the time vector
% "gain" is the gain used when finding best phase shift
% "omega" is the frequency of the reference sinusoid (and the curve fit)
% "phi_max" is the largest possible phase lag considered, in degrees

function phase = phase_shift(indata,outdata,t,gain,omega,phi_max)

phi = 0:1:phi_max;
phi = -phi*pi/180;
Sphi = zeros(size(phi));

for i = 1:length(phi),
 S = 0;
 for j = 1:length(indata),
 S = S + 2*outdata(j)/gain*cos(omega*t(j)+phi(i))- ...
 2*sin(omega*t(j)+phi(i))*cos(omega*t(j)+phi(i));
 end
 Sphi(i) = S;
end

[Sphi_min,index] = min(abs(Sphi));
phase = phi(index)*180/pi;
S_phase = Sphi_min;

APPENDIX D

GRAPHICAL LIMIT-CYCLE PREDICTION MATLAB SCRIPTS

123

% Limit_Predictor.m
% Jake Abbott
%
% Limit cycle predictor Pulse Frequency Modulated setup given below.
%
% +---------------+ +------+
% --->O--->| PPSSPFMD |--->| SYS |---+--->
% -| +---------------+ +------+ |
% | |
% +---------------------------------------+
%
% The Pulse Frequency Modulator can be any integral scheme. The Pulse
% Frequency Demodulator measures the period between pulses, and uses a
% frequency deadband of 10-Hz (any pulse period greater than 0.1-sec
% sets the demodulated frequency to zero).
%
% The system "SYS" should be defined in the workspace, in transfer
% function notation, before running limit_predictor.m. The user is
% prompted to input the Modulation Constant.
%
% The frequency closest to the unit circle is marked, and x's mark
% integer frequencies. If the system nyquist plot (red) encirlces the
% point (-1,0), then the feedback system is unstable. If the system
% nyquist plot does not intersect the blue line, then the feedback
% system has no limit cycle.
%
% The user is prompted to iterate the frequency line (blue) being plotted.
% Once the frequency line being plotted matches the frequency of the
% nyquist plot at the intersection, that is the limit cycle frequency.
% The amplitude of the limit cycle is pulled directly from the blue line.

Tabular_PPSSPFMD; % Load tabular describing function

% Modulation constant
kMf = input('Input Modulation Constant ');

% Frequencies of nyquist plot
w = [0.01:0.01:0.1 0.2:0.1:50 50:300];
[mag,phase] = bode(SYS,w);
[temp,index] = min(abs(mag-ones(size(mag))));
cross_freq = w(index)
% Integer frequencies of x's on nyquist plot
w1 = 1:300;
[mag1,phase1] = bode(SYS,w1);
[temp,index1] = min(abs(mag1-ones(size(mag1))));
cross_freq1 = w1(index1);

124

% Create nyquist plot of plant
[Re,Im] = nyquist(SYS,w);
Re1 = zeros(length(Re),1);
Im1 = zeros(length(Im),1);
for k = 1:length(w),
 Re1(k) = Re(1,1,k);
 Im1(k) = Im(1,1,k);
end
[Re,Im] = nyquist(SYS,w1);
Re2 = zeros(length(Re),1);
Im2 = zeros(length(Im),1);
for k = 1:length(w1),
 Re2(k) = Re(1,1,k);
 Im2(k) = Im(1,1,k);
end

% Amp_kM that will be plotted
Amp = [15 20 30 40 60 80 100 120 140 180 220 260 300 360 ...
 420 500 600 800 1000];
realimag = zeros(length(Amp),1);
omega = cross_freq;
while omega > 0,
 for k = 1:length(Amp),
 gain = interp2(Omega,Amp_kM,Gain,omega,Amp(k));
 R = 1/(gain);
 phase = interp2(Omega,Amp_kM,Phase_Lag,omega,Amp(k));
 realimag(k) = -R*cos(phase)-R*i*sin(phase);
 end
 figure(1); clf; plot(realimag);
 figure(1); hold on; plot(realimag,'.');
 text(real(realimag),imag(realimag),num2str(Amp'/kMf));

 % Plot nyquist plot of plant
 figure(1); hold on; plot(Re1,Im1,'r');

figure(1); hold on; plot(Re2(1:2*index1),Im2(1:2*index1),'rx');
text(Re2(index1),Im2(index1),int2str(cross_freq1));

 % Create unit circles
Real = zeros(91,1);
Imag = zeros(91,1);
for k = 1:91,

 Real(k) = -cos((k-1)*pi/180);
 Imag(k) = -sin((k-1)*pi/180);
 end
 figure(1); hold on;

125

 plot(Real,Imag,'g--');

axis([-2.5 0 -2.5 0]);
axis square; grid

 xlabel('Real'); ylabel('Imaginary')

 omega = input('Input New Frequency (Enter 0 to Quit) ');
end

126

% Limit_Predictor2.m
% Jake Abbott
%
% Limit cycle predictor Pulse Frequency Modulated setup given below.
%
% +-------+ +---------------+ +--------+
% --->O--->| SYS1 |--->| PPSSPFMD |--->| SYS2 |----+--->
% -| +-------+ +---------------+ +--------+ |
% | |
% | +---------------+ |
% +----------------| PPSSPFMD |<---------------------+
% +---------------+
%
% The Pulse Frequency Modulator can be any integral scheme. The Pulse
% Frequency Demodulator measures the period between pulses, and uses a
% frequency deadband of 10-Hz (any pulse period greater than 0.1-sec
% sets the demodulated frequency to zero).
%
% The systems SYS1 and SYS2 should be defined in the workspace, in transfer
% function notation, before running Limit_Predictor2.m. The user is
% prompted to input the Modulation Constant, which is the same for both
% PPSSPFMD blocks. The two PPSSPFMD blocks and SYS1 are combinded and
% shown as a blue line, while the nyquist plot of SYS2 is shown as a red line.
%
% The frequency closest to the unit circle is marked, and x's mark integer
% frequencies. If the plant (SYS2) nyquist plot (red) encirlces the point
% (-1,0), then the feedback system is unstable. If the plant nyquist plot
% does not intersect the blue line, then the feedback system has no limit
% cycle.
%
% The user is prompted to iterate the frequency line (blue) being plotted.
% Once the frequency line being plotted matches the frequency of the
% nyquist plot at the intersection, that is the limit cycle frequency.
% The amplitude of the limit cycle is pulled directly from the blue line.

Tabular_PPSSPFMD; % Load tabular describing function

% Modulation constant
kM = input('Input Modulation Constant ');

% Frequencies for SYS1 bode and SYS2 nyquist plot
w = [0.01 0.1:0.1:1 2:0.5:49 50:2:300];
mag1 = zeros(size(w)); mag2 = zeros(size(w));
phase1 = zeros(size(w)); phase2 = zeros(size(w));
for j = 1:length(w),

[mag1(j),phase1(j)] = bode(SYS1,w(j));

127

 [mag2(j),phase2(j)] = bode(SYS2,w(j));
end
phase1 = phase1*pi/180;
phase2 = phase2*pi/180;
[temp,index] = min(abs(mag2-ones(size(mag2))));
cross_freq = w(index)
% Integer frequencies of x's on plant nyquist plot
w_int = 1:300;
[mag2int,phase2int] = bode(SYS2,w_int);
[temp,index_int] = min(abs(mag2int-ones(size(mag2int))));
cross_freq_int = w_int(index_int);

% Create nyquist plot of plant
[Re,Im] = nyquist(SYS2,w);
Re2 = zeros(length(Re),1);
Im2 = zeros(length(Im),1);
for k = 1:length(w),
 Re2(k) = Re(1,1,k);
 Im2(k) = Im(1,1,k);
end
[Re,Im] = nyquist(SYS2,w_int);
Re2_int = zeros(length(Re),1);
Im2_int = zeros(length(Im),1);
for k = 1:length(w_int),
 Re2_int(k) = Re(1,1,k);
 Im2_int(k) = Im(1,1,k);
end

% Amp_kM that will be plotted
Amp = [20 30 40 60 80 100 120 140 180 220 260 300 360 450 600 ...
 700 800 900 1000];
realimag = zeros(length(Amp),1);
omega = cross_freq;
while omega > 0,
 for k = 1:length(Amp),
 gain_a = interp2(Omega,Amp_kM,Gain,omega,Amp(k));
 gain_b = interp1(w,mag1,omega);
 phase_a = interp2(Omega,Amp_kM,Phase_Lag,omega,Amp(k));
 phase_b = interp1(w,phase1,omega);
 temp = gain_a*gain_b*Amp(k);
 if and(gain_a < 1000 , gain_a > -1000) % Check for NaN
 gain_c = interp2(Omega,Amp_kM,Gain,omega,temp);
 phase_c = interp2(Omega,Amp_kM,Phase_Lag,omega,temp);
 else
 gain_c = NaN;
 phase_c = NaN;

128

 end
 gain = gain_a*gain_b*gain_c;
 R = 1/(gain);
 phase = phase_a+phase_c-phase_b;
 realimag(k) = -R*cos(phase)-R*i*sin(phase);
 end
 figure(1); clf; plot(realimag);
 hold on; plot(realimag,'.');
 text(real(realimag),imag(realimag),num2str(Amp'/kM));

 % Plot nyquist plot of plant
 figure(1); hold on; plot(Re2,Im2,'r');

plot(Re2_int(1:2*index_int),Im2_int(1:2*index_int),'rx');
 text(Re2_int(index_int),Im2_int(index_int),int2str(cross_freq_int));

 % Create unit circles
Real = zeros(91,1);
Imag = zeros(91,1);
for k = 1:91,

 Real(k) = -cos((k-1)*pi/180);
 Imag(k) = -sin((k-1)*pi/180);
 end
 figure(1); hold on;
 plot(Real,Imag,'g--');

axis([-3 0 -3 0]);
axis square; grid

 xlabel('Real'); ylabel('Imaginary')

 omega = input('Input New Frequency (Enter 0 to Quit) ');
end

129

% Limit_Predictor3.m
% Jake Abbott
%
% Limit cycle predictor Pulse Frequency Modulated setup given below.
% For use with Experimental Neural Arm Wrist #3.
%
% +-------+ +---------------+ +------+ +-------+
% --->O--->| SYS1 |--->| PPSSPFMD |--->| NL |--->| SYS2 |----+--->
% -| +-------+ +---------------+ +------+ +-------+ |
% | |
% | +--------------+ |
% +-------------------| PPSSPFMD |<------------------------------+
% +---------------+
%
% The Pulse Frequency Modulator can be any integral scheme. The Pulse
% Frequency Demodulator measures the period between pulses, and uses a
% frequency deadband of 10-Hz (any pulse period greater than 0.1-sec
% sets the demodulated frequency to zero).
%
% The systems SYS1 and SYS2 should be defined in the workspace, in transfer
% function notation, before running Limit_Predictor3.m. The user is
% prompted to input the Modulation Constant, which is the same for both
% PPSSPFMD blocks. The two PPSSPFMD blocks, SYS1, and NL are combinded and
% shown as a blue line, while the nyquist plot of SYS2 is shown as a red line.
%
% The frequency closest to the unit circle is marked, and x's mark integer
% frequencies. If the plant (SYS2) nyquist plot (red) encirlces the point
% (-1,0), then the feedback system is unstable. If the plant nyquist plot
% does not intersect the blue line, then the feedback system has no limit
% cycle.
%
% The user is prompted to iterate the frequency line (blue) being plotted.
% Once the frequency line being plotted matches the frequency of the
% nyquist plot at the intersection, that is the limit cycle frequency.
% The amplitude of the limit cycle is pulled directly from the blue line.

kp1 = 5;
ki = 5;
kp2 = 10;
kv = 1.5;

Tabular_PPSSPFMD; % Load tabular describing function

% Modulation constant
kM = input('Input Modulation Constant ');

130

num = [kp1 ki];
den = [1 0];
SYS1 = tf(num,den);

num = 10.70;
den = [1 9.50 0];
SYS2 = tf(num,den);

% Frequencies for SYS1 bode and SYS2 nyquist plot
w = [0.01 0.1:0.1:1 2:0.5:49 50:2:300];
mag1 = zeros(size(w)); mag2 = zeros(size(w));
phase1 = zeros(size(w)); phase2 = zeros(size(w));
for j = 1:length(w),

[mag1(j),phase1(j)] = bode(SYS1,w(j));
 [mag2(j),phase2(j)] = bode(SYS2,w(j));
end
phase1 = phase1*pi/180;
phase2 = phase2*pi/180;
[temp,index] = min(abs(mag2-ones(size(mag2))));
cross_freq = w(index)
% Integer frequencies of x's on plant nyquist plot
w_int = [0.1:0.1:0.9 1:300];
[mag2int,phase2int] = bode(SYS2,w_int);
[temp,index_int] = min(abs(mag2int-ones(size(mag2int))));
cross_freq_int = w_int(index_int);

% Create nyquist plot of plant
[Re,Im] = nyquist(SYS2,w);
Re2 = zeros(length(Re),1);
Im2 = zeros(length(Im),1);
for k = 1:length(w),
 Re2(k) = Re(1,1,k);
 Im2(k) = Im(1,1,k);
end
[Re,Im] = nyquist(SYS2,w_int);
Re2_int = zeros(length(Re),1);
Im2_int = zeros(length(Im),1);
for k = 1:length(w_int),
 Re2_int(k) = Re(1,1,k);
 Im2_int(k) = Im(1,1,k);
end

SYS_PD = tf([kv kp2],1);

% Amp_kM that will be plotted
Amp = [13.1 14.1 15.1 20.1 30.1 40.1 60 80 100 120 140 180 240 300 450 600 ...

131

 700 800 900 1000];
realimag = zeros(length(Amp),1);
omega = cross_freq;
while omega > 0,
 for k = 1:length(Amp),
 % Include Feedback PFM/PFD
 gain_a = interp2(Omega,Amp_kM,Gain,omega,Amp(k));
 phase_a = interp2(Omega,Amp_kM,Phase_Lag,omega,Amp(k));
 % Include SYS1
 [gain_b,phase_b] = bode(SYS1,omega);
 phase_b = phase_b*pi/180;
 % Include Forward Path PFM/PFD
 if and(gain_a < 1000 , gain_a > -1000) % Check for NaN
 temp = gain_a*gain_b*Amp(k);
 gain_c = interp2(Omega,Amp_kM,Gain,omega,temp);
 phase_c = interp2(Omega,Amp_kM,Phase_Lag,omega,temp);
 else
 gain_c = NaN;
 phase_c = NaN;
 end
 % Include PD Controller
 [gain_f,phase_f] = bode(SYS_PD,omega);
 phase_f = phase_f*pi/180;
 % Include Saturation with Deadband
 if and(gain_c < 1000 , gain_c > -1000) % Check for NaN
 A = gain_a*gain_b*gain_c*gain_f*Amp(k)/kM;
 if (A <= 0.237)
 gain_d = NaN;
 elseif (A > 0.9)
 gain_d = 2/pi*(asin(0.9/A)+0.9/A*sqrt(1-(0.9/A)^2));
 else
 gain_d = 1;
 end
 else
 gain_d = NaN;
 end
 % Include Wrist Nonlinearity
 if and(gain_d < 1000 , gain_d > -1000) % Check for NaN
 A = A*gain_d;
 k_A = 108.4*A^3-245.86*A^2+183.81*A-34.668;
 p_A = 49.77*A^3-102.77*A^2+72.33*A-8.6433;
 num3 = k_A*[1 9.50]; den3 = 10.70*[1 p_A];
 SYS3 = tf(num3,den3);
 [gain_e,phase_e] = bode(SYS3,omega);
 phase_e = phase_e*pi/180;
 else

132

 gain_e = NaN;
 phase_e = NaN;
 end
 gain = gain_a*gain_b*gain_c*gain_d*gain_e*gain_f;
 R = 1/(gain);
 phase = phase_a-phase_b+phase_c-phase_e-phase_f;
 realimag(k) = -R*cos(phase)-R*i*sin(phase);
 end
 figure(1); clf; plot(realimag);
 hold on; plot(realimag,'.');
 text(real(realimag),imag(realimag),num2str(Amp'/kM));

 % Plot nyquist plot of plant
 figure(1); hold on; plot(Re2,Im2,'r');
 plot(Re2_int(1:3*index_int),Im2_int(1:3*index_int),'rx');
 for k = index_int:2:2*index_int,
 temp = k-index_int;
 text(Re2_int(k),Im2_int(k),int2str(cross_freq_int+temp));
 end

 % Create unit circles
Real = zeros(91,1);
Imag = zeros(91,1);
for k = 1:91,

 Real(k) = -cos((k-1)*pi/180);
 Imag(k) = -sin((k-1)*pi/180);
 end
 figure(1); hold on;
 plot(Real,Imag,'g--');

axis([-1 1 -1 0]);
axis square; grid

 xlabel('Real'); ylabel('Imaginary')

 omega = input('Input New Frequency (Enter 0 to Quit) ');
end

133

% Tabular_PPSSPFMD.m

% Run this script to load the tabular parallel-path single-signed
% pulse frequency modulation/demodulation describing function.

% Frequencies and amplitudes of data
Omega = [1 5 10 15 20 25 30 35 40]'; % (rad/sec)
Amp_kM = [13 14 15 20 25 30 40 60 80 120 180 240 300 360 420 500 600 800 1000];

% Phase lag data in degrees
Phase_Lag = [6 28 NaN NaN NaN NaN NaN NaN NaN
6 27 54 70 NaN NaN NaN NaN NaN
5 27 51 74 NaN NaN NaN NaN NaN
5 24 45 72 87 NaN NaN NaN NaN
5 21 42 63 85 103 NaN NaN NaN
5 20 39 61 81 96 118 NaN NaN
5 17 36 55 75 91 111 131 148
4 14 30 49 66 83 102 117 140
4 11 26 43 59 74 96 107 133
3 9 21 36 48 61 77 86 101
3 6 17 31 38 47 58 58 52
3 6 15 26 32 39 45 45 32
2 6 13 24 26 33 35 33 24
2 5 12 19 25 30 31 21 20
2 5 11 18 23 29 27 20 17
2 4 10 17 21 25 24 18 15
1 5 11 17 22 25 25 18 15
1 5 11 18 25 28 25 15 16
0 5 12 18 24 28 26 14 16];
Phase_Lag = Phase_Lag*pi/180; %Convert to radians

% Gain data
Gain = [0.79 0.76 NaN NaN NaN NaN NaN NaN NaN
0.81 0.84 0.86 0.8 NaN NaN NaN NaN NaN
0.87 0.94 0.9 0.84 NaN NaN NaN NaN NaN
0.95 0.98 0.99 1.04 1.29 NaN NaN NaN NaN
0.96 0.99 1.03 1.08 1.04 1.16 NaN NaN NaN
0.99 1 1.04 1.12 1.16 1.18 1.23 NaN NaN
0.99 1 1.04 1.11 1.13 1.16 1.14 1.12 1.14
1 1 1.03 1.06 1.04 0.99 0.96 0.94 0.89
1 1 1.02 1 0.97 0.92 0.86 0.85 0.76
1 1 1 0.97 0.89 0.84 0.72 0.82 0.86
1 1 0.99 0.95 0.85 0.74 0.65 0.55 0.55
0.99 0.99 0.98 0.93 0.83 0.78 0.69 0.63 0.61
0.99 0.99 0.98 0.92 0.83 0.72 0.64 0.55 0.43
0.99 0.98 0.95 0.9 0.81 0.75 0.6 0.77 0.59

134

0.98 0.97 0.94 0.89 0.8 0.74 0.59 0.51 0.63
0.94 0.94 0.91 0.86 0.78 0.68 0.62 0.6 0.72
0.8 0.8 0.77 0.73 0.67 0.56 0.47 0.51 0.6
0.62 0.61 0.59 0.55 0.49 0.45 0.36 0.48 0.43
0.53 0.53 0.51 0.47 0.43 0.36 0.38 0.49 0.51];

135

REFERENCES

[1] Peretto, P., 1992, An Introduction to the Modeling of Neural Networks, Cambridge
University Press, Chapter 2.

[2] Pavlidis, T., and Jury, E. I., 1965, “Analysis of a New Class of Pulse-Frequency
Modulated Feedback Systems,” IEEE Transactions on Automatic Control, Vol. AC-
10, pp. 35-42.

[3] Horowitz, P., and Hill, W., 1989, The Art of Electronics, Cambridge University Press,
Second Edition, Chapters 4 and 9.

[4] Horn, D. T., 1987, Oscillators Simplified, with 61 Projects, Tab Books Inc., Blue
Ridge Summit, PA, Chapter 7.

[5] Nack, J., 1988, “Amplifiers,” Interfacing Sensors to the IBM PC, W. J. Tompkins et
al., eds., Prentice-Hall P T R, Englewood Cliffs, NJ, pp. 30-33.

[6] Frank, P. M., and Turski, K. K., 1985, “Design of Pulse Frequency Modulated (PFM)
Control Systems,” Applied Digital Control, S. G. Tzafestas, ed., Elsevier Science
Publishers B.V., North-Holland, pp. 225-252.

[7] Li, C. C., and Jones, R. W., 1963, “Integral Pulse Frequency Modulated Control
Systems,” Proc. 2nd Congress IFAC, pp. 186-195.

[8] Lawrence, S., 2000, Personal Correspondence, University of Utah, Salt Lake City,
UT.

[9] Chaffin, D. B., Andersson, G. B. J., and Martin, B. J., 1999, Occupational
Biomechanics, John Wiley & Sons, Inc., New York, Third Edition, Chapter 2.

[10] Dymkov, V. I., 1967, “Periodic States in Pulse-Frequency Systems,” Automatica,
11, pp. 1708-1714.

[11] Khalil, H. K., 1996, Nonlinear Systems, Prentice-Hall, Upper Saddle River, NJ,
Second Edition, Chapter 10.

[12] Gossett, J. H., Clymer, B. D., and Hemami, H., 1994, “Long and Short Delay
Feedback on One-Link Nonlinear Forearm with Coactivation,” IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 24(9), pp. 1317-1327.

136

[13] Franklin, G. F., Powell, J. D., and Emami-Naeini, A., 1994, Feedback Control of
Dynamic Systems, Addison-Wesley, Reading, MA, Third Edition, Chapter 6.

[14] Fukuyama, A., 2001, “Mathematical Modeling of the Utah Artificial Arm,” Master’s
Thesis, University of Utah, Salt Lake City, UT.

[15] Colton, M. B., 2001, “An Experimental NeuroElectric Prosthetic Arm Control
System,” Master’s Thesis, University of Utah, Salt Lake City, UT.

[16] Stein, R. B., 1982, “What Muscle Variable(s) Does the Nervous System Control in
Limb Movements?,” The Behavioral and Brain Sciences, 5, pp. 535-577.

	A thesis submitted to the faculty of
	A thesis submitted to the faculty of
	Preliminary3.pdf
	A thesis submitted to the faculty of
	A thesis submitted to the faculty of

	PFM_chapter3.pdf
	2.1 Sigma Pulse Frequency Modulation
	2.1.1 Integral Pulse Frequency Modulation
	2.2 Voltage-to-Frequency Converter
	2.3 Unified States Sample and Hold
	2.4 Pulse Frequency Modulation Method Equivalency
	Various methods of PFM have been introduced, each with its own strengths and weaknesses. (PFM is very mathematically defined. It is also relatively easy to implement on a digital computer, where resetting an integral is not difficult to do. A V/F conv

	Limit_chapter3.pdf
	For a given sinusoidal frequency, the gain kF and the phase-lag (F of the filter are known quantities. Because they are known, the equivalent gain and phase-lag of the PPSSPFMD nonlinearity defined above can be calculated with the equations:

	arm.pdf
	Fig. 39 Experimental Neural Arm

