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ABSTRACT

The human nervous system uses pulse frequency modulation (PFM) to transmit
information. In PFM, a continuous signal is converted into a pulse stream with a
frequency that is proportional to the magnitude of the continuous signal. In an effort to
create electromechanical prostheses that better approximate human behavior, an
experimental neuroprosthetic arm has been designed to use the PFM signals obtained
directly from nerves for control. Control system design and analysistools are needed for
systems containing PFM signals, which are poorly understood from a controls-
engineering perspective. This research gives qualitative and quantitative insight into the
behavior of PFM control systems.

Thisthesisisdivided into four parts. First, three methods of pulse frequency
modulation that have previously been proposed are compared and found to be equivalent
for the control of a neuroprosthesis. Second, three methods of pulse frequency
demodulation (PFD) are considered, and the errors encountered with each method are
compared for frequencies relevant to the control of a neuroprosthesis. Unlike the PFM
methods considered, the PFD methods are not equivalent, and some methods are
obviously better choices than others. Third, a graphical limit-cycle prediction method is
developed for PFM control systems. This method uses a tabular frequency-dependent
describing function, and is shown to be accurate for many systems. Finally, the wrist of

the Experimental Neural Arm is modeled, and the limit cycles seen in experiments with



the wrist are compared to those predicted by the graphical limit-cycle predictor. The

predictor works well with the actual neuroprosthesis.
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1. INTRODUCTION

The Utah Arm 2 is an electromechanical prosthetic arm that is currently
controlled using el ectromyographic (EMG) signals measured from the surface of the skin.
These EMG signals arise from the electrical activity in the muscles below the skin. The
Utah Arm 2 has been modified to use electrical signals obtained directly from nerves,
using sensors developed by Dr. Ken Horch’slab in the Department of Bioengineering at
the University of Utah. This modified arm will be referred to as the Experimental Neural
Arm. Control of the Experimental Neural Arm with nerve signals would be more natural
than control using EMG signals because the nerves used for control would be the same
nerves that would control areal arm, and this would theoretically make the performance
of the artificial arm approach that of areal arm.

The human body is not fully understood, and interfacing el ectromechanical
prostheses with it requires techniques that are not commonly used in control systems
engineering. The human nervous system uses what can be approximated as pulse
frequency modulation (PFM) to transmit information through nerves. A PFM signal isa
sequence of pulses of nearly uniform amplitude and very short duration whose frequency
carriesthe signal’sdata. When pulse frequency modulating a continuous signal,
information about the original signal is necessarily lost due to the discretized nature of
the PFM signal; nothing is known about any changes in the continuous signal until the

occurrence of anew pulse.



Tools are needed to help analyze and design control systems containing PFM
signals, specifically the Experimental Neural Arm. It isdesirableto understand if the
system is stable or not. It is also desirable to understand the transient and steady-state
behavior of the system. Ideally there would be tools, like those available in classical and
nonlinear controls, that would assist in the analysis and design of systems containing
PFM signals.

PFM signals occur in the human nervous system because of the creation and
propagation of action potentials[1]. However, PFM signalsarerarely used in
engineering applications because they are very inefficient; much of the information
contained in a continuous signal is lost during the modulation process. Pulse frequency
modulators are also highly nonlinear, and are therefore not mathematically well defined
or understood. PFM signals are very insensitive to noise, but this seemsto be their only
positive attribute.

A model of pulse frequency modulation in the human nervous system is needed
for two purposes. First, because experimental time with real amputeesisvery rare, a
model of an amputee is needed to help design new Neural Arms and arm controllers.
Second, to feed back information into the nervous system through afferent nerves, it is
necessary to send information in aform that the brain understands.

Several methods of pulse frequency modulating a signal have been proposed over
the years [2-7]. When creating a model that includes the pul se frequency modulation of
the nervous system, it is not obvious which is the best method to choose. In Chapter 2,
four different pulse frequency modulation methods that have been proposed are

compared to one another; these methods are Integral PFM, Neural PFM (these two



methods fall under alarger PFM class known as ZPFM [2]), voltage-to-frequency
conversion [3-5], and Unified States Sample & Hold [6]. All of the methods, with the
exception of Neural PFM, are only subtly different from one another, and can be
considered equivalent for the control of a neuroprothesis. The problems encountered
when pulse frequency modulating asignal using adigital computer are also discussed in
Chapter 2.

Using PFM signals from thousands of nerves to control a motor-driven artificial
arm isimpractical, due to the difficulty and invasiveness of implanting sensors in nerve
endings. For thisreason, it is necessary to demodulate as few as one PFM signal for
control of thearm. Demodulating a PFM signal to recreate the original signal, whichis
assumed to be continuous, poses interesting problems. The demodulation of a PFM
signal can be accomplished in many ways, each of which has problems from a control
system design perspective.

Most PFM methods are equivalent to one another, but the various methods of
pulse frequency demodulating (PFD) are distinct, each having advantages and
disadvantages. In Chapter 3, five different pulse frequency demodulation methods are
compared to one another; these methods are period measurement, first-order low-pass
filtering, second-order low-pass filtering, finite-impul se-response filtering, and counting
pulsesin afixed-time window. The advantages and disadvantages of each method are
discussed. The errors encountered using each method are quantified and compared; this
includes the errors encountered when using adigital computer to demodulate a PFM

signal.



Because pulse frequency modulators and demodulators are not time-invariant,
traditional describing function techniques cannot be applied to systems containing PFM.
In Chapter 4, amethod is developed to graphically predict the existence of limit cyclesin
systems containing pul se frequency modulation and demodul ation; the method also
predicts the amplitude and frequency of the limit cycle, if it exists. This method is based
on atabular describing function, and it works well when compared to Simulink
simulations.

The graphical limit-cycle predictor of Chapter 4 works well when compared to
simulations, but it is desirable to prove the validity of the method with area system. In
Chapter 5, amodel of the Experimental Neural Arm wrist is created. The interface of the
Experimental Neural Arm wrist to an amputee is simulated using two computers
communicating to each other using only PFM signals; one computer acts as awrist
controller, while the other computer simulates an amputee. The wrist model is then used
to validate the graphical limit-cycle predictor of Chapter 4 by comparing predicted limit
cyclesto actual limit cycles seen in thewrist. The predictions match the limit cycles seen
in the wrist well.

In Chapter 6, some possible future-work topics that could use the results of this

research are presented.



2. COMPARISON OF PULSE FREQUENCY MODULATION METHODS

Engineers have been proposing methods of pulse frequency modulation (PFM) for
nearly forty years[2-7], and in many cases the purpose was to model the human nervous
system. When modeling a system that contains PFM elements, it is not obvious which
PFM method is best to use. Every PFM method is very nonlinear and complicated to
anayze in anything but the most basic scenarios. Every PFM method uses integration in
some form, which leads to alow-pass filtering behavior of all PFM methods. The
purpose of this chapter is not to redo the work that has been previously done on PFM, but
rather to compare the various available methods, and to show that for all practical
purposes many methods are equivalent to each other and can be used when modeling
PFM with no loss of generality. The three methods of PFM considered here are Sigma
Pulse Frequency Modulation [2], voltage-to-frequency conversion [3-5], and Unified
States Sample and Hold [6].

The first method of PFM considered is Sigma Pulse Frequency Modulation
(ZPFM) [2]. The most widely investigated method of PFM isintegral pulse frequency
modulation (IPFM), which is asubclass of ZPFM. IPFM is mathematically
straightforward and easy to understand. Another class of ZPFM is neural pulse frequency
modulation, which may better represent the way the nervous system works than IPFM.

A voltage-to-frequency (V/F) converter [3-5] isacommon electrical circuit that

basically behaveslike IPFM. Becauseitisaphysical circuit, a V/F converter does not



behave idedly like the mathematical expressions of other PFM methods, but it can
actualy be implemented in an analog circuit.

The Unified Steps Sample and Hold method of PFM [6] uses a highly nonlinear,
but continuous, mathematical function to replace the discontinuities in IPFM, allowing
easier closed-form analysis of PFM systems. Simulink simulations of all three PFM

methods are found in Appendix A.

2.1 Sigma Pulse Freguency Modulation

The PFM method known as 2PFM was first proposed by Pavlidis and Jury [1].
>PFM isavery genera pulse frequency modulator, encompassing IPFM and NPFM.

The equations for ZPFM are:

% = x~rsgn(p)3(p[~ 1) - 9(p) (1)
y =sgn(p)3(p|-r) @)

X = Modulator Input

y = Output Pulse Stream

p = Integral of x—g(p)

a(p) = Any Function of p

r = Threshold Vaue of Integral
sgn() = signum function

d = Unit Impulse

rsgn(p) X|p|-r) = Integrator Reset
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A unit-areaideal impulse occurs when the magnitude of p reaches the threshold r. At the
occurrence of apulse, theintegral pisreset to zero. The sign of the output pulseisthe
same as the sign of p when |p| reaches r, allowing for negative pulses. Thisisknown as
double-signed PFM.

If the domain of x isknown, it is possible to bias x such that p is never decreasing.

Thisresultsin only positive pulses, and is known as single-signed PFM.

2.1.1 Integral Pulse Frequency Modulation

IPFM isthe most widely investigated PFM method, probably because it is the
simplest. IPFM isaspecia cased of ZPFM whereg(p) = OinEq. (1). Inthiscase, pis
simply the integral of the input x. When thisintegral reaches athreshold r, apulseis
emitted at the output, and the integral is reset to zero.

The output pulses to a step input of X, will have a pulse frequency f in Hertz and a

period between pulses T in seconds given by:

f=20 (3)

T % (4)

If the integral p isnot zero at the occurrence of the step input, the initial pulse period will
differ from T, but the pulse period will be equal to T for all time thereafter.

Figure 1 shows an IPFM pulse output to a 1-Hz unit-amplitude squarewave input.
The pulses have been reduced to a unit height for graphical purposes, but true |PFM
actually outputsideal unit impulses (infinite height, zero width). For thisfigure, xo = +/-

1,r =1. Equation (3) and Eq. (4) givef =10 Hz and T = 0.1 seconds, respectively. Also,
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Fig. 1 1-Hz Squarewave Input and Output Pulses for IPFM with
Threshold r = 0.1

at start-up, p = 0. Because p(0) =0, atime delay of T seconds exists before the first pulse
isemitted. Theinput transition from —1 to 1 shows adelay longer than T seconds
between the input transition and the first positive pulse. Thisis due to the negative value
of p at the time of theinput transition. In general, the first pulse occurring after an input
step from a negative to a positive value (or vice versa) has adelay between T and 2T
seconds.

Figure 2 shows an IPFM pulse output to a 1-Hz 0.5-amplitude squarewave input
that has been biased by 1.5. The pulses have again been reduced to a unit height for
graphical purposes. Thisisan example of single-signed IPFM, because the integral p is

never decreasing, and no negative pulse is ever emitted. Using Eqg. (3) and Eq. (4) givesf
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Fig. 2 1-Hz Squarewave Input with Bias and Output Pulses for IPFM with
Threshold r = 0.1

=10Hzand T = 0.1 secondswhen xo = 1, and f = 20 Hz and T = 0.05 seconds when x =
2. Inthis single-signed scheme, the time delay between an input change and the next
pulseislessthan or equal to the new value of T. This gives one pulse period that isat a

transitional value somewhere between the previous and subsequent values of T.

2.1.2 Neural Pulse Freguency Modulation

Neural PFM (NPFM), also known as relaxation PFM, is a special cased of ZPFM
[2] whereg(p) = cpin Eq. (1), and cisaconstant. If Eq. (1) isanayzed just after the
emission of apulse, it becomes:

@ e (5)
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which can be written in Laplace domain as:
P9 = ——x(9) ©)
s+cC

Neural PFM acts as a first-order low-pass filter with a time constant and aDC gain of 1/c
between the modulator input and the output p. The input needsto be at least ¢ times
larger than the threshold r for the modulator to ever emit apulse. The fundamental
reason for using NPFM, rather than IPFM, is that for small inputs no pulses are emitted.
This lends to steady-state errors, but eliminates sustained oscillations in a closed-loop
system, which may be a desirable trade-off.

The output pulses to a step input of X, have a pulse frequency f in Hertz and a

period between pulses T in seconds given by:

f=__C (7)
In %o E
0—cr

T=1,H % E 6)
C X —cr

These equations are obviously more nonlinear than those of IPFM.

Figure 3 shows Eq. (7) for various values of ¢, again for constant inputs. The
value of cisdetermined by looking at the value of x/r when the frequency breaks away
from zero. For example, the frequency becomes nonzero for the plot where c = 2 at the

point (2,0). The pulse frequency becomes more nonlinearly related to the input when the
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x/r-axis-intercept = ¢

f (Frequency in Hz)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
x/r (Input/Threshold)

Fig. 3 NPFM Frequency vs. x/r

input value is near the threshold value, and as c increases. Note that IPFM is achieved

whenc=0.

2.2 Voltage-to-Frequency Converter

A voltage-to-frequency (V/F) converter [3-5] isapractical circuit used to
implement PFM. This circuit is often referred to as a voltage-controlled oscillator
(VCO), but when used as a pul se frequency modulator, the actual description of the
circuit used isaV/F converter, not aVCO [3-4]. Thereisonly asubtle difference
between the two circuits; the output of aVVCO can be any waveform (squarewave,
sinusoid, etc.) with afrequency proportional to the input voltage, while a V/F converter

specifically outputs pulses with a frequency proportional to the input voltage [3].
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VCOs and V/F converters are circuits that many engineers are familiar with —
even those engineers with no experience with PFM. While a pul se frequency modul ator
would probably never be modeled as a V/F converter in asimulation, it isimportant to
show that a VV/F converter is equivalent to other PFM methods, if for nothing else, than to
give engineers something they are familiar with when considering PFM methods.

A V/F converter is not as simple as ZPFM, and the mathematical equations
describing it are not as elegant, but the circuit can actually be implemented. There are no
infinitely-high, zero-width pulses required in a V/F converter; there are no operations that
must take place infinitely fast either.

There is no universally-recognized definition of aV/F converter, but most
examples have similar components. Some form of op-amp integrator isused. Also, there
is some method of switching between the input voltage being modulated and some
negative voltage used to reset the integrator at the occurrence of a pulse.

Figure 4 shows a V/F converter circuit that is an adaptation of Fig. 1.36 in Nack
[5]. The V/F converter in Fig. 4 uses elementsfound in [4] andin[5]. It behavesvery
similar to that of [5], but has a more-linear relationship between the input voltage and the
output pulse frequency.

The V/F converter of Fig. 4 contains an op-amp integrator, an op-amp
comparator, atimer, and adigital buffer. The input voltage being modulated is|abeled
V;, the negative voltage used to reset the integrator is labeled —V;, and the integrator
output voltage islabeled V,. The comparator’s noninverting input is grounded, and its
output is low when the inverting-input voltage is higher than ground. A constant positive

Vi causes V, to have a constant negative slope, decreasing until V, = 0, at which point the
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R1
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INTEGRATOR —
COMPARATOR

PULSE TIMER

DIGITAL BUFFER

111

-© PULSE OUTPUT

Fig. 4 V/F Converter

output of the comparator goes high. This triggers the pulse timer, which is a standard

timer circuit with an output that stays high for 7 seconds. Aslong asthe timer output is

high, theinput is switched to the negative reset voltage, and the V/F converter’s output

voltage goes high for T seconds, which is the duration of an output pulse.

Figure 4 includes a characteristic plot of V, as afunction of time. Assuming the

various voltages in the system are grounded before system start-up, a pulse is emitted at

start-up. This pulse emitted at start-up isreally the only practical difference between the

V/F converter and IPFM. For a constant input, the output pulse frequency in Hertz is

given by:

9)
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This frequency equation assumes that the pulse duration 1 is negligible compared with
the pulse period; thisis afalse assumption if the parameters of Eq. (9) are not chosen
carefully.

It may be noted that the capacitor value has no effect on the pulse frequency, but
it does affect the maximum voltage that V, reaches during its charging and discharging
cycle. Thisisimportant during practical implementation of the circuit. Also note that

this circuit only works for single-signed operation, where V; is never negative.

2.3 Unified States Sample and Hold

The Unified States Sample and Hold (USSH) method was first proposed by Frank
and Turski [6]. The USSH method is an integral scheme that uses a so-called serraphile
function, which is a continuous function that approximates a saw-tooth function. The

serraphile function is defined as:

_ i 2o psin(@)
%r(a)—llmntm %WE (20)

Figure 5 shows how the serraphile function approaches a saw-tooth function as p
approaches 1.
For thefirst step of the USSH method, the signal to be modulated, e, isintegrated

and multiplied by again b. In Laplace domain:

m9=§a@ (11)
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ser(a)

08L. . o o O | —-p=028 C
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Fig. 5 Serraphile Function

Next, the integrated input is run through Frank and Turski’s USSH, utilizing the

serraphile function:

1
q=p- ser(2m) (12)
The value of g isa constant throughout the linear regions of the serraphile function. At
the quickly changing region of the serraphile function (the saw-tooth), the value of q
quickly changes to anew value, and is then constant for the next gently sloping region of
the serraphile function. The final step in the USSH method involves differentiating g. In

Laplace domain:

u(s) = sq(s)G(s) (13)
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Here u isthe output pulse stream, and G(s) is the Laplace form of the shape of the desired
pulse g(t). For the purposes of thisthesis, G(s) = 1 which gives a pure impulse as the
desired pulse shape.

The output pulses to a step input of e have apulse frequency f in Hertz and a

period between pulses T in seconds given by:

f = be, (14)
=1 (15)
be,

These frequency and period values are valid for a constant input, but the shape of the
serraphile function makes the first pulse come with a delay of only half of the steady-

state period:

(16)

o—|
I
N |-

Figure 6 shows a USSH pulse output to a 1-Hz unit-amplitude squarewave input.
The pulses have been reduced to a unit height for graphical purposes, but true USSH
actually outputs pulses with height and width that are afunction of p (Eqg. (10)) and G(s)
(Eq. (13)). For thisfigure, e= +/-1, b =10. Equations (14) and (15) givef =10 Hz and
T = 0.1 seconds, respectively. Also, at start-up, p = 0. Because p(0) = 0, atime delay of

To = 0.05 seconds exists before the first pulse is emitted.
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Fig. 6 1-Hz Squarewave Input and Output Pulses for USSH with Gain b =10

The input transition from —1 to 1 shows an identical period between the last
negative pulse and the input transition, and between the input transition and the first
positive pulse. This behavior is due to the nature of the serraphile function. If pis
increasing, the serraphile function in Fig. 5isanayzed from left toright. If pis
decreasing, Fig. 5 isanalyzed from right to left. With a squarewave input, whatever time
has elapsed since passing a serraphile “tooth” in one direction will be exactly matched
when backtracking in the serraphile function. In Fig. 6 it appears that the delay before
and after an input transition may be the same as Ty, but thisis coincidental. In genera,
the first pulse occurring after an input step from a negative to a positive value (or vice

versa) has adelay lessthan T seconds.
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Figure 7 shows a USSH pulse output to a 1-Hz 0.5-amplitude squarewave input
that has been biased by 1.5. The pulses have again been reduced to a unit height for
graphical purposes. Thisisan example of single-signed USSH, because theintegral pis
never decreasing, and no negative pulse is ever emitted. Using Egs. (14) and (15) givesf
=10Hzand T = 0.1 secondswhen ey = 1, and f = 20 Hz and T = 0.05 seconds when ey =
2. Inthissingle-signed scheme, the USSH behaves like single-signed IPFM &fter the
initial period To.

One detail about the USSH method that should be noted isthat, if the input has a
DC value, theintegra p will grow to infinity. Practically this could lead to overflow

problems. The flexibility of software would probably make this problem solvable, but no
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solution will be sought here.

2.4 Pulse Freguency Modulation M ethod Equivalency

Various methods of PFM have been introduced, each with its own strengths and
weaknesses. 2PFM isvery mathematically defined. Itisalso relatively easy to
implement on adigital computer, where resetting an integral is not difficult to do. A V/F
converter is not as elegantly-defined mathematically as other PFM methods, but itisa
common circuit with which engineers are familiar. The USSH method needs no form of
integrator reset, but certain variables could grow to infinity if aUSSH isimplemented in
areal-time controller. The greatest benefit of the USSH method is its complete lack of
discontinuities.

Each PFM method has different behavior at start-up, and each PFM method will
behave differently at very high frequencies. The various PFM methods, with the
exception of NPFM, will behave equivalently in DC and low-frequency situations, after a
brief discrepancy at start-up. Table 1 shows the system parameters of the three
equivalent PFM methods. If a modulation constant ky is defined as the gain between a
constant modulator input signal and the resulting constant pulse frequency in Hertz, then

for IPFM

kM = % (17)

for aV/F converter

- (18)
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Table 1 Equivaent Parameters of Equivalent PFM Methods

IPFM V/F Converter USSH
Input Variable X Vi e
X R,
Frequency f T RV A be
Pulse Height o Liﬁic ©
Pulse Duration 0 T 0
First T
Pulse T 0 )
Delay
Pulse-Timer
Duration Integrator
Constants Threshold T Gain
r b
Reset Voltage
Vi
and for USSH
kM =b (19)

Practically, for modeling and control of the Experimental Neural Arm, any of these PFM
methods will work, with the modulation constant being the only important factor.

NPFM is not equivalent to the other three PFM methods considered here; it is
much more nonlinear. Pavlidis and Jury [2] claim that NPFM better approximates the
way the nervous system works than does |PFM, but current information about the
nervous system does not seem to suggest that NPFM models the nervous system any
better than does IPFM. Current information suggests alogarithmic relationship between

the modulator input and the pulse frequency [8], but NPFM does not have this behavior.
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It does not seem at this time that using NPFM to model the nervous system gives any

additional benefit over the three integra PFM schemes.

2.5 Effect of Discrete Sampling on Pulse Frequency Modulation

This section deals with pulse frequency modulation using adigital computer with
afixed, known sampling rate. Aswith any digital-to-analog signal conversion, the faster
the computer’ s sampling rate is relative to the signal’ s frequency, the better the computer
can accurately represent the signal. Only DC signals will be considered while trying to
quantify errors due to digital modulation because any other signals become far too
complex, but the results translate well to low frequency signals because the errors found
here are instantaneous errors that are based on the instantaneous desired pul se frequency.

Let f and T be the desired output pulse frequency in Hertz and the desired output
pulse period in seconds of the signal being modulated, let f,, and T, be the actual
modulator output pulse frequency and period, and let fs and Ts be the computer’s
sampling frequency and period. Figure 8 shows how adesired pulse period is necessarily
extended due to the discrete nature of the computer. Every output pulse occurs at a
computer sample. For any instantaneous desired pulse period T, the first actual output
pulse aways occurs at a computer sample, and the computer then measures time forward
from this point. Because of the causal nature of digital pulse frequency modulation, the
second actual output pulse always occurs at the computer sample that follows when the
desired output pulse should occur to give aperiod T.

The relationships characterized in Fig. 8 are

T+T,>T, >T (20)
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Fig. 8 Pulse Frequency Modulation with Discrete Samples
Tn>T>T (n-1)0 T, =T,n (21)

where nisapositive integer. Dividing Eq. (21) by Ts and rearranging for frequency

rather than period gives:

—h

f
n>—=>n-10 —==n (22)

Let an error in the modulator output pulse frequency be defined as:

m f (23)

Notice that an underestimate in the modulator frequency will cause a positive error (the

modulator frequency is aways an underestimate). Figure 9 showsthe error of Eq. (23) as
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a percentage of desired frequency f, using the relation of Eq. (23). The actual error goes
to zero at points, but they are not shown on alog-log plot; thisis unimportant, because
only the high errors are of any concern. The straight line made by the top of the plot
should be used as an error envelope for a given ratio f4/f.

Figure 10 shows how digital PFM will work on a computer with a 3000-Hz
sampling rate. The output pulse frequency is aways lower than the desired pulse
frequency, and the error grows as the desired frequency increases. Figure 10is
characteristic of how the normalized errors of Fig. 9 will appear with any fixed sampling

rate.
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2.6 Paralld-Path Single-Signed Pulse Frequency

M odulation/Demodul ation

Li and Jones[7] proposed the idea of parallel-path single-signed pul se frequency
modul ation/demodul ation (PPSSPFM D) as away to transmit a double-signed signal
when only positive pulses may be transmitted, such asin the nervous system.
PPSSPFMD is different from single-signed PFM, which biases the original double-signed
input signal so that the input to the modulator is always positive. Single-signed PFM
resultsin a stream of positive pulses, but knowledge of the bias must be known to
demodul ate the pulse stream. Also, as can be seenin Fig. 2 and Fig. 7, the pulse-

frequency behavior is not symmetric for biased signals; the portions of the signal with
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low magnitudes have alow frequency, and hence along delay (see Chapter 3).

Figure 11 shows a PPSSPFMD setup. The nonlinearities that precede the pulse
frequency modulators allow the positive portion of the input signal to pass through the
upper pulse frequency modulator and demodulator (demodulators are covered in Chapter
(3)), and allow the negative portion to pass through the lower pulse frequency modulator
and demodulator after being multiplied by a gain of —1. The bottom demodulator output
isthen multiplied by —1 again and summed with the top demodulator output to give the
reconstructed input signal. The nonlinearities preceding the modul ators act as either/or
switchesin this setup, but in general they may weigh the portion of the input going
through each path.

The PPSSPFMD setup is used to model the control of ajoint in the human body.
Because the nervous system can only transmit pulses of one sign, and because muscles
can only apply forcesin contraction, it takes two sets of muscles pulling in opposite
directions to control the movement of ajoint. Anexample isthe biceps and triceps
opposing each other to control the elbow joint. PPSSPFMD is a cumbersome acronym,

but it will be repeated frequently enough in this thesis to warrant its existence.

PFD

A 4

PFM

A 4

- »  PFM »  PFD

Fig. 11 Paralle-Path Single-Signed Pulse Frequency
M odul ator/Demodul ator
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3. COMPARISON OF PULSE FREQUENCY

DEMODULATION METHODS

Pulse frequency demodulation (PFD) is even more integral to the control of the
Experimental Neural Arm than is PFM. It is conceivable that the arm could be run open-
loop (with only visual feedback), which requires no pulse frequency modulation, but PFD
is always needed to decode the signals coming from the nervous system.

Many PFM methods were found to be basically equivalent to one another in
Chapter 2, but the various ways to demodulate a PFM signal are very different from one
another, and the advantages and disadvantages of each become very evident when they
are qualitatively and quantitatively compared.

Period measurement is the first pulse frequency demodulation (PFD) method
considered. This method reacts quickly when demodulating a high pulse frequency
signal, but with relatively large errors, and it reacts slowly when demodulating alow
pulse frequency signal, but with relatively small errors.

Low-pass filtering is the next PFD method considered. It is proposed as away to
mimic the way the nervous system demodulates a PFM signal. This method has an
adjustable constant delay, but the error in the demodul ated frequency grows when this
delay isreduced. The error also grows as the pulse frequency decreases. Three types of
low-pass filtering are considered: first-order low-pass filtering, second-order low-pass

filtering, and finite-impul se-response filtering.
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Thefina PFD method considered measures the number of pulses that occur
during a fixed-time sampling window, and approximates the pulse period by dividing the
sampling window by the number of pulses. The primary advantage of using this PFD
method is that the sampling time is fixed, so traditional discrete control system design
techniques can be employed. The primary disadvantage of this method is that the time
delay is unnecessarily large when the pulse frequency is high. This PFD method has
relatively large errors when demodul ating low-frequency signals and relatively small
errors when demodulating high-frequency signals.

Because the ultimate goal of thisthesisisto help control an artificial arm with the
human nervous system, only the PPSSPFMD system of Section 2.6 will be considered.
From a demodulation perspective, this means demodul ating two separate single-signed
PFM signals, and then summing the effect of these two signals, so this chapter will only

deal with the demodulation of single-signed pulse streams.

3.1 Period Measurement

Probably the most basic way of determining pulse frequency is by, at the
occurrence of each pulse, measuring the period between the current pulse and the
previous pulse, and then updating the demodulated frequency as the inverse of this
period. The demodulated frequency only changes at the occurrence of a pulse.

This method updates the demodulated frequency at every pulse occurrence with
the exception of thefirst pulse. Because no pulse has come before the first pulse, it acts
as amarker that will not be used until the second pulse comes. This acts as atime delay
of one pulse period in the demodulated frequency. Thistime delay isin addition to any

time delay coming from the PFM method used. For a step input, the IPFM method gives
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an additional delay of one pulse period, the USSH method gives an additional delay of
one-half of one period, and the V/F converter gives no additional delay. When

demodulating single-signed pulse streams, these delays are only seen at start-up.

3.1.1 Idealized Period M easurement

Figure 12 shows a stream of pulses along with its demodul ated frequency. This
pulse stream isinitially at afrequency of 0.5 Hz, and stepsup to al-Hz signal. The
demodulated signal steps up at the 9-second mark, but the original signal that was pulse
frequency modulated stepped up at the 8-second mark to create this pulse stream. This
shows the time delay due to demodulation of 1 second (the new pulse period).

Figure 13 shows another stream of pulses with its demodulated frequency. This
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Fig. 13 Demodulation by Pulse Period Measurement for Input Step Down

pulse stream isinitially at afrequency of 1 Hz, and steps down to a0.5-Hz signal. The
demodulated signal steps down at the 6-second mark, but the original signal that was
pulse frequency modulated stepped down at the 4-second mark to create this pulse
stream. Thetime delay islonger when stepping-down in pulse frequency, but the real
problem with this method of PFD iswhat occurs after the pulse at the 10-second mark.
No pulse occurs after this pulse, but the demodul ated frequency never changes because
the next pulse never comes. By the 12-second mark, the pulse frequency is obviousy
smaller than 0.5 Hz, but the demodulation method does not account for this.

There are two primary methods of dealing with the problem that is encountered

when stepping down in pulse frequency. One of these methods is a relaxation method,

29
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which uses knowledge of the previous pulse period to demodulate asignal in amore
intelligent way. With the relaxation method, if atimet has passed since the last pulse,
and t is greater than the previous pulse period, then the demodul ated frequency in Hertz
is:

1
t>Tprev O fd ZI (24)

Figure 14 shows how Fig. 13 would look using period measurement with relaxation as
the PFD method. The demodulated frequency will never reach zero with relaxation, but
will only decay to an asymptote at zero. Practically, this may lead to steady-state errors,

but may also be too negligible (very close to zero) to affect the performance of ared
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system.
The other method used to correct the problem encountered when stepping down in
pulse frequency is a deadband method. With the deadband method, all pulse frequencies
smaller than a designated deadband frequency will be demodulated as a zero; more
practically, if atimet passes, since the last pulse, that is greater than the designated
deadband period Tgeaq (the inverse of the deadband frequency), then the demodul ated

frequency is set to zero:

t>Tq O f, =0 (25)

Figure 15 shows how Fig. 13 would look using period measurement with a deadband of

0.4 Hz.
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A combination of relaxation and deadband together may be the best option. This
method would work especially well when stepping down from alarge pulse frequency to
avery small or zero pulse frequency; here the relaxation would react quickly, while the
deadband would eventually drive the demodul ated frequency to zero.

For period measurement PFD, knowledge of the modulation constant (see Chapter
2, Egs. (17) through (19)) is needed to reconstruct the original modulated signal. If xis
the original signal that was pulse frequency modulated, then let the reconstructed signal
after demodulation, Xg, be defined as:

f
S (26)
The reconstructed signal will only be absolutely correct for scenarios where the input to
the modulator is a constant. For any varying input signal, the reconstructed signal will be
only be an approximation of the original, but this is unavoidable due to the filtering
nature of the integrators in the pulse frequency modulators and due to the discretized

nature of the PFM signal.

3.1.2 Effect of Discrete Sampling on Period M easurement

This section deals with demodulation of a PFM signal using adigital computer
with afixed, known sampling rate. Aswith any analog-to-digital signal conversion, the
faster the computer’ s sampling rate isrelative to the signal’ s frequency, the better the
computer can accurately reconstruct the signal. Only DC signals will be considered
while trying to quantify errors due to digital demodulation because any other signals

become far too complex, but the results translate well to low frequency signals because
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the errors found here are instantaneous errors that are based on the instantaneous pulse
frequency.

Let f and T be the actual pulse frequency in Hertz and the actual pulse period in
seconds of the pulse stream being demodulated, let fy and T4 be the demodulated
frequency and period, and let fs and Ts be the computer’ s sampling frequency and period.
A pulseis always detected late (it isimpossible to detect early); thisis the nature of

anaog-to-digital conversion. Pulses are always detected late by a period A, where:

T.2A>0 (27)

Figure 16 shows the worst-case scenarios that would cause the largest errorsin
the demodulated period. From thisfigure, the value of the demodulated period will fall

somewhere in the range:
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Fig. 16 Period-Measurement PFD with Discrete Samples
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T+T,>T, >T-T, (28)

Each pulse is detected late, so for any given period measurement it is equally likely that
the period will be overestimated or underestimated.
Note that an underestimate in period leads to an overestimate in frequency, and

viceverse. If an error in the demodulated frequency &4 is defined as:

f (29)
Using Eq. (28), & will be found inside an error envelope with

€ over 2 &y 2 € under (30)

where, after some manipulation, the maximum possible overestimate and underestimate

in the measured frequency are found as

(31)

under =1

B 32
1:5_1 (32)

These equations have been normalized to look at the error as afunction of the

relationship between sampling frequency and pulse frequency. Figure 17 plotsthe
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magnitudes of the error envelopes given in Egs. (31) and (32) as a percentage of the pulse
frequency.
Laboratory experiments show a pulse frequency range in the nervous system in

the range of approximately 10-200 Hz [8]. Figure 18 shows the error envelopes for a
3000-Hz sampling rate; the frequency could be overestimated by as much as 6.3% or
underestimated by as much as 7.1% when measuring a 200-Hz pulse stream, or could be
overestimated or underestimated by as much as 0.33% when measuring a 10-Hz pulse
stream, when using a computer with a 3000-Hz sampling rate.

A Simulink simulation of pulse measurement PFD is given in Appendix B. This

simulation uses a 10-Hz deadband, and can demodulate single- or double-signed signals.
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3.2 Low-Pass Filtering of Pulses for Pulse Freguency Demodul ation

The human nervous system seems to use atype of low-pass filtering asits PFD
method. Each electrical pulse causes a muscle twitch. If these twitches come close
enough together, they result in an aggregate muscle movement [9]. In an effort to mimic
the way the human body works, it is desirable to investigate |ow-pass filtering as a PFD
method.

It seems possible that a pulse stream may be demodulated with afilter for some
type of PFD. Each pulse would create an impulse response in the filter, which isan
instantaneous increase in the filtered signal followed by a decay to zero. If asecond

pulse occurs before the first pulse decays away, the convolution of the two pulses will
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create anet filter response. This behavior seems to mimic the twitch response of a
muscle.
Three types of low-passfiltering are considered here: first-order low-pass filtering,

second-order low-pass filtering, and finite-impul se-response filtering.

3.2.1 First-Order Low-Pass Filtering

Consider afirst-order low-pass filter as pulse frequency demodulator, in Laplace
domain:

y(s) = B 5(s) (33)
s+a

where disthe incoming pulse stream to be modulated, with a pulse frequency f and pulse
period T, and y is the demodul ator output. The output is not labeled as the demodul ated
frequency fy because there is no indication of how the output of the filter isrelated to the
input pulse frequency. Figure 19 shows the response of the filter of Eq. (33) whena = 8
=50and f = 100 Hz. Thetime constant 7 of thefilter (the inverse of a) is 0.02 seconds.
It is seen from this plot that the output y has an aggregate response of a step input to the
low-pass filter with atime constant of what appears to be 0.02 seconds and with a
“steady-state” value that jitters, but appears to be centered around 100, which is the value
of f. Changing the DC gain of thefilter, f/a, would only scale the response linearly.
These properties seem encouraging for use of alow-passfilter for PFD.

The impulse response of thefilter of Eq. (33) is:

ys(t) = Be™ (34)



38

1200 - - - -

1001 - - - |l

80| -

60 [\l C S C ]

i R S R R SR

Demodulator Output Frequency (Hz)

200 - - - - - - - . C S C .

0 0.05 0.1 0.15 0.2 0.25 0.3
Time (sec)

Fig. 19 Response of Unity-Gain First-Order Filter with 5/a = 0.1 Seconds to a
100-Hz Pulse Frequency

which means that each impulse causes an instantaneous increase of Bin the output asis
seenin Fig. 19. Thetotal responsey a atime A < T since the last pulse, dueto all

previous pulses, is given by:

y(A) - Be—aA + Be—a(A+T) + ,Be’“(A*ZT’ + . (35)
y(A) - ‘Be—aA (1+ e—aT + e—2aT + ) (36)
y(B) = pee S e‘k‘”E (37)

If aT >0, then y(A) can be written as:
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y(B) = e Ej—_lﬁ (39)

Equation (38) assumes that pul ses have been coming at a constant frequency for
an infinite amount of time. Remembering the nature of exponential decay, only the
pulses occurring in the past five time constants (using a 99% settling time) have any
measurable effect on the total response. This meansthat Eg. (38) is aways an
approximation, but it is a good approximation after five time constants past the last
changein input frequency.

Keeping in mind the shape of the plot in Fig. 19, define the highest value of y in
the "steady-state”" (occurring just at an impulse) asyy, and define the lowest value of y in

the "steady-state”" (occurring just before an impulse) asy;. Using Eq. (38):

B B ,BeaT
A=00 y, = (39)
_ __B 40
A=T0O M—m ( )

Arey, =fandy < f aways true statements for a unity-gain (8 = a) first-order
filter? First look at the statement about yi:

Tae™"

T 1ot (41)

Y2 102210 T 210

Because aT > 0, the last statement of Eq. (41) can be written as:
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(aT -2)e" > -1 (42)

This statement is alwaystrue for aT = 0, therefore the statement y, = f is aways true with
the assumptions given previously. With asimilar methodology, it can easily be shown
that y; <f.

Doy, —» fandy, - fasf - ? If so, y/f - landy/f - 1asf - oo:

% 1 ae” [ 0 (43)
e e
H

]

Use I'Hopital’s Rule:

20T aT
limf 18" +ae Ezlim(aT+1):1 (44)
TAOE ae” T-0

Thereforey, —» fasf - . With asimilar methodology, it can easily be shown that y; —
fasf - oo,

Figure 20 shows the maximum errors, defined in EQ. (29), due to the output highs
and lows of Egs. (39) and (40). Notice that Egs. (39) and (40), and Figure 20, match
what is seen in Fig. 19 well, predicting the saw-toothed oscillation between
approximately 77 and 127 Hz.

Because the demodulation error increases proportionally with a/f, low-pass filter
demodul ation works better for high- rather than low-pulse-frequency signals, and works

better when the filter’ s time constant is longer rather than shorter.
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Figure 21 shows the maximum errors for afirst-order filter with 5/a = 0.1
seconds. For thisfilter, the error can be as high as 400% when demodul ating a 10-Hz

signal, and is still large when demodulating a 200-Hz signal.

3.2.2 Second-Order Low-Pass Filtering

A first-order low-pass unity-gain filter can be used as a pulse frequency
demodulator. The output of the demodulator jitters around the input frequency value
with aknown error in the “ steady-state,” and it reaches the “ steady-state” based on the
time constant of the filter. A low-passfilter of higher order may give more desirable

results by smoothing out the response seen in Fig. 19.

41
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Consider a second-order low-pass unity-gain filter as demodulator, in Laplace
domain:

aZ

(s+a)®

fa(s) = o(s) (45)
where disthe incoming pulse stream to be modulated, with a pulse frequency f and pulse
period T, and y is the demodul ator output. The output islabeled as the demodul ated
frequency fq, unlike in EQ. (33), because it was proven in Section 3.2.1 that the filter
output is the best value to use for fq for aunity-gain filter. For the same reason, the in

the numerator of the first-order filter of Eq. (33) has been changed in Eq. (45) to force the
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filter to have unity-gain. Figure 22 shows the response of the filter of Eq. (45) when a =
76.4 and f = 100 Hz. Thisresponse is much smoother than that of the first-order filter.

The impulse response of the filter in Eq. (45) is given by:

ys(t) =a’te™ (46)

which starts a zero, climbs up to a peak value, and then decays away to zero, all with no
discontinuities. The peak value of the impulse response occurs at t = 1/a seconds, which
isthe time constant of the first-order filter, but is a time-to-peak of the second-order
filter. Let thetime for the impulse response of a second-order filter to decay be measured

relative to the value of the response at the peak (t = 1/a seconds). Thetimefor the
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Fig. 22 Response of Unity-Gain Second-Order Filter with 7.64/a = 0.1 Seconds
to a 100-Hz Pulse Frequency



impulse response to decay 95%, 98%, and 99% of the way to zero are found to be:

t95% = T (47)
(.68 (48)
98% a

7.64
tgg% = T (49)

The second-order response appears much smoother than the first-order response, but Egs.
(47) through (49) show that having the same a is not a satisfactory method to compare
the first- and second-order responses, but rather a should be chosen to make the two
filters have the same speed of response.

Thetotal responsey at atime A < T since the last pulse, due to all previous pulses,

isgiven by:
f (&) =a’he™™ +a*(A+T)e ™™D +a?(A+2T)e @) + (50)
f,(A)=a?e™QD+(A+T)e™ +(A+2T)e™  +..) (51)
f, () =a’e™®QA+0e™ +0e™ +..+Te™ +2Te™ +..) (52)
f,(A) =a’e™ %EZ e HeT EZ) ke ™" % (53)
= 0 =
—an H DT Te"

f (D) =a’e™ H +

a(B) E]paT -1 (eaT _1)2 E (54)
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Equation (54) assumes that pul ses have been coming at a constant frequency for an
infinite amount of time, but only the pulses occurring in the past 7.64/a seconds have any
measurable effect on the total response, using a 99% settling time. This means that EQ.
(54) isaways an approximation, but it is a good approximation after 7.64/a seconds past
the last change in input frequency.

Keeping in mind the shape of the plot in Fig. 22, define the highest value of g in
the "steady-state” (occurring at an impulse response peak) as fqn, and define the lowest

value of fq in the "steady-state" (occurring at an impulse) asfy. Using Eg. (54):

a’Te™

A 55
(eaT _ 1) 2 ( )

A=0T0O f, =
To find fgp, differentiate Eq. (54) with respect to A and set equal to zero. This givesthe

value of A at the peak:

T

e -1 (56)

1
A =
peak a

Substituting Eq. (56) into Eq. (54) gives the value of fg,, which is not given in closed

form here, dueto its complexity.

fon = f4 (Apeak) (57)

Figure 23 shows the maximum errors due to the output highs and lows of Egs.
(55) and (57). Notice that Figure 23 matches what is seenin Fig. 22 well, predicting the

saw-toothed oscillation between approximately 95 and 103 Hz.
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Fig. 23 Error in Unity-Gain Second-Order Low-Pass Filter vs.
Normalized Frequency
Figure 24 shows the maximum errors for a second-order filter with 7.64/a = 0.1
seconds. Thisfilter gives a 180% error when demodulating a 10-Hz signal, compared
with 400% with the first-order low-passfilter. The error isalso smaller at high

frequencies.

3.2.3 Finite-lmpul se-Response Filtering

Another proposed filter for PFD is afinite-impulse-response (FIR) filter, purely
designed for use on adigital computer. This method of PFD involves storing the last N
samples of the incoming pulse stream in a stack, where N is some constant integer. A
pointer cycles through the stack, moving one stack element per computer sample, adding

N to the stack element if a pulseis detected. Between each computer sample, the entire
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Fig. 24 Error in Second-Order Filtering PFD vs. Frequency for
7.64/a = 0.1 Seconds
stack is cycled through, and each nonzero element is reduced by 1. The output of the
demodulator at each computer sample is the sum of all the stack elements.

This PFD method creates alow-pass filter whose impulse response decays away
linearly to zero, rather than exponentially like a first-order low-pass filter. With this
method, any pulses occurring more than N computer samples ago have no effect on the
output, where alow-pass filter theoretically feels the effect of al previous pulses.

Figure 25 shows the response of an FIR filter with a 0.1-second decay to a 100-
Hz input frequency. This FIR filter seemsto have asimilar response as that of the first-
order low-passfilter. Notethat with an FIR filter the decay between individual pulsesis
linear, rather than exponential. The same sort of discontinuities are seen in the response,

and they have asimilar behavior in the “ steady-state.” Probably the largest difference
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Fig. 25 Response of an FIR Filter with a0.1-Second Decay to a
100-Hz Pulse Frequency

between the FIR filter and the first-order low-pass filter is that, for afirst-order low-pass

filter with unity DC gain, the aggregate response approaches a “ steady-state” equal to the

pulse frequency in Hertz, but the FIR filter does not show this behavior.

Because of the nonlinearity of the FIR filter, a closed-form general solution of the

filter’ s response to a constant-frequency input pulse stream is not found here. A solution

can be found, however, that works for alimited number of input/filter combinations, and

this solution

can be used as an approximation for other cases. Consider an FIR filter with

a noutput y to an input pulse stream of constant frequency f and period T. Let thefilter

have an impulse response that decays away in A seconds, with:

A=NT (58)
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where N is the number of computer samples that it takes for an impul se response to decay

to zero, and Tsis the computer sampling period. Let the input pulse period be defined as:

T=nT (59)

wherenisan integer. Thisrestrictsthe possible input frequencies, but thisis a necessity
of the approximation. The FIR filter has an aggregate response, which was found

empirically, given by:

oA T
y_o.5T—SEL+X§f (60)

So, for agiven FIR filter, y islinearly proportional to f, and Eq. (60) can be written as:
Y =Keg f (61)

Figure 26 shows the same response of Fig. 25, but the constant of Egs. (60) and (61) is
accounted for. Now the aggregate filter output is the demodulated frequency.
Equation (60) accurately predicts the mean value between the saw-toothed

oscillation highs and lows in the “ steady-state.” These output highs and lows are found

by the equations:
ki
Yi = (k, +1)N_Zm (62)
nk,,
Yo = (ky +DN ——*(k, +1) (63)

2
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Fig. 26 FIR Filter PFD with a 0.1-Second Decay to a 100-Hz Pulse Frequency

Kk, = floor N[
an o

= (N +DK =2 +D)

k = roorBN—JrlH
On 0O

(64)

(65)

(66)

(67)

The floor () function returns the closest integer to the quantity in the parenthesis, in the

direction of negative infinity.
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Using the definition of error from Eq. (29), the errors due to the * steady-state”
highs and lows of Egs. (63) and (66) are plotted in Fig. 27; this plot is specifically for an

FIR filter with a 3000-Hz sampling rate and a 0.1-second impul se decay.

3.3 Fixed-Time Sampling Window

Another way to demodulate a PFM signal is by counting the number of pul ses that
occur in afixed-time sampling window. This method has the advantage of using
traditional digital design techniques, because the fixed-time sampling window becomes
the sampling period. If the sampling window is T,, seconds, and N pulses occur in a

given window, the demodulated period is defined as:

(68)
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Fig. 27 Error Band for a 3000-Hz FIR Filter with a 0.1-Second Decay
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This gives a demodul ated frequency of:
fq = Nf, (69)

Figure 28 shows the worst-case demodulation scenarios that can occur using Eq. (68). In
the portion of the figure showing the largest underestimate of T, pulses occur just inside
the edges of the sampling window. The window is divided into three equal parts, but four
pulses occur in the window, so Eq. (68) will divide T,, into four parts, which
underestimates the period. In the portion of the figure showing the largest overestimate
of T, pulses occur just outside the edges of the sampling window. The window is still
divided into three equal parts, but only two pulses occur in the window, so Eqg. (68) will
divide the T, into two parts, which overestimates the period.

Figure 28 and Eq. (68) put the demodulated pulse period in the range:

A 4

A
—

Dashed Lines Show SamplingWindow

Largest Underestimate of T
T,= (N-DT

A 4

A
—

Largest Overestimate of T
T,= (N+1)T

Fig. 28 Fixed-Time Sampling Window
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BNTﬂEr >T, 2 BNT_lgr (70)

U U

If an error in the demodulated frequency is defined asin Eq. (29), alittle manipulation of

Egs. (29) and (68) yields a bounded error:

T—zedz—l (71)
TW TW
AT
fofe= T (72

Th error of Eq. (29) is given asafraction of f, so awindow frequency of 5 Hertz and a
pulse frequency of 50 Hertz would lead to an error in the demodulated frequency of as
much as +10% of f. This method only worksif f > f,. If f <f,, the demodulated
frequency will jitter between zero (when no pulses occur in awindow) and f,, (when one
pulse occurs in awindow).

Fixed-Time Sampling Window PFD has large errors when demodul ating small
pulse frequencies, and small errors when demodulating large pulse frequencies; the

opposite of the behavior seen with period measurement PFD.

3.4 Error Comparison of Pulse Frequency Demodulation M ethods

To compare the various PFD methods, it is necessary the find some way to
compare equivaent demodulators, because the behavior of each demodulator is
fundamentally different from the others. The method used here will be to compare

demodulators with the same settling time. Because the lowest pulse frequency seen in
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the nervous system is approximately 10 Hz [8], the pul se-period measurement method
will have a deadband of 10 Hz, giving a settling time of 0.1 seconds (worst-case). The
fixed-time sampling window of T,, = 0.1 seconds will also be used. For the two
continuous low-pass filters, a will be chosen to give a 99% settling time of 0.1 seconds.
For the FIR filter, A is chosen to give adecay of 0.1 seconds. Table 2 quantifies the
errors from these PFD methods.

It appears from Table 2 that pulse measurement may be the best overall method.
It has low errors across applicable frequencies, and an added benefit of small time delays
at high frequencies, when it is most important. Second-order low-passfiltering is
probably the second-best method, but the FIR filter and fixed-time window have lower
errors at low frequencies than the second-order low-pass filter.

While the human body demodulates incoming pulses through some form of low-

pass filtering, the sheer number of nerves transmitting information in paralel and

Table2 Comparison of Errorsfor PFD Methods with 0.1-Second Settling Times

PFD Settling Time| f=10Hz | f=100Hz | f= 200 Hz
Method Parameter &4 &y &y
Pulse
M easurement Deadband 0.0033 0.034 0.071
First-Order 5
Low-Pass . 4.0 0.27 0.13
Filter
Second-Order 7.64
Low-Pass o 18 0.047 0.012
Filter
FIR
Filter A 1 0.09 0.04
Fixed
Sampling Tw 1 0.1 0.05
Window
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asynchronously from one another would give an aggregate response that filters out the
bumpy response of any one nerve. This method works well in the human nervous
system, but it does not work aswell if single PFM signals are being demodul ated.

It should be noted that every PFD method in this chapter is evaluated with a
noise-free pulse stream. Here, noise would manifest itself as extra pulses. The period-
measurement PFD method appears to be the method that gives the lowest errors, but this
method is the most sensitive to extra pulses, which are demodulated as avery high
frequency for avery short duration. In practice, the period-measurement PFD method
would have to be followed by afilter. The low-pass filtering PFD methods are relatively
insensitive to extrapulses. This noise consideration is discussed further in Chapter 6.

The difference in behavior between the first-order low-pass filter and the second-
order low-passfilter isvery large. By continuing to concatenate unity-gain first-order
filters, it may be possible to create a high-order low-pass filter demodulator with very

desirable characteristics.
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4. GRAPHICAL LIMIT-CYCLE PREDICTION

The describing function is a common way to predict the existence of limit cycles
in a nonlinear system. The describing function of a nonlinearity is its equivalent gain and
phase-lag to a sinusoidal input of amplitude 4, where the gain and phase-lag are a
function of 4.

Pulse frequency modulators and demodulators are time-varying, meaning they are
not only amplitude dependent, but also frequency dependent. It would be desirable to be
able to predict the existence of limit cycles in systems containing pulse frequency
modulation. Developing a describing function for PFM systems has been attempted
before with limited success. Dymkov [10] attempted a describing function for a double-
signed IPFM, and Li and Jones [7] attempted a describing function for PPSSPFMD. The
results of these are so mathematically complicated that they cannot be easily applied to
any real application where pulse frequency modulators and demodulators are just a part

of a larger system.

4.1 Description of Graphical Method (Simple Loop)

Consider the simple loop of Fig. 29. This loop contains a nonlinear describing
function that is dependent on the amplitude and frequency of its input sinusoid, in series
with a linear element, connected with negative unity feedback. To look for the existence

of a self-sustained limit cycle, it is standard practice to set the input of the system to zero
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Fig. 29 Simple Loop with Frequency-Dependent Describing Function

and then disturb the system. From describing function analysis [11], a limit cycle will

occur if:

G(jw) =~ (73)

N(4,w)

For a describing function that is only a function of amplitude, limit-cycle prediction
involves finding the intersection of two loci of points — that of the Nyquist plot of the
linear plant G, and that of the negative inverse of the describing function N. The
amplitude of the limit cycle is taken from the describing function at the intersection, and
the frequency of the limit cycle is taken from the Nyquist plot of the linear plant at the
intersection.

Because the describing function in Fig. 29 is a function of amplitude and
frequency, an intersection of the Nyquist plot of the linear plant and the negative inverse
describing function will indicate a limit cycle only if the frequency taken from the

describing function matches the frequency of the Nyquist plot at the point of intersection.



58

Figure 30 shows a possible way to think about this frequency-dependent
describing function analysis. The Nyquist plot of the linear plant is plotted as before.
Remember that the Nyquist plot is a locus of points, where each point represents the gain
and phase of the plant for a sinusoidal input of a given frequency, but the amplitude of
the sinusoid does not matter. For the describing function, each constant-frequency
negative inverse describing function is plotted as a locus of points. Each of these
constant-frequency loci acts as an independent negative inverse describing function that
is only dependent on amplitude. There are infinitely many of these constant-frequency
loci, because there are infinitely many frequencies, but practically only some # loci need
be plotted based on the resolution needed and the bandwidth of the system. A limit cycle

can occur only if the negative inverse describing function for a constant frequency w,

crosses the Nyquist plot of the linear plant at the point representing the frequency w,. If

Image is reflected about the real axis. Im

Re

jo Increasing

A Increasing
X G(jw)

1
N(4,w,)

o Increasing

Fig. 30 Nyquist Plot for Frequency-Dependent Describing Function
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the intersection does not have a common frequency, the limit cycle will not sustain itself.
If there is a common-frequency intersection, this frequency is the frequency of the limit
cycle, and the amplitude of the limit cycle is taken from the negative inverse describing
function locus for the intersection frequency.

If no intersection that would create a self-sustaining limit-cycle is possible,
system stability can be determined. If every point of the negative inverse describing
function loci are encircled by the Nyquist plot of the linear plant, the system is unstable.
If no points are encircled, the system is stable.

This path of reasoning can now be applied to pulse frequency modulated systems;
the nonlinearity just needs to be explicitly defined as a pulse frequency
modulation/demodulation pair. The input to the modulator is the continuous output of the
plant, multiplied by a gain of —1. The output of the demodulator is the reconstructed
signal that may or may not represent the modulator input well after going through PFM
and PFD. This reconstructed signal will be a delayed, discretized, and distorted version
of its former self. To apply the amplitude and frequency dependent describing function
method shown in Fig. 30, the equivalent gain and phase-lag of the PFM/PFD pair is

developed in the next section.

4.2 Tabular Describing Function with Post-Filtering Method

To apply the graphical limit cycle prediction method described of Section 4.1 to
systems containing pulse frequency modulation, it is first necessary to determine which
type of PFM and PFD methods to use. Because the ultimate goal of this thesis is to
develop tools for use with the control of the Experimental Neural Arm, the PPSSPFMD

setup of Section 2.6 will be used here. Figure 29 becomes Fig. 31 when PPSSPFMD is
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Fig. 31 Simple Loop with PPSSPFMD Describing Function

used. The conclusion of Section 2.4 is that all integration methods that have a linear
input-to-frequency relationship are equivalent. For this reason, the USSH method was
chosen here, because its delay at startup is halfway between the IPFM method and the
V/F converter. Remember, though, that this start up behavior is only seen at start up with
the single-signed PFM being used here, and that the other two PFM methods would have
worked just as well. The conclusion of Section 3.4 is that period measurement is
probably the best overall PFD method, though this is a debatable point. Its low errors at
low frequencies should help prevent jitter, and its small time delays at high frequencies
should help with tracking and stability.

Now that a model has been chosen, the equivalent describing function of the
PPSSPFMD nonlinearity can be found using a method that will be referred to as the post-
filtering method. The post-filtering setup is shown in Fig. 32. The PPSSPFMD setup

modulates and demodulates an input sinusoid x of amplitude 4 and frequency w (rad/sec):

X = Asin(ax) (74)
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Fig. 32 Post-Filtering Method

The input to the low-pass filter is a reconstructed version of the input to the PPSSPFMD
x,, and the output of the filter y can be approximated as a sinusoid with a new amplitude

and phase-lag:

Yy = A, sin(ax - @) (75)

For a given sinusoidal frequency, the gain kr and the phase-lag @ of the filter are known
quantities. Because they are known, the equivalent gain and phase-lag of the

PPSSPFMD nonlinearity defined above can be calculated with the equations:

k Ay

= 76
N AkF ( )
Oy =P~ @ (77)

Because the input to the filter is not purely sinusoidal, the output is not either. To
find the best sinusoidal approximation of the output, a three-step curve fit is employed.
First, the amplitude of the output is approximated by its highest peak. Second, using the

amplitude approximation, the best choice for @is found with a least-squares method.

Third, using the phase-lag @ the best choice for 4 is found by matching the RMS values
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of the output and the sinusoidal approximations. This three-step curve fit should give a
good sinusoidal approximation to a quasi-sinusoidal signal. The Simulink post-filtering
setup and associated MATLAB scripts are given in Appendix C.

This post-filtering method is only valid when the plant acts as a low-pass filter,
which is a valid assumption for mechanical plants. This is a limitation of the method, but
it is the same limitation found in traditional describing function analysis, where only the
lowest-frequency component of a Fourier analysis is considered.

Using the post-filtering method, the equivalent gain and phase-lag (in degrees) of
the PPSSPFMD were found, and are listed in Table 3 and Table 4, respectively. The data
were taken at various frequencies, and at various values of input amplitude multiplied by
modulation constant Ak, (it can easily be seen that it is the combined value of these two
variables that matters, not either of them alone). The “NaN’’s in the upper-right corner of
the tables stand for “not a number” (in MATLAB form), and they represent a case where
the output of the PPSSPFMD nonlinearity is not periodic, so no limit cycle is possible at
that combination of amplitude, modulation constant, and frequency. This characteristic is
expected with a combination of low amplitude and high frequency, considering the
integrating nature of the pulse frequency modulators.

The data in Table 3 and Table 4 could be fit into a describing-function equation,
but they can easily be used in tabular form by interpolating between the table values. The
columns of Table 3 and Table 4, along with interpolated “columns” which represent
frequencies between the data taken, can be plotted as separate loci of points to create a
plot like that of Fig. 30. More data could be taken, if it was deemed necessary, at higher

or lower frequencies, or at higher values of 4k, No data need be taken for lower values



Table 3 PPSSPFMD Equivaent Gain

Amplitude X 1 5 10 15 20 25 30 35 40
Modulation Constant | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec
13 0.79 0.76 NaN NaN NaN NaN NaN NaN NaN
14 0.81 0.84 0.86 0.8 NaN NaN NaN NaN NaN
15 0.87 0.94 0.9 0.84 NaN NaN NaN NaN NaN
20 0.95 0.98 0.99 1.04 1.29 NaN NaN NaN NaN
25 0.96 0.99 1.03 1.08 1.04 1.16 NaN NaN NaN
30 0.99 1 1.04 1.12 1.16 1.18 1.23 NaN NaN
40 0.99 1 1.04 1.11 1.13 1.16 1.14 1.12 1.14
60 1 1 1.03 1.06 1.04 0.99 0.96 0.94 0.89
80 1 1 1.02 1 0.97 0.92 0.86 0.85 0.76
120 1 1 1 0.97 0.89 0.84 0.72 0.82 0.86
180 1 1 0.99 0.95 0.85 0.74 0.65 0.55 0.55
240 0.99 0.99 0.98 0.93 0.83 0.78 0.69 0.63 0.61
300 0.99 0.99 0.98 0.92 0.83 0.72 0.64 0.55 0.43
360 0.99 0.98 0.95 0.9 0.81 0.75 0.6 0.77 0.59
420 0.98 0.97 0.94 0.89 0.8 0.74 0.59 0.51 0.63
500 0.94 0.94 0.91 0.86 0.78 0.68 0.62 0.6 0.72
600 0.8 0.8 0.77 0.73 0.67 0.56 0.47 0.51 0.6
800 0.62 0.61 0.59 0.55 0.49 0.45 0.36 0.48 0.43
1000 0.53 0.53 0.51 0.47 0.43 0.36 0.38 0.49 0.51




Table4 PPSSPFMD Equivaent Phase-Lag (degrees)

Amplitude X 1 5 10 15 20 25 30 35 40
Modulation Constant | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec | rad/sec
13 6 28 NaN NaN NaN NaN NaN NaN NaN
14 6 27 54 70 NaN NaN NaN NaN NaN
15 5 27 51 74 NaN NaN NaN NaN NaN
20 5 24 45 72 87 NaN NaN NaN NaN
25 5 21 42 63 85 103 NaN NaN NaN
30 5 20 39 61 81 96 118 NaN NaN
40 5 17 36 55 75 91 111 131 148
60 4 14 30 49 66 83 102 117 140
80 4 11 26 43 59 74 96 107 133
120 3 9 21 36 48 61 77 86 101
180 3 6 17 31 38 47 58 58 52
240 3 6 15 26 32 39 45 45 32
300 2 6 13 24 26 33 35 33 24
360 2 5 12 19 25 30 31 21 20
420 2 5 11 18 23 29 27 20 17
500 2 4 10 17 21 25 24 18 15
600 1 5 11 17 22 25 25 18 15
800 1 5 11 18 25 28 25 15 16
1000 0 5 12 18 24 28 26 14 16
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of Akys at frequencies where a “NaN” is given; this would just result in more “NaN”’s.

The data could also be retaken with a different post-filter to try to account for the
bandwidth of the linear plant being used; this would create a need for three-dimensional
interpolation (4ky, frequency, bandwidth). A few simulations were run with a unity-gain
low-pass post-filter with a bandwidth of 50 rad/sec, and the equivalent gain and phase-lag
of the PPSSPFMD nonlinearity changed very little, especially considering the intention
of the data is for use with a graphical method, where great precision is not needed.

The PPSSPFMD nonlinearity considered in the section used USSH as its PFM
method, and period measurement with a 10-Hz deadband as its PFD method, so the
tabular describing function data of Table 3 and Table 4 relate directly to this setup. No
other types of PFM or PFD will be considered here, but the post-filter method could be
used to recreate Table 3 and Table 4 using any combination of modulator and

demodulator.

4.3 Simple-Loop Examples with Simulation Comparisons

An algorithm can be used with the data in Table 3 and Table 4 to graphically
predict limit cycles in the simple loop of Fig. 31. The algorithm is performed by the
MATLAB script “Limit_Predictor.m,” found in Appendix D. In the MATLAB code, the
linear plant is defined as “SYS.” To best understand the algorithm used for limit-cycle
prediction, consider an example; see Fig. 33, which is the plot created by
“Limit_Predictor.m.” A second-order linear plant with two poles at —10 rad/sec and a DC
gain of 5 1s used in this example, and the modulation constant is 20. The plant was
chosen because it is a simple system with a bandwidth near that of the Experimental

Neural Arm. The choice of modulation constant was arbitrary.
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Fig. 33 Graphical Limit-Cycle Predictor

The solid line with “x” markers is the Nyquist plot of the linear plant, and each
“x” marks an integer frequency value; remember the frequency increases as the Nyquist
plot goes toward the origin. The dashed line is the unit circle. Because the gains in Table
3 are centered around 1 (ideally they would be 1), the algorithm uses the integer
frequency on the Nyquist plot that is closest to the unit circle as a first guess at the limit-
cycle frequency. This frequency is also labeled for the duration of the algorithm; notice
on the plot in Fig. 33 that a “20” is next to the closest “x” to the unit circle, indicating a
frequency of 20 rad/sec. To determine the values of the other “x”s, simply count away
from 20 by integer values. The remaining solid line is the amplitude-dependent negative

inverse describing function of the PPSSPFMD nonlinearity if only limit cycles of 20
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rad/sec are considered. The numbers to the right of the dot markers on this line represent
different limit-cycle amplitudes (the values of Ak, used from the table are divided by k),
before being printed to the screen).

If the negative inverse describing function crossed the Nyquist plot at 20 rad/sec,
it could be concluded that a limit-cycle would occur with a frequency of 20 rad/sec, and
with an amplitude obtained from describing function locus. The describing function does
not cross at 20 rad/sec though, and an iteration is required. The software prompts for a
new frequency, and 19.5 is entered because the Nyquist plot is crossed between the “x”’s
representing 19 and 20 rad/sec. The software now plots the negative inverse describing
function plot if only limit cycles with a 19.5-rad/sec frequency are considered. This plot
still crosses the Nyquist plot at 19.5 rad/sec, so it can now be concluded that a limit cycle
will occur with a frequency of 19.5 rad/sec and an amplitude of 4.5, which was taken
from the describing function locus. This example took only one iteration to complete,
and most problems are just as simple.

To check the validity of these results, compare the graphical limit-cycle prediction
with a Simulink simulation of the system, which is given as Fig. 34. Because pulse
frequency modulation and demodulation are time-varying, no true limit cycle is ever
achieved; the magnitudes of the peaks vary, and the instantaneous frequency varies also.
Pavlidis and Jury [2] described this behavior as a “limit annulus,” because a phase-plane
plot of the plant output and its time derivative shows a response that always falls within a
distorted doughnut shape (not the true definition of an annulus), never growing too large
or decaying too small, but also never falling into a periodic orbit. Figure 35 shows the

same data in Fig. 34, but in phase-plane form, illustrating the “limit annulus.” This being
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said, the limit-cycle amplitude and frequency obtained from the graphical predictor are
only approximations of the behavior of the output. For this example, the graphical
predictor predicted an amplitude of 4.5, and the simulation shows peaks in the range of
about 4-5. The graphical predictor predicts a frequency of 19.5 rad/sec, and the
simulation shows frequecies between about 19 and 20 rad/sec. For this example, the
graphical predictor was nearly perfect, but this is not always the case; the prediction is
accurate enough, though, to understand the behavior of the system being analyzed.

Table 5 contains comparisons of predicted limit-cycle amplitudes and frequencies
with simulated limit-cycle amplitudes and frequencies. For this simple loop, the
graphical limit-cycle predictor is very accurate.

Table 5 Comparison of Graphically-Predicted and Simulated Limit Cycles
for Simple Loop (ky = 20)

Simulation Simulation Predicted Predicted
SYS Amplitude Frequency Amplitude Frequency
(rad/sec) (rad/sec)
3.5 2 16 22 16.9
0.0ls* +0.2s +1
5
5 14 29 14.3 29.8
0.01s> +0.2s5 +1 ' '
100
— None None None None
s +11s+10
2& 2.5 13 2.8 12.9
s +11s+10
_ 400 8.5 17 10 17.6
s +11s+10
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4.4 Limit-Cycle Prediction Algorithm for Complex Loops

The tabular describing function was validated in the previous section as an
accurate depiction of a PPSSPFMD nonlinearity, but the simple loop that was analyzed is
unrealistically simple for use with any real applications, and was only used to develop the
method. Consider the feedback loop of Fig. 36; this loop is more complex than that of
Fig. 31, and more suited to real applications. This loop has a forward-path PPSSPFMD
nonlinearity and a linear plant G(jw) like the simple loop, but it also contains a feedback
PPSSPFMD nonlinearity and a linear transfer function H(jw), the input of which is the
error of the system. The form of this loop is not important; the algorithm developed here
is applicable to even more complex loops. The algorithm will be given explicitly for the
loop of Fig. 36, but the method is easily extrapolated. The MATLAB script
implementing this algorithm is “Limit Predictor2.m,” given in Appendix D.

Like before, the Nyquist plot of the linear plant G(jw) is plotted, but now the line
that previously represented the negative inverse describing function of the PPSSPFMD
represents the negative inverse describing function of the concatenation of all the
remaining elements in the loop. The algorithm iterates through one frequency at a time,

with the initial guess chosen as before. Regardless of the elements in the loop, the

Vo

H(jo) F—>PPSSPFMD(A,0)— G(jo)

PPSSPFMD(A, )|

Fig. 36 Complicated Loop with PPSSPFMD Describing Functions
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algorithm starts at the output y of the linear plant G(jw), and continues around the loop in

the clockwise direction. Assume the output y has the form:

y = Asin(ax) (78)

The gain K, and the phase-lag @, of the feedback PPSSPFMD are found from
Table 3 and Table 4 for the amplitude-times-modulation-constant Ak, and the frequency

w. Now, the gain K and the phase-lag @y of the linear element H(jw) are found for the

frequency w. The output of the linear plant H(jw) has the form (approximately):
u=AK K, sin(ax =@, —@,) (79)

The gain Krand the phase-lag ¢ of the forward-path PPSSPFMD are now found
from Table 3 and Table 4 for the amplitude-times-modulation-constant 4K K ykys and the

frequency w. The concatenated describing function has a total gain K,,,,; and a total

phase-lag @, of:

K (80)

total

=K,K,K,

(ptotal = qofb +<0H +(pf (81)

The final step is to plot a point at a distance 1/K,,,,; away from the origin and @,

degrees away from the real axis, and label the point with the amplitude A. This is

repeated for different values of 4 to create the concatenated-negative-inverse-describing-

function locus.
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Notice that the negative feedback is never explicitly considered. It is implicit in
the method that a single gain of —1 occur somewhere in between two of the concatenated

elements.

4.5 Complex-Loop Examples with Simulation Comparisons

The algorithm for complex loops presented in Section 4.4 is validated here by
comparing results of Simulink simulations to the graphical limit-cycle predictor. The
algorithm is performed by the MATLAB script “Limit_Predictor2.m,” found in Appendix
D. In the MATLAB code, the linear transfer function and linear plants H(jw) and G(jw)
of Fig. 36 are defined as “SYS1” and “SYS2”, respectively.

For an example, consider a situation where “SYS1” is defined as 200/(s + 200) in
Laplace form, and “SYS2” is defined as 400/(s*+ 11s + 10). “SYS2” was chosen
because it is a simple system that has approximately the same bandwidth of the
Experimental Neural Arm. “SYS1” was arbitrarily chosen as a simple filter. After
iterating through different frequency values, following the same method described in
Section 4.3, the graphical limit-cycle predictor code “Limit_Predictor2.m” results in the
plot given as Fig. 37. The limit-cycle predictor predicts a limit-cycle frequency of
approximately 14.7 rad/sec, and a limit-cycle amplitude of approximately 30. Figure 38
shows the Simulink simulation of the same system. The simulation shows limit-cycle
peaks occurring mostly in the range of 28-32, but occasionally dipping down as low as
24. This matches the prediction of 30 well. The simulation shows a limit-cycle
frequency of approximately 14 rad/sec; this also matches the prediction of 14.7 rad/sec

well.
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Table 6 contains comparisons of predicted limit-cycle amplitudes and frequencies
with simulated limit-cycle amplitudes and frequencies. For this complex loop, the

graphical limit-cycle predictor is still very accurate.

Table 6 Comparison of Graphically-Predicted and Simulated Limit Cycles

for Complex Loop (kv = 20)

SYSI

SYS2

Simulation
Amplitude

Simulation

Frequency
(rad/sec)

Predicted
Amplitude

Predicted
Frequency
(rad/sec)

200
s +200

100

s2+11s+10

1.7

2.1

8.1

200
s +200

200

s2+11s+10

11

10.7

11.9

200
s +200

400

s2+11s+10

30

14

30

14.7

5
s+5

50

s2+11s+10

None

None

None

None

5
s+5
100

s2+11s+10

7.7

5.7

5
s+5
200

s2+11s+10

40

38

6.4
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5. GRAPHICAL LIMIT-CYCLE PREDICTION WITH

EXPERIMENTAL NEURAL ARM WRIST

A graphical limit-cycle predictor method was developed in Chapter 4, but it was
verified only with Simulink models. Simulink models can be very informative regarding
basic system behaviors, but they still fail to fully embrace the complexity of a real
system. The model used will necessarily have errors that are unaccounted for. One
problem that occurs when pulse frequency modulating and demodulating a signal in a
Simulink model is that everything occurs on a common computer sample, which
synchronizes a normally asychronous PFM signal with its demodulator. This eliminates
the demodulation error of Section 3.1.2, but does account for the modulation error of
Section 2.5. This is not an accurate depiction of real systems containing PFM elements.

It is very desirable to validate the graphical limit-cycle predictor method with a
real system. Because the impetus of this thesis is to create control system design tools for
use with the Experimental Neural Arm, the method will be validated with the wrist of the
Experimental Neural Arm. The Experimental Neural Arm is shown as Fig. 39.

A wrist model, in the form needed for the limit-cycle prediction algorithm, is
developed here. The experimental setup is explained. The graphical limit-cycle predictor
works well for many experiments, but there are cases when the prediction loses accuracy

which will be discussed.



Fig. 39 Experimental Neural Arm
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5.1 Human/Arm System Model

The loop of Fig. 36 may still be too simplistic for real systems, but as was stated
in Section 4.4, the graphical-limit-cycle algorithm is easily expanded to more
complicated loops. Consider the system of Fig. 40, which is a possible model of the
Experimental Neural Arm connected to an amputee. This loop contains afferent and
efferent time delays, plus a linear compensator C(jw). Here the transfer function H(j w)
represents a model of the brain’s function; Gossett et al. [12] use a PI controller to model
the brain in a similar loop. There are multiple ways to use the graphical limit-cycle
predictor with this system. One possible method would lump the controller and plant into
one transfer function for the Nyquist plot, and would lump the two time delays with the
transfer function H(jw), using Pade approximants [13] for the time delays. Another
possible method would plot the Nyquist plot of the plant G(j w), and every other element
in the loop would be lumped with the concatenated describing function with the
algorithm described in Section 4.4. It should be noted though, that a time delay of A
seconds can be written as a pure phase lag of A radians [13]. Because the limit-cycle-
predictor algorithm turns every element in the loop into an equivalent gain and phase-lag,

a time delay is very easily handled with the algorithm without the need for a Pade

v‘<

H(Gjo) P e P PPSSPFMD(A,0) C(jo)G(jo)

es [¢{ PPSSPFMD(A,0) |

Fig. 40 Model of Human Connected to Experimental Neural Arm
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approximant.

5.2 Wrist Model

To use the graphical limit-cycle predictor algorithm of Section 4.4, there is great
freedom regarding the elements in the loop, but one constraint is that a linear plant model
is needed. It is this linear plant of which the Nyquist plot is plotted in the algorithm. The
model of the plant may contain nonlinearities, but they must be given in series with some
linear model; the nonlinearities can then be included in the concatenated describing
function for the loop. Many common nonlinearities can be modeled in this way,
including saturations and deadbands.

This being said, a model of Experimental Neural Arm wrist is needed. The wrist
model must take the form of a linear transfer function that may be preceded, in series, by
nonlinearities of any form.

Some wrist properties from Fukuyama [14] are used here without independent
validation. The wrist has a deadband do to stick-slip friction, whereby no voltage input
with a magnitude less than 0.24 volts causes any movement in the wrist. Also, the model
of the wrist should have a voltage-to-position transfer function with two poles (one
negative and one at the origin) and no zeros.

To obtain a transfer function of the wrist, a Hewlett-Packard 3562A Dynamic
Signal Analyzer was used. This signal analyzer drives the plant being modeled by a
sinusoid of adjustable amplitude (volts) and frequency (Hertz). The output of the plant is
fed back to the signal analyzer (volts). The instrument sweeps through many frequencies,

determining the frequency-dependant gains of the plant for a preset range of frequencies.
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The signal analyzer fits a transfer function to the data taken based on user-determined
number of poles and zeros.

Attempts at obtaining an open-loop model were unsuccessful; the nonsymmetrical
properties of the wrist caused it to drift towards its mechanical stops during open-loop
testing. For this reason, the closed-loop model of the wrist was found, and the open-loop
wrist model was derived from it. The form of the open- and closed-loop models are
shown as Fig. 41, where W(j w) is the open-loop wrist model, We,(jw) is the closed-loop
wrist model, X is the driving input sinusoid (volts) to the closed-loop system, eis the error
signal (volts) actually being applied to the wrist, and Yy is the wrist potentiometer output
(volts). For linear plants, where the gain is only dependent on c, deriving the open-loop
model from the closed-loop model is perfectly valid. The deadband in the wrist creates

an amplitude dependency; sinusoids of small amplitude are greatly affected by the

\ 4
v

Wer(o)

W(w)

v

Fig. 41 Open- and Closed-Loop Wrist Models
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deadband, where sinusoids of large amplitude are barely affected. The validity of the
open-loop derivation is investigated later in this chapter.

W(j w) and Wc, (jw) are of the form:

o K
VIO = v o+

(82)

K K

W, (jw) = =
CL(J ) (S+0CL1)(S+0CL2) Sz +(01 +02)S+(0102 + K)

(83)

The closed-loop poles are found with the signal analyzer, and Eq. (83) is used to derive
the open-loop poles. It is necessary to find the amplitude dependence of the wrist model.
The A/D card currently running the Experimental Neural Arm has a saturation of 0.9
volts, so no amplitude above that value will be considered (it will be accounted for with a
saturation later). The deadband of +0.24 volts means that no amplitude below this need
be considered. Five different closed-loop models were obtained for five different

amplitudes of the sinusoidal input r — 0.3, 0.4, 0.5, 0.7, and 0.9 volts:

. 0.0405
W, w) =
o> (10) (s+0.589)(s+0.238) (84)
. 0.137
W, W) = (85)
o+ (19) (s+0.877)(s+0.216)
. 0.261
W os(Jw) =

(s+1.10)(s+0.203) (86)
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| 0.263
W, W) =
o7 () (s+1.17)(s+0.205) &7
_ 0.271
Weroo (J) = (88)

" (s+1.33)(s+0.185)

These models obtained from the signal analyzer have the poles given in Hertz, but the DC
gain is correct. After changing the poles to units of rad/sec, and changing K to keep the
DC gain the same, the open-loop models are found using Eq. (83). The open-loop model

for a 0.9-volt amplitude input is found to be:

. 10.7
W,,(jw) =
0o (1) (s+9.61)(s=0.107)

(89)

Both poles are nonzero, as is the case for all five open-loop models, but the known form

of the wrist model is:

K

W(jw) = $540) (90)

The form of the model in Eq. (89) is simply due to numerical errors in the signal
analyzer. To force one of the poles to zero to match the form of the ideal open-loop wrist
model, a root-locus equivalency method is used. Figure 42 shows how the two open-loop
poles can be changed to one pole at the origin and one negative pole by matching the
oscillatory portion of the root-locus. The amplitude-dependent wrist models in the form

of Eq. (90), and with the pole in units of rad/sec, become:
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Fig. 42 Root-Locus Equivalency Method
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The model is very dependent on amplitude; for small amplitudes the gain of the wrist
transfer function is appears effectively smaller, and the pole appears slower.

As was previously mentioned, deriving the open-loop wrist model from the
closed-loop model is always valid if the plant is only dependent of ¢, but the wrist is
dependent on amplitude as well. Refer to Fig. 41; the input amplitudes used in the wrist
models of Egs. (91) through (95) are the amplitudes of r, but the amplitude of e is what is
needed to develop an amplitude-dependent open-loop wrist model. If the amplitudes of r
and e are nearly the same, deriving the amplitude-dependent open-loop model from the
amplitude-dependent closed-loop model is valid; otherwise it is not. The transfer

function between r and eis, in Laplace form:

&(s) =

TW(9) r(s) (96)

Figure 43 shows the Bode plot of the transfer function of Eq. (96). Plots are
shown for the 0.3-volt and the 0.9-volt wrist models. These plots indicate that for
frequencies greater than about 1 rad/sec r and e have the same magnitude, and the model
is valid. If, when using these wrist models with the graphical limit-cycle predictor, the
algorithm predicts a limit-cycle frequency less than 1 rad/sec, then the results could not
be trusted.

For use with the limit-cycle predictor algorithm, the wrist needs to be modeled as
a linear plant preceded by a nonlinearity. One method to incorporate Egs. (91) through

(95) into one model is to use the 0.9-volt wrist model (the model least affected by the
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Fig. 43 Bode Plot to Check Validity of Derived Open-Loop Models

deadband) as the linear plant, which is preceded by an amplitude-dependent nonlinearity.

The linear wrist, preceded by its amplitude-dependent nonlinearity, are:

k(A)(s+9.50) . 10.7
10.7(s+ p(A)) S(s+9.50) 97

Here k(A) and p(A) are the amplitude-dependent gain and pole of the nonlinearity,
respectively. The nonlinearity accounts for the relative effect of the deadband during
oscillations of varying amplitudes. Figure 44 plots the gains (numerators) of Egs. (91)

through (95), along with a third-order polynomial curve fit, which is found to be:
k(A) =108.4A° —245.86 A’ +183.81A—34.668 (98)

Figure 45 plots the poles of Egs. (91) through (95), along with a third-order polynomial
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curve fit, which is found to be:

P(A) =49.77A° —102.77 A% + 72.33A—8.6433 (99)

This amplitude-dependent nonlinearity can easily be incorporated into the graphical limit-
cycle predictor algorithm.

The effects of the deadband in the wrist were present during all of the modeling,
so no deadband describing function needs to precede the wrist model. No limit cycles
can occur, though, that would create a sinusoidal input to the wrist model with an
amplitude less than 0.24 volts; this needs to be accounted for in the algorithm. The
saturation was never encountered because the highest amplitude input considered in
modeling was not bigger than 0.9 volts. A hard-saturation describing function will need
to precede the wrist model in the algorithm. This hard-saturation describing function,

from Khalil [11], is:

A<090 WA =1 (100)
0 d

A>090 uJ(A):EEin‘1 '9H+Q 1- '99D (101)
ITE OAO A OAD E

The final wrist model for use with the graphical limit-cycle predictor is given in
Fig. 46. The linear plant is the last element of the wrist model. This linear plant is
preceded, from left to right, by a deadband, by a saturation, and by the nonlinear wrist
model of Eq. (97). Notice the deadband is not a describing function; it has no effective

gain that is a function of amplitude, but rather acts to only allow limit cycles with an
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Deadband Y(A) Nonlinearity Wrist
N | —, o k(A(s+950) [ 10.7 -,
—I] 10.7(s+ p(A)) S(5+9.50)

Fig. 46 Final Wrist Model

amplitude greater than 0.24 volts to pass through. The saturation is a hard-saturation

describing function defined in Egs. (100) and (101).

5.3 Two-Computer Amputee Simulation

Because amputees are not easily obtained for experiment, two computers are used
to simulate the loop of Fig. 40. One computer controls the wrist, and one computer
simulates an amputee. For the experiments here, the time delay A was left at zero,
meaning no time delay was explicitly added in software. The setup of the two computers
is shown in Fig. 47. Two “efferent” lines and two “afferent” are used, giving a total of
four channels of PFM signals between the two computers, and no other method of
communication between them. This is most likely the way that the wrist of the
Experimental Neural Arm will be connected to an amputee.

The brain model, labeled “P1,” is a proportional-plus-integral controller. The
wrist controller, labeled “PV,” is a proportional-plus-velocity-feedback controller. A PI
controller may or may not be an accurate model of the brain, but the purpose here is not
to accurately model the brain, but rather to verify the graphical limit-cycle predictor of

Chapter 4.
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Fig. 47 Two-Computer Setup to Simulate Human Controlling the
Experimental Neural Arm Wrist

The PFM method used on both computers is IPFM. The PFD method used in
both computers is period measurement with a 10-Hz deadband. Both computers have a
sampling rate of 3000 Hz. The software used was written in C++, and was largely an

adaptation of software created by Mark Colton [15].

5.4 Graphical Limit-Cycle Prediction vs. Experimental Results

The graphical limit-cycle predictor algorithm of Chapter 4 is ready to be tested on
areal system. The MATLAB code “Limit Predictor2.m” was modified to include the
wrist model of Fig. 46, and is given as “Limit_Predictor3.m” in Appendix D. Because of
the desired form of the wrist model in the limit-cycle predictor algorithm, the PV
controller implemented in the actual system is modeled as a PD controller in the
algorithm. There is a subtle difference between the two, and the effect of this modeling

choice will be discussed later.
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Many experiments were performed with the two-computer setup of Fig. 47, with
various gains for the PI and PV controllers. All experiments ran for approximately 20
seconds before data was taken to ensure the transient effects of start-up were gone. A
few experimental data sets are compared to the graphical limit-cycle predictions of the
systems. They were chosen to reflect the strengths and weaknesses of the graphical limit-
cycle predictor.

Consider a system with a “brain” PI controller with gains Kp; = 10 and K; = 5,
with a PV controller with Kp, =20 and Ky = 0, and with a modulation constant of ky =
200. Figure 48 shows the experimental data of this system after a small disturbance. The
frequency of the limit cycle is approximately 9.2 rad/sec, and the amplitude of the limit
cycle falls in the range of 0.07-0.18 volts.

Brain: K =10, K. =5 Wrist: K =20, K =0 k. =200
p [ p \ M
0.2 T T \ T T T T

O N e B B T e S I
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Wrist Potentiometer Voltage
o
T
|

T T S T e T S N ) S v

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Fig. 48 Limit Cycle of Wrist Experiment #1
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Figure 49 shows the graphical limit-cycle predictor after iterating frequencies
until a match was found. A frequency of 9.3 rad/sec and an amplitude of 0.12 volts is
predicted. For this example, the graphical predictor predicts the behavior of the real
system well. This level of accuracy is characteristic of a large number of experiments.
No other examples will be given where the prediction is highly accurate, because more
can be learned from the cases where the prediction is less precise.

Consider a system with a “brain” PI controller with gains Kp; = 1 and Kj = 7, with
a PV controller with K> = 10 and K, = 0, and with a modulation constant of ky = 200.
Figure 50 shows the experimental data of this system. The frequency of the limit cycle is
approximately 2.2 rad/sec, and the amplitude of the limit cycle is approximately 0.7 volts.
Figure 51 shows the graphical limit-cycle predictor after iterating frequencies until a

match was found. A frequency of 2.9 rad/sec and an amplitude of 0.45 volts are

w = 9.3 rad/sec
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Fig. 49 Graphical Limit-Cycle Prediction of Wrist Experiment #1
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predicted.

This prediction is less accurate than the previous case. Notice how the response
of the wrist deviates from a true sinusoid. This is due to the input saturation, which can
be seen in the long periods where the velocity is at a maximum, almost creating a triangle
wave. Because the tabular describing function for the PPSSPFMD was created using
sinusoidal inputs, the method does not predict limit-cycle amplitudes as accurately when
the signals deviate from sinusoids. This is also the case when using traditional describing
functions, which are also low-frequency sinusoidal approximations. Do note that the
predicted frequency is still fairly accurate. This is because, regardless of the wave shape
at any point in the loop, every element in the loop experiences some signal with a
common periodic nature if the limit cycle is self-sustaining.

Also, notice how close to parallel the Nyquist plot and the negative inverse
describing function are in this case. As in traditional describing function analysis, the
less perpendicular the intersection, the less accurate. This is due to the sensitivity of the
method when the lines are close to parallel; a small change in the position of the lines
causes a large change in the point of intersection. Figure 52 shows the graphical limit-
cycle predictor for a frequency of 2.2 rad/sec. Notice how close the amplitude of 0.7
volts is to intersecting with the Nyquist plot. In general, the more perpendicular the locus
is to the Nyquist plot at the point of intersection, the more robust the prediction. This
problem, along with the saturation problem previously mentioned, are problems that
occur with traditional describing functions as well, and do not reflect poorly on the

graphical limit-cycle predictor for PFM systems.
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w = 2.2 rad/sec

Imaginary
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Fig. 52 Sensitivity of Graphical Limit-Cycle Prediction of Wrist Experiment #2

For the final example, consider a system with a “brain” PI controller with gains
Kp1 =5 and K; =5, with a PV controller with Kp> = 10 and Ky = 1.5, and with a
modulation constant of ky = 200. Figure 53 shows the experimental data of this system.
The frequency of the limit cycle is approximately 10 rad/sec, but it varies enough to see
the change in frequency with the naked eye. The amplitude of the limit cycle falls in the
range of 0.07-0.17 volts. Figure 54 shows the graphical limit-cycle predictor after
iterating frequencies until a match was found. A frequency of 13.1 rad/sec and an
amplitude of 0.074 volts are predicted.

The predicted amplitude is on the low end of the amplitudes seen, but still falls
within the correct range of possible values. The prediction of the frequency, however,

seems to be too high. This appears to be caused by replacing the actual PV controller
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with a PD controller in the limit-cycle predictor algorithm. Using velocity feedback
stabilizes a system slightly better than using a PD controller, even though their behaviors
are similar in many ways. This is why the real system is more damped (it has a lower
frequency) than the PD approximation of the system.

This modeling problem occurs because the four-element wrist model of Fig. 46
prohibits using velocity feedback in the limit-cycle predictor algorithm. The velocity
feedback would have to be fed back to the first wrist element of Fig. 46 (the deadband),
but the algorithm, as it is currently posed, allows for elements only in series. This
problem is caused both by having a highly nonlinear wrist, and also by using an
algorithm that requires a loop structure that is not always valid.

In practice, velocity feedback is not needed in control of the Experimental Neural
Arm, because the friction in the arm creates enough dampening. If only proportional
feedback is used, the problems of this last example will not be seen.

Table 7 shows limit-cycle amplitudes and frequencies seen in experiments with
the wrist compared to the predicted limit-cycle amplitudes and frequencies. The table
gives values for different combinations of Kp; and K; (from the amputee brain simulator),
and Kpz and Ky (from the wrist controller). The “limit annulus” behavior is seen in the
real wrist even more than in simulations, because the wrist does not have symmetric
properties; the experimental values given in the table show a range of amplitudes and

frequencies when the range is large.



Table 7 Comparison of Graphically-Predicted and Experimental Limit Cycles in
Experimental Neural Arm Wrist (Ky = 200)

Brain
and Wrist
Gains

Experimental
Amplitude
(volts)

Experimental
Frequency
(rad/sec)

Predicted
Amplitude
(volts)

Predicted
Frequency
(rad/sec)

Kp1=1
Ki=0

Kp2=10
Kv=0

0.1-0.15

9.1

0.14

7.3

Kp1=1
Ki=5

Kp2=10
Kv=0

0.24-0.31

0.27

0.47

Kp1=10
Ki=5
Kp2=20
Kv=0

0.07-0.15

9.2

0.12

9.2

Kp1=1
Ki=7

Kp2=10
Kv=0

0.7

2.2

0.45

2.9

Kp1=5
Ki=5
Kp2=10
Kvy=1.5

0.07-0.17

8.3-11.9

0.074

13.1
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6. FUTURE WORK

The purpose of thisthesisisto develop tools for control system analysis and
design of systems containing pulse frequency modulation. The primary intended
application of thisthesisisfor use with the Experimental Neural Arm, but no effort is
made here to develop more accurate models of the human central nervous system. For
the work of thisthesis to be applied accurately, it is necessary to develop better models of

the human nervous system.

6.1 Develop Better Model of Human/Arm System

The model of the human central nervous system interfaced with an artificial arm,
seen in Fig. 40 is an adaptation of that of Gossett et al. [12], although they did not include
pulse frequency modulation in the model. This model uses position error in the forward
loop, and position in the feedback loop. It isentirely possible that thisis not an accurate
model of a human interfacing with an artificial arm.

Stein [16] suggests that three different types of motoneurons transmit three
different types of information: alpha motoneurons transmit force information, static
gamma motoneurons transmit position information, and dynamic gamma motoneurons
transmit velocity information. It isvery important to know which type of nerveisbeing
used to control the Experimental Neural Arm, but any of the three could theoretically be

used for control.



98

6.2 Consider Logarithmic Pulse Frequency

M odulation and Demodul ation

From experiments with amputees, it appears there may be alogarithmic
relationship between the input pulse frequency to an afferent nerve and the “ continuous’
signal sensed by the amputee [8]. Pulse frequency modulation in the nervous system
would then have the inverse relationship between input signal and efferent output pulse
frequency. Thislogarithmic model has not been quantified yet; it is simply a verbal
description given by amputees.

The tabular describing function of the PPSSPFMD could easily be recal culated
using the post-filter method of Section 4.2, by first calculating the logarithm of the signal

before passing it through the PPSSPFMD.

6.3 Consider Demodulation of “Noisy” PFM Signals

The PFD methods of Chapter 3 were analyzed only for the demodulation of noise-
free PFM signals. In this context, “noise” is the occurrence of an extraneous pulse or a
missing pulse. Period measurement was determined to be the best overall PFD method
with afast sampling time, but this method would be the most sensitive to noisy PFM
signals. The low-pass filtering methods would be relatively insensitive to noisy PFM
signals.

It would be nice to know the level of noise that is needed before the errors
encountered in period measurement equal those encountered in low-pass filtering. It
would first be necessary to quantify this“pulse noise.” If the point when errors are the
same was known, the best PFD method could be chosen based on the level of noisein the

PFM signal.
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6.4 Include Stiffness Control

It is possible that the rectifying nonlinearities of the PPSSPFMD setup of Fig. 11
should be remodeled. 1n the human body, two opposing muscles may be flexed at the
same time, not to move the joint, but rather to increase the stiffness of the joint. This
indicates that the “either/or” behavior of the rectifying nonlinearities used in this thesis
may need to be remodeled to allow activity in both the upper and lower paths of the
PPSSPFMD simultaneously.

Once better models of the rectifying nonlinearities are found, it may be possible to
recreate the stiffness control of the human body when pulses are seen simultaneously
from the nerves of opposing muscles. This could possibly be accomplished by increasing

controller gains in this situation.

6.5 Use Limit-Cycle Matching to Determine Human Parameters

The model of the human nervous system interfaced with an artificial arm, seenin
Fig. 40, has many modeled elements, each of which is subject to error. There isamodel
of the brain (this could easily be oversmplified), thereisamodel of the time delaysin
the nervous system (these could change from person to person, or even due to body
chemistry), there are models of the PFM and PFD methods used by the human body
(problems with these have been discussed previously), and finally there is the model of
the electromechanical prosthesis.

The easiest el ement to get an accurate model of isthe prosthesis; traditional
controls engineering can be used here. It is also reasonable to assume the time delays of
the nerves can be modeled accurately, and data are available currently to build such a

model. Asthe remaining element models are improved upon, it may be possible to use
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the limit-cycle prediction algorithm to determine the remaining human parameters. For
example, if areasonable model of the human PPSSPFMD was found, the only remaining
element isthe model of the brain. By matching predicted limit-cycle amplitudes and
frequencies with those seen in a prosthetic connected to an amputee, afunctional brain

model could be developed.

6.6 Use Error Envelopes for H-Infinity Design

The maximum errors due to pulse frequency modulation and demodul ation were
found in Chapters 2 and 3. It may be possible to use these maximum errors for H-Infinity
design of control systems with pulse frequency modulation. It should be noted that the
time delays due to pulse frequency modulation and demodulation would also need to be

accounted for in some way.
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7. CONCLUSIONS

Thisthesis successfully developed new tools for control system analysis and
design of systems containing pulse frequency modulation.

Three methods of pulse frequency modulation (IPFM, V/F converters, and USSH)
were found to be equivalent, after a brief discrepancy at start-up, when used in asingle-
signed scheme. When modeling PFM, none of these three methods is superior to the
others. The problems encountered when pulse frequency modulating asignal with a
digital computer were also quantified, showing large errors at high pulse frequencies.

Five methods of pulse frequency demodulation (period measurement, first-order
low-pass filtering, second-order low-pass filtering, finite-impulse-response filtering, and
fixed-time window) were analyzed and the errors encountered with each method were
quantified and compared. Period measurement was determined to be the best overall
method of PFD, but thisis only when considering noise-free PFM signals; the presence
of noise could possible result in low-pass filtering being a better PFD choice.

A method was created to obtain the equivalent gain and phase-lag of any pulse
frequency modulation/demodul ation system, creating a frequency-dependent tabular
describing function. An agorithm was developed that uses the tabular describing
function to graphically predict the existence (and amplitude and frequency if they exist)
of limit cyclesin systems containing pulse frequency modulation. The graphical

predictions were compared to simulations and were found to be very accurate.
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Two computers were used to simul ate the interaction between an amputee and the
Experimental Neural Arm; one computer simulated the amputee, and the other directly
controlled the arm. The two computers communicated to each other only by parallel-path
single-signed pul se frequency modulation, much like a real amputee would control the
arm.

A nonlinear model of the Experimental Neural Arm wrist was created in the form
needed by the graphical limit-cycle prediction algorithm. Graphical limit-cycle
predictions were compared to actual limit cycles seen in the wrist being controlled by the

two-computer setup. The predictions matched the limit cycles seen in the wrist well.
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Sigma Pulse Frequency Modulator

Thisisa reconfigurable pulse frequency modulator. It can convert any analog signal into a PFM signal. Setting "Bias" creates
single-signed PFM. Setting "Gain" on the integral feedback loop creates Neural PRM. With no biasor feedbackgain,
the system isa double-signed Integral Pulse Frequency Modulator.
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Voltage-to-Frequency Converter

This V/F converterisnot implemented like a physical circuit. Itisbasically an IPFM scheme,
but a pulse isemitted at start-up.
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Unified Steps Sample & Hold

Thisisthe Unified Steps Sample & Hold method of PFM. The serraphile function isnot used here; a "moving threshold"
method, which is presented in the original paper and is equivalent, isused instead.

il

Step

/ .

Ramp

oooo
oo

Signal
Generator

pulse_clock

Data Store _—
pulse_clock
0 Read
0 Data Store
Bias Memory
Clock
1 MATLAB
e N > Function
Gain "b" Integrator threshold Impulse Generator
"USSH_Pulse.m"
Data Store
Readl threshold
1
_> |:| Data Store - ‘—
z
Memoryl
Input Unit Delay
MATLAB JE——
+——Pp| threshold
Function [
Step Threshold Generator Data Store
Writel

"USSH_Threshold"

N

pulse_clock

Data Store
Write

Output
Pulses



% Pulsem

% For use with the Sigma Pulse Frequency Modulator Simulink model.
% This function delivers a pulse of a magnitude defined below when the

% input crosses the threshold value. It can be used for double-signed PFM.

function demux = Pulse(mux)

mag = 1; % Magnitude of pulse.
pulse_clock = mux(1);

clock = mux(2);

input = mux(3);

last_out = mux(4);

threshold = mux(5);

if and(pulse_clock == 0, and(input < threshold, input > -threshold))
out_pulse=0;
pulse_clock = 0;

elseif and(pulse_clock == 0, input >= threshold)
out_pulse = mag;
pulse clock = clock;

elseif and(pulse_clock == 0, input <= -threshold)
out_pulse = -mag;
pulse_clock = clock;

else
out_pulse=0;
pulse clock = 0;

end

demux(1) = pulse_clock;
demux(2) = out_pulse;
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% USSH_Pulsem

% This function delivers a positive pulse of a magnitude % % defined below when the
input crosses the threshold value, % and a negative pulse when the input crosses
% (threshold - 1). To be used with Unified States Sample & % Hold Simulink model.

function demux = USSH_ Pul se(mux)

mag = 1; % Magnitude of pulse.
pulse_clock = mux(1);

clock = mux(2);

input = mux(3);

threshold = mux(4);

last_out = mux(5);

if and(pulse_clock == 0, and(input < threshold, input > -threshold))
out_pulse=0;
pulse_clock = 0;

elseif and(pulse_clock == 0, input >= threshold)
out_pulse = mag;
pulse clock = clock;

elseif and(pulse_clock == 0, input <= (threshold-1))
out_pulse = -mag;
pulse_clock = clock;

else
out_pulse=0;
pulse clock = 0;

end

demux(1) = pulse_clock;
demux(2) = out_pulse;



% USSH_Threshold.m

% This function generates the new threshold value in the
% Unified Steps Sample & Hold PFM method.

function threshold = USSH_ Threshol d(mux)

threshold = mux(1);
input = mux(2);

if and(input < threshold, input > (threshold-1))
threshold = threshold;

elsaif input >= threshold
threshold = threshold+1;

ese
threshold = threshold-1;

end
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% VF_Converter.m

% This function is voltage-to-frequency converter. It delivers
% pulses at afrequency that is afunction of the input signals magnitude.
% A pulseisgiven off at the beginning of the simulation.

function demux = VF_Converter(mux)

mag = 1; % Magnitude of pulse.
pulse_clock = mux(1);

clock = mux(2);

input = mux(3);

last_sign = mux(4);

freq =12f_func(input);
period = 1/freq;
time_since = clock-pulse_clock;

if and(clock > 0, and(abs(freq) > eps, pulse_clock == 0))
out_pulse = mag*sign(freq);
pulse clock = clock;
last_sign = sign(freq);
elsaif and(pulse_clock ~= 0, and(sign(freq) == last_sign, time_since >= abs(period)))
out_pulse = mag*last_sign;
pulse clock = clock;
last_sign=last_sign;
elsaif and(sign(freq) ~= last_sign, pulse_clock ~= 0)
out_pulse = mag*sign(freq);
pulse clock = clock;
last_sign = sign(freq);
elseif and(abs(freq) <= eps, pulse_clock == 0)
out_pulse=0;
pulse clock = 0;
last_sign =0;
else
out_pulse=0;
pulse _clock = pulse_clock;
last_sign=last_sign;
end

demux(1) = pulse_clock;
demux(2) = out_pulse;
demux(3) = last_sign;
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% i2f_func.m

% Thisisthe relationship between magnitude of input and frequency of output for
% the V/F converter.

function freq = i2f_func(input)

k = 20; % Modulation Constant
freq = k*input;
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% Freg.m

% This function delivers the frequency of the PFM signal.
% This program can demodulate double-signed PFM signals.

function demux = freg(mux)

pulse_clock = mux(1);
clock = mux(2);

pfm = mux(3);
pfm_last = mux(4);
freq _last = mux(5);
sign_last = mux(6);
pulse = mux(7);

diff = pfm-pfm_last;

if and(pulse_clock == 0, abs(diff) <= eps)
pulse_clock = 0;
freq=0;
pulse_sign =0;
pulse = 0;
elseif and(abs(diff) > eps, pulse_clock == 0)
pulse_clock = clock;
freq=0;
pulse_sign = sign(diff);
pulse=1;
elseif and(and(abs(diff) > eps, pulse == 0), ...
and(pulse_clock ~= 0, sign(diff) == sign_last))
freq = 1/(clock-pulse_clock)* sign(diff);
pulse_clock = clock;
pulse_sign = sign(diff);
pulse=1;
elseif and(and(abs(diff) > eps, pulse == 0), ...
and(pulse_clock ~= 0, sign(diff) ~= sign_last))
freq=0;
pulse_clock = clock;
pulse_sign = sign(diff);
pulse=1;
else
temp = 1/(clock-pulse_clock);
freq = min(abs(freq_last),temp)*sign_last;
pulse sign=sign_last;
pulse = 0;
end

demux(1) = pulse_clock;
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demux(2) = freq;
demux(3) = pulse_sign;
demux(4) = pulse;
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% Freg2Mag.m

% Uses modulation contant to reconstruct modulated signal
% from demodulated frequency.

function mag = Freq2Mag(freq)

k = 20; % Modulation Constant
mag = freg/k;
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% Sin_Fit.m

% Jake Abbott

%

% Runs phase_shift.m and gain_fit.m to find

% the best fit of asinusiod to data.

%

% [total _phase,phase,gain] = Sin_Fit(indata,outdata,tout,omega,phi_max)
%

% "total_phase" is the phase lag between the input and the output

% "phase” is the phase lag of the PPSSPFMD

% "gain" isthe gain of the PPSSPFMD

% indatais the reference sinusoid

% outdata is the data to be fit to a sinusoid

% tout is the time data

% omega s the frequency of the reference sinusoid (and the curve fit)
% phi_max isthe largest possible phase lag considered, in degrees

function [total_phase,phase,gain] = Sin_Fit(indata,outdata,tout,omega,phi_max)

% Model of post-filter.

num = 1;

den=[11];

plant = tf(num,den);

[bode_gain,bode _phase] = bode(plant,omega);

% Only use second half of data to eliminate transient behavior.
N = round(length(indata)/2);

indata2 = indata(N:length(indata));

outdata? = outdata(N:length(outdata));

tout2 = tout(N:length(tout));

% Find best sinusoidal fit.

indata_mag = max(indata?);

outdata_mag = max(outdata?);

total_gain = outdata_mag/indata_mag;

total_phase = phase_shift(indata2,outdata2,tout2,total _gain,omega,phi_max);
fitl = outdata_mag* sin(omega* tout2+total _phase* pi/180);
RMS fitl = RMS(fitl);

RMS outdata = RM S(outdata2);

fit_ gain=RMS outdatalRMS fit1,

fit = fitl*fit_gain;

phase = total_phase-bode_phase;

gain =total_gain*fit_gain/bode gain;

figure(1); clf;
plot(tout2,indata2,tout2,outdata2,tout?,fit)



% RMS.m
% Jake Abbott
%

% Calculates the RM S value of the input signal.

function RMS_value = RMS(signal)

sum = 0;

for i = Lilength(signa),
sum = sum + signal (i)"2;

end

RMS value = sgrt(sum/length(signal));
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% phase_shift.m

% Jake Abbott

%

% Finds the best-fit sinusoid that is a pure phase-lag of areference
% sinusoid, using aleast-squares curve fit. Output is the phase-lag
% in degrees. Time spacing is 0.001 seconds.

%

% phase = phase_shift(indata,outdata,t,gain,omega,phi_max)

% "indata" is the reference sinusoid

% "outdata’ is the datato befit to a sinusoid

% "t" isthe time vector

% "gain" isthe gain used when finding best phase shift

% "omega" is the frequency of the reference sinusoid (and the curve fit)
% "phi_max" isthe largest possible phase lag considered, in degrees

function phase = phase_shift(indata,outdata,t,gain,omega,phi_max)

phi = 0:1:phi_max;
phi = -phi*pi/180;
Sphi = zeros(size(phi));

for i = 1:length(phi),
S=0;
for j = 1:length(indata),
S =S+ 2*outdata(j)/gain* cos(omega* t(j)+phi(i))- ...
2* sin(omega* t(j)+phi(i))* cos(omega* t(j)+phi(i));
end
Sphi(i) = S;

end

[Sphi_min,index] = min(abs(Sphi));
phase = phi(index)* 180/pi;
S phase = Sphi_min;
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% Limit_Predictor.m

% Jake Abbott

%

% Limit cycle predictor Pulse Frequency Modulated setup given below.
%

% S —— R w— +

% --->O--->| PPSSPFMD |--->| SYS [|---+--->
% | S S — S R S + |

% | |

% S — +

%

% The Pulse Frequency Modulator can be any integral scheme. The Pulse
% Frequency Demodulator measures the period between pulses, and uses a
% frequency deadband of 10-Hz (any pulse period greater than 0.1-sec

% sets the demodul ated frequency to zero).

%

% The system "SY S" should be defined in the workspace, in transfer

% function notation, before running limit_predictor.m. The user is

% prompted to input the Modulation Constant.

%

% The frequency closest to the unit circle is marked, and x's mark

% integer frequencies. If the system nyquist plot (red) encirlcesthe

% point (-1,0), then the feedback system is unstable. If the system

% nyquist plot does not intersect the blue line, then the feedback

% system has no limit cycle.

%

% The user is prompted to iterate the frequency line (blue) being plotted.
% Once the frequency line being plotted matches the frequency of the

% nyquist plot at the intersection, that is the limit cycle frequency.

% The amplitude of the limit cycleis pulled directly from the blue line.

Tabular_PPSSPFMD; % L oad tabular describing function

% M odul ation constant
kMf = input('Input Modulation Constant *);

% Frequencies of nyquist plot

w =[0.01:0.01:0.1 0.2:0.1:50 50:300];

[mag,phase] = bode(SY S,w);

[temp,index] = min(abs(mag-ones(size(mag))));
cross _freq = w(index)

% Integer frequencies of x's on nyquist plot

w1l = 1:300;

[magl,phasel] = bode(SY S,w1);

[temp,index1] = min(abs(magl-ones(size(magl))));
cross freql = wi(indexl);
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% Create nyquist plot of plant
[Re,Im] = nyquist(SY S,w);
Rel = zeros(length(Re),1);
Im1 = zeros(length(Im),1);
for k = L:length(w),
Rel(k) = Re(1,1,k);
Im1(k) = Im(1,1,k);
end
[Re,Im] = nyquist(SY S,w1l);
Re2 = zeros(length(Re),1);
Im2 = zeros(length(Im),1);
for k = 1:length(w1l),
Re2(k) = Re(1,1,k);
Im2(k) = Im(1,1,k);
end

% Amp_kM that will be plotted
Amp =[15 20 30 40 60 80 100 120 140 180 220 260 300 360 ...
420 500 600 800 1000];
realimag = zeros(length(Amp),1);
omega = cross _freq;
while omega > 0,
for k = L:length(Amp),
gain = interp2(Omega, Amp_kM,Gain,omega,Amp(K));
R =1/(gain);
phase = interp2(Omega,Amp_kM ,Phase_L ag,omega, Amp(k));
realimag(k) = -R* cos(phase)-R*i* sin(phase);
end
figure(1); clf; plot(realimag);
figure(1); hold on; plot(realimag,'.”);
text(real (realimag),imag(realimag),num2str(Amp'/kMf));

% Plot nyquist plot of plant

figure(1); hold on; plot(Rel,Im1,'r");
figure(1); hold on; plot(Re2(1:2*index1),Im2(1:2*index1),'rx’);
text(Re2(index1),Im2(index1),int2str(cross_freql));

% Create unit circles
Real = zeros(91,1);
Imag = zeros(91,1);
for k = 1:91,
Real (k) = -cos((k-1)* pi/180);
Imag(k) = -sin((k-1)* pi/180);
end
figure(1); hold on;
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plot(Real,Imag,'g--");

axig([-2.50-2.50));
axis sguare; grid
xlabel('Redl"); ylabel (‘Imaginary’)

omega = input(‘Input New Frequency (Enter O to Quit) ');
end
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% Limit_Predictor2.m

% Jake Abbott

%

% Limit cycle predictor Pulse Frequency Modulated setup given below.
%

% B — + e S SR S +

% --->0--->| SYSL |--->| PPSSPFMD |--->| SYS2 |----+--->
% | E — + A + e + |

% | |

% | Fmmm oo + |

% Fommmmmmm e | PPSSPFMD |<-- -- -- +

% S +

%

% The Pulse Frequency Modulator can be any integral scheme. The Pulse

% Frequency Demodulator measures the period between pulses, and uses a
% frequency deadband of 10-Hz (any pulse period greater than 0.1-sec

% sets the demodul ated frequency to zero).

%

% The systems SY S1 and SY S2 should be defined in the workspace, in transfer
% function notation, before running Limit_Predictor2.m. The user is

% prompted to input the Modulation Constant, which is the same for both

% PPSSPFMD blocks. The two PPSSPFMD blocks and SY S1 are combinded and
% shown as a blue line, while the nyquist plot of SYS2 isshown asared line.
%

% The frequency closest to the unit circle is marked, and x's mark integer

% frequencies. If the plant (SY S2) nyquist plot (red) encirlces the point

% (-1,0), then the feedback system is unstable. If the plant nyquist plot

% does not intersect the blue line, then the feedback system has no limit

% cycle.

%

% The user is prompted to iterate the frequency line (blue) being plotted.

% Once the frequency line being plotted matches the frequency of the

% nyquist plot at the intersection, that is the limit cycle frequency.

% The amplitude of the limit cycleis pulled directly from the blue line.

Tabular_PPSSPFMD; % L oad tabular describing function

% M odul ation constant
kM = input(‘Input Modulation Constant ');

% Frequencies for SY S1 bode and SY S2 nyquist plot
w =[0.01 0.1:0.1:1 2:0.5:49 50:2:300];
magl = zeros(size(w)); mag2 = zeros(size(w));
phasel = zeros(size(w)); phase2 = zeros(size(w));
for j = L:length(w),

[magl(j).phasel(j)] = bode(SY S1,w(j));
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[mag2(j),phase2(j)] = bode(SY S2,w(j));
end
phasel = phasel* pi/180;
phase2 = phase2* pi/180;
[temp,index] = min(abs(mag2-ones(size(mag?))));
cross_freq = w(index)
% Integer frequencies of x's on plant nyquist plot
w_int = 1:300;
[mag2int,phase2int] = bode(SY S2,w_int);
[temp,index_int] = min(abs(magzint-ones(size(mag2int))));
cross _freg_int =w_int(index_int);

% Create nyquist plot of plant
[Re,Im] = nyquist(SY S2,w);
Re2 = zeros(length(Re),1);
Im2 = zeros(length(Im),1);
for k = 1:length(w),
Re2(k) = Re(1,1,k);
Im2(k) = Im(1,1,k);
end
[Re,Im] = nyquist(SY S2,w_int);
Re2_int = zeros(length(Re),1);
Im2_int = zeros(length(Im),1);
for k = L:length(w_int),
Re2_int(k) = Re(1,1,k);
Im2_int(k) = Im(1,1,k);
end

% Amp_kM that will be plotted
Amp =[20 30 40 60 80 100 120 140 180 220 260 300 360 450 600 ...
700 800 900 1000},
realimag = zeros(length(Amp),1);
omega = cross freq;
while omega > 0,
for k = 1L:length(Amp),
gain_a= interp2(Omega, Amp_kM,Gain,omega,Amp(K));
gain_b = interpl(w,magl,omega);
phase_a = interp2(Omega, Amp_kM,Phase L ag,omega, Amp(k));
phase_b = interpl(w,phasel,omega);
temp = gain_a*gain_b* Amp(Kk);
if and(gain_a< 1000, gain_a> -1000) % Check for NaN
gain_c = interp2(Omega, Amp_kM,Gain,omega,temp);
phase_c = interp2(Omega, Amp_kM ,Phase_L ag,omega,temp);
else
gain_c = NaN;
phase ¢ = NaN;



end
gain =gain_a*gain_b*gain_c;
R = 1/(gain);

phase = phase_at+phase _c-phase b;
realimag(k) = -R* cos(phase)-R*i* sin(phase);
end
figure(1); clf; plot(realimag);
hold on; plot(realimag,'.”);
text(real (realimag),imag(realimag),num2str(Amp'/kM));

% Plot nyquist plot of plant

figure(1); hold on; plot(Re2,Im2,'r");
plot(Re2_int(1:2*index_int),Im2_int(1:2*index_int),'rx’);

text(Re2_int(index_int),Im2_int(index_int),int2str(cross freq_int));

% Create unit circles
Real = zeros(91,1);
Imag = zeros(91,1);
for k = 1:91,
Real (k) = -cos((k-1)* pi/180);
Imag(k) = -sin((k-1)* pi/180);
end
figure(1); hold on;
plot(Real,Imag,'g--);

axis([-30-30]);
axis sgquare; grid
xlabel ('Real"); ylabel ('Imaginary’)

omega = input(‘Input New Frequency (Enter O to Quit) );
end
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% Limit_Predictor3.m

% Jake Abbott

%

% Limit cycle predictor Pulse Frequency Modulated setup given below.
% For use with Experimental Neural Arm Wrist #3.

%

% +ommmeen I + A + A +

% --->0--->|SYS1 |--->| PPSSPFMD |--->| NL |--->| SYS2 |----+--->
% | S — e I +  deeeee- + e + |

% | |
% | Hommmemeee- + |

% e | PPSSPFMD |<----------- mmmmmmmmmee- +

% e +

%

% The Pulse Frequency Modulator can be any integral scheme. The Pulse

% Frequency Demodulator measures the period between pulses, and uses a
% frequency deadband of 10-Hz (any pulse period greater than 0.1-sec

% sets the demodul ated frequency to zero).

%

% The systems SY S1 and SY S2 should be defined in the workspace, in transfer
% function notation, before running Limit_Predictor3.m. The user is

% prompted to input the Modulation Constant, which is the same for both

% PPSSPFMD blocks. The two PPSSPFMD blocks, SY S1, and NL are combinded and
% shown as a blue line, while the nyquist plot of SYS2 isshown asared line.
%

% The frequency closest to the unit circle is marked, and x's mark integer

% frequencies. If the plant (SY S2) nyquist plot (red) encirlces the point

% (-1,0), then the feedback system is unstable. If the plant nyquist plot

% does not intersect the blue line, then the feedback system has no limit

% cycle.

%

% The user is prompted to iterate the frequency line (blue) being plotted.

% Once the frequency line being plotted matches the frequency of the

% nyquist plot at the intersection, that is the limit cycle frequency.

% The amplitude of the limit cycleis pulled directly from the blue line.

kpl=5;

ki =5;

kp2 = 10;

kv = 1.5;

Tabular_PPSSPFMD; % Load tabular describing function

% M odul ation constant
kM = input(‘Input Modulation Constant ');



num = [kpl ki];
den=[10];
SY S1 = tf(num,den);

num = 10.70;
den=[19.500];
SY S2 = tf(num,den);

% Frequencies for SY S1 bode and SY S2 nyquist plot
w =[0.01 0.1:0.1:1 2:0.5:49 50:2:300];
magl = zeros(size(w)); mag2 = zeros(size(w));
phasel = zeros(size(w)); phase2 = zeros(size(w));
for j = L:length(w),
[magly(j),phasel(j)] = bode(SY S1,w(j));

[(;nagZ(j),phaSGZ(j)] = bode(SY S2,w(j));
en
phasel = phasel* pi/180;
phase2 = phase2* pi/180;
[temp,index] = min(abs(mag2-ones(size(mag?))));
cross_freq = w(index)
% Integer frequencies of x's on plant nyquist plot
w_int =[0.1:0.1:0.9 1:300];
[mag2int,phase2int] = bode(SY S2,w_int);
[temp,index_int] = min(abs(mag2int-ones(size(mag2int))));
cross _freg_int =w_int(index_int);

% Create nyquist plot of plant
[Re,Im] = nyquist(SY S2,w);
Re2 = zeros(length(Re),1);
Im2 = zeros(length(Im),1);
for k = 1:length(w),
Re2(k) = Re(1,1,k);
Im2(k) = Im(1,1,k);
end
[Re,Im] = nyquist(SY S2,w_int);
Re2_int = zeros(length(Re),1);
Im2_int = zeros(length(Im),1);
for k = L:length(w_int),
Re2_int(k) = Re(1,1,k);
Im2_int(k) = Im(1,1,k);
end

SYS PD =tf([kv kp2],1);

% Amp_kM that will be plotted

Amp =[13.114.115.1 20.1 30.1 40.1 60 80 100 120 140 180 240 300 450 600 ...

130



131

700 800 900 1000},
realimag = zeros(length(Amp),1);
omega = cross freq;
while omega > 0,
for k = 1L:length(Amp),
% Include Feedback PFM/PFD
gain_a=interp2(Omega, Amp_kM,Gain,omega,Amp(Kk));
phase_a = interp2(Omega, Amp_kM,Phase Lag,omega,Amp(k));
% Include SY S1
[gain_b,phase _b] = bode(SY S1,0mega);
phase b = phase b*pi/180;
% Include Forward Path PFM/PFD
if and(gain_a< 1000, gain_a> -1000) % Check for NaN
temp = gain_a*gain_b* Amp(Kk);
gain_c = interp2(Omega, Amp_kM,Gain,omegatemp);
phase_c = interp2(Omega, Amp_kM ,Phase_L ag,omega,temp);

else
gain_c = NaN;
phase ¢ = NaN;
end

% Include PD Controller
[gain_f,phase f] = bode(SYS PD,omega);
phase f = phase f*pi/180;
% Include Saturation with Deadband
if and(gain_c <1000, gain_c > -1000) % Check for NaN
A =gain_a*gain_b*gain_c*gain_f* Amp(k)/kM;
if (A <=0.237)
gain_d = NaN;
elseif (A >0.9)
gain_d = 2/pi*(asin(0.9/A)+0.9/A* sgrt(1-(0.9/A)"2));
else
gain_d=1,;
end
else
gain_d = NaN,;
end
% Include Wrist Nonlinearity
if and(gain_d <1000, gain_d > -1000) % Check for NaN
A =A*gan_d;
k_A =108.4* A"3-245.86* A"2+183.81* A-34.668;
p_A =49.77* A"3-102.77* A"2+72.33* A-8.6433;
num3 = k_A*[19.50]; den3=10.70*[1 p_A];
SY S3 = tf(num3,den3);
[gain_ephase €] = bode(SY S3,0mega);
phase_e = phase_e*pi/180;
else
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gain_e= NaN;
phase e = NaN;
end
gain =gain_a*gain_b*gain_c*gain_d*gain _e*gan_f;
R = 1/(gain);
phase = phase_a-phase_b+phase_c-phase_e-phase f;
realimag(k) = -R* cos(phase)-R*i* sin(phase);
end
figure(1); clf; plot(realimag);
hold on; plot(realimag,'.);
text(real (realimag),imag(realimag),num2str(Amp'/kM));

% Plot nyquist plot of plant
figure(1); hold on; plot(Re2,Im2,'r");
plot(Re2_int(1:3*index_int),Im2_int(1:3*index_int),'rx’);
for k = index_int:2:2*index_int,
temp = k-index_int;
text(Re2_int(k),Im2_int(k),int2str(cross _freq int+temp));
end

% Create unit circles
Rea = zeros(91,1);
Imag = zeros(91,1);
for k = 1:91,
Real (k) = -cos((k-1)* pi/180);
Imag(k) = -sin((k-1)* pi/180);
end
figure(1); hold on;
plot(Real,Imag,'g--");

axis([-11-10]);
axis square; grid
xlabel('Redl"); ylabel (‘Imaginary’)

omega = input(‘Input New Frequency (Enter O to Quit) ');
end
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% Tabular_PPSSPFMD.m

% Run this script to load the tabular parallel-path single-signed
% pulse frequency modulation/demodulation describing function.

% Frequencies and amplitudes of data
Omega=[15101520 25 30 35 40]"; % (rad/sec)
Amp_kM =[13 14 15 20 25 30 40 60 80 120 180 240 300 360 420 500 600 800 1000];

% Phase lag data in degrees

Phase Lag=[628 NaN NaN NaN NaN NaN NaN NaN
6 27 54 70 NaN NaN NaN NaN NaN

27 51 74 NaN NaN NaN NaN NaN
24 45 72 87 NaN NaN NaN NaN
21 42 63 85 103 NaN NaN NaN
20 39 61 81 96 118 NaN NaN

17 36 55 75 91 111 131 148

14 30 49 66 83 102 117 140

11 26 43 59 74 96 107 133

21 36 48 61 77 86 101

17 31 38 47 58 58 52

15 26 32 39 45 45 32

13 24 26 33 35 33 24

12 19 25 30 31 21 20

11 18 23 29 27 20 17

10 17 21 25 24 18 15

11 17 22 25 25 18 15

11 18 25 28 25 15 16

12 18 24 28 26 14 16];

Phase Lag = Phase Lag*pi/180; %Convert to radians

OFREFEPNNNNWWWEADOJTOTLOTO1O0T

oo oo OO

% Gain data

Gain=[0.79 0.76 NaN NaN NaN NaN NaN NaN NaN
0.810.84 0.86 0.8 NaN NaN NaN NaN NaN

0.87 094 09084 NaN NaN NaN NaN NaN
095 098 099 104 129 NaN NaN NaN NaN
096 099 103 108 104 116 NaN NaN NaN
099 1 104 112 116 118 123 NaN NaN
099 1 104 111 113 116 114 112 114
1 1 103 106 104 099 09 094 0.89

1 1 102 1 097 092 086 085 0.76

1 1 1 097 089 084 072 082 0.8

1 1 099 09 08 074 065 055 055

099 099 098 093 083 078 0.69 063 061
099 099 098 092 083 072 064 055 043
099 098 095 09081 0.75 060.77 0.59



098 0.97
094 094
0.80.80.77
0.62 0.61
0.53 053

0.94
0.91
0.73
0.59
0.51

0.89
0.86
0.67
0.55
0.47
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080.74 059 051 0.63

0.78
0.56
0.49
0.43

068 062 0.60.72
047 051 0.6

045 036 048 043
036 038 049 0.51];
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