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This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are
used to generate a uniform magnetic field with controllable magnitude and direction. Circular and
square coils, both with square cross section, are considered. Practical considerations such as wire
selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and
time response are included. Using the equations provided, a designer can quickly create an optimal set
of custom coils to generate a specified field magnitude in the uniform-field region while maintaining
specified accessibility to the central workspace. An example case study is included. C 2015 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4919400]

I. INTRODUCTION

The term “Helmholtz coil” describes a pair of identical
current-conducting coils arranged coaxially and with current
flowing in the same direction (typically, the coils are connected
in series to form a single circuit), which generates an optimally
uniform magnetic field in the common central workspace of
the coils.1 Helmholtz coils are commonly used to generate
fields to cancel the Earth’s magnetic field, calibrate sensors,
and perform a variety of other experiments in which a uniform
magnetic field with controllable magnitude is desired. Due to
symmetry, any pair of identical coaxial coils with the same
current will have a field whose spatial derivative is zero in
each direction at the center of the workspace. The field of a
Helmholtz coil is optimally uniform in the sense that the spac-
ing between the coils is chosen such that the second derivative
in the axial direction is also zero. This definition results in
a Helmholtz spacing between coils equal to 0.5 of the coil
diameter (i.e., equal to the coil radius) in the case of circular
coils1 and 0.5445 of the coil width in the case of square coils.2

Many different aspects of the design and characterization
of Helmholtz coils have been considered in prior work. Re-
searchers have characterized the field generated by coils with
non-zero cross section1 and with coil asymmetry and non-ideal
winding.3 Others have analyzed the uniformity of the volume
away from the central axis4 and have considered changing the
between-coil spacing from the Helmholtz spacing to expand
the uniform-field region using a different definition of optimal
uniformity.5–7 Others have considered adding additional coils
to improve the uniformity of the field.8–10

Tri-axial Helmholtz coils comprise three nested mutually
orthogonal Helmholtz coils—inner, middle, and outer—each
of which is designed as a traditional Helmholtz coil (poten-
tially utilizing any of the modifications discussed above). The
outer coils are larger than the middle, which in turn are larger
than the inner, yet all three pairs are typically designed to
generate the same magnitude of field in their common central
uniform-field region. Each of the individual Helmholtz coils

a)Electronic mail: jake.abbott@utah.edu

generates a uniform magnetic field parallel to its axis, and
the three coils form a basis set such that a uniform field with
controllable magnitude and direction can be established by
controlling the three independent currents. Prior work has
characterized how manufacturing and assembly errors affect
the uniformity of the field in tri-axial coils.13 There has been
a significant recent interest in the use of tri-axial Helmholtz
coils for the generation of magnetic fields for the control of
“microrobots,” both for applications under the guidance of an
optical microscope,11 as well as for applications in the human
body.12

In each of the various projects that have used tri-axial
Helmholtz coils, the respective research groups have rede-
signed the coils, starting from the basic spacing definition,
such that their coils are customized to their specific needs
in terms of magnitude of the field that can be generated,
access to the central workspace (e.g., to place samples), access
for imaging the central workspace (e.g., for a microscope
lens), the current amplifiers required, and the size and cost of
the final system. This perpetual redesign harms productivity,
particularly considering that the design of tri-axial Helmholtz
coils is a well-constrained problem that has simply never been
elucidated.

The intent of this paper is to eliminate the aforemen-
tioned inefficiency and provide a simple set of design equations
and guidelines that will enable researchers to quickly design
a set of custom tri-axial Helmholtz coils for their specific
needs, specified in terms of field strength and workspace-
access dimensions. Both circular-coil and square-coil systems
are described. This paper focuses only on the design of the
coils themselves and does not describe the supporting structure
that will be needed to maintain the coils in their intended
positions, which can take many forms. This paper is structured
as follows. Section II begins with the design assumptions used
to limit the optimization problem to a tractable one. Section III
describes some practical considerations when fabricating coils
from insulated magnet wire. Sections IV and V then present
the geometric design of circular-coil and square-coil systems,
respectively. Section VI characterizes the power requirements,
the choice of current density, and the inductance (and the
resulting time response) for a given design. A succinct model

0034-6748/2015/86(5)/054701/10/$30.00 86, 054701-1 © 2015 AIP Publishing LLC
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

37.134.36.33 On: Mon, 04 May 2015 14:57:08

http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://dx.doi.org/10.1063/1.4919400
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4919400&domain=pdf&date_stamp=2015-05-04


054701-2 Jake J. Abbott Rev. Sci. Instrum. 86, 054701 (2015)

for the inductance of a Helmholtz coil, which is not currently
available in the literature, is another contribution of this paper.
Finally, Sec. VII presents a case study illustrating the complete
design process of a set of tri-axial Helmholtz coils, starting
with a typical set of design specifications.

II. ASSUMPTIONS

Let us begin with a set of reasonable simplifying assump-
tions to guide our parametric design.

(1) Although we consider both circular and square coils, we
only consider coils with square cross section.

(2) When calculating the field generated in the center of the
uniform-field region, we assume that the entire current
flowing through the coil’s square cross section can be
modeled as flowing through the center of the coil’s square
cross section.

(3) We only consider the spacing of true Helmholtz coils,
measured from the centers of the coil cross sections.

(4) We assume that each of the three coil pairs has the same
limit on maximum current density, which is typically
governed by Joule heating concerns.

(5) We assume that each of the three coil pairs should
generate the same magnitude of magnetic field in the
center of the workspace, given the same current density
(i.e., our tri-axial coils should have no special directions).

(6) We assume that it is desirable that the coils be as compact
as possible. That is, once an inner coil pair is designed,
the middle coil pair is designed to be as small as possible
while meeting all other design constraints, which will
result in direct contact of the middle coil with the inner
coil and similarly from the middle coil pair to the outer
coil pair.

(7) We assume that the coils are to be used in quasistatic
(low-frequency) modes, such that high-frequency effects,
such as skin effect, can be neglected.

(8) A spool is often used to wind and constrain the coils.
The spool wall thicknesses will typically be governed
by considerations related to strength, manufacturability,
and material availability and are largely outside of the
electromagnet design process. We assume the spool wall
thicknesses are given.

III. WIRE PACKING EFFICIENCY

Before designing the geometry of our coils, we must first
understand the nature of the insulated magnet wire that is
used in coil fabrication and the packing efficiency that we can
reasonably expect to obtain. That is, for a coil cross section of
dimensions Xc × Xc, we would like to determine what fraction
of cross section will actually be conductor (e.g., copper) by
accounting for insulation and voids inherent to the wire and
the wrapping.

Common choices of insulated magnet wire include circu-
lar, square, and flat/ribbon wire. We will only consider circular
and square wire here, since it is difficult with flat/ribbon wire
to design the type of optimized coils that are the subject of this

FIG. 1. Geometric parameters describing insulated wire cross sections, with
wires shown inside their bounding areas (as dashed lines). (a) Parameters
for circular wire, with outer diameter δo and inner (conductor) diameter δi.
(b) Parameters for square wire, with outer dimensions δo×δo with corner
radius-of-curvature ρo, and inner (conductor) dimensions δi×δi with corner
radius-of-curvature ρi.

paper. Figure 1 shows the parameters that are used to define the
geometry of the wire’s cross section, including the bounding
box of coil’s cross-sectional area taken up by a single wire.
Note that because of the alternating handedness of the helical
pitch of the wire from one layer to the next when winding a
coil, denser packing is not typically achieved even with the
circular wire.

For circular wire, the packing efficiency is calculated us-
ing Fig. 1(a) as the ratio of the conducting area of the wire
relative to its bounding box,

ϵ =
πδ2

i

4δ2
o

. (1)

Similarly for square wire, the packing efficiency is calculated
using Fig. 1(b) and Appendix A as the ratio of the conducting
area of the wire relative to its bounding box,

ϵ =
δ2
i − 0.8584ρ2

i

δ2
o

. (2)

For both wire types, the insulation’s thickness is simply

t =
δo − δi

2
. (3)

The geometry-based values in (1) and (2) overestimate
the true packing efficiency. We must also acknowledge that
the helical pitch of wire as it is wrapped in a given layer of
the coil results in further reduction in packing efficiency. For a
given layer of wire in a coil, we lose a full wire dimension δo,
that is, n full turns of tightly packed wire result in a coil width
of approximately (n + 1)δo, rather than nδo, due to the helical
pitch of the wrap.

A simple way to account for the reduction in packing
efficiency when calculating the generated magnetic field is to
consider an effective coil cross section dimension (Xc − δo)
× (Xc − δo), which requires no modification to the value for ϵ
calculated above. This effective coil cross section dimension is
accurate in the axial direction of the coil and is conservative in
the radial direction of the coil since the integer number of wire
layers can result in a discrepancy of up to δo from any arbitrary
intended Xc (assuming we will never add an additional layer
of wire that would cause the coil to exceed its intended size).

When calculating the total length of wire required and the
resulting wire resistance, the above simplification would not be
conservative. When calculating electrical parameters, we will
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use the above simplification only in the axial direction of the
coil and will explicitly calculate the integer number of wraps
in the radial direction.

IV. DESIGN OF CIRCULAR COILS

We will begin with the design of circular coils. The geom-
etry and parameters of the Helmholtz coil being considered are
shown in Fig. 2. The nominal diameter of the coils is Dc (all
lengths in units m), measured from the center of the square
cross section, where we will use the subscript c ∈ {1,2,3} to
designate the first (inner), second (middle), and third (outer)
Helmholtz coils. The square cross sections of the respective
coils are described by the length Xc. The coils are assumed
to be wrapped on a spool with an inner-wall thickness of Sc
and a side-wall thickness of Tc; our development generalizes to
the case when there is no spool (i.e., Sc = Tc = 0). For circular
Helmholtz coils, the two coils within a pair have a nominal
separation distance equal to 0.5 of the nominal diameter. These
variable definitions lead directly to definitions for the inner
diameter

Dic = Dc − Xc − 2Sc, (4)

the outer diameter

Doc = Dc + Xc, (5)

and the gap between individual coils within a given Helmholtz
coil pair

Gc = 0.5Dc − Xc − 2Tc. (6)

We can conduct the rest of the design as a function of
a single variable: X1. Once this cross section dimension of
the inner coil is established, the resulting geometry of the
remainder of the tri-axial Helmholtz coils follows directly.
We can then optimize our design over X1 in order to achieve
our given design specifications while minimizing some metric
such as size or cost.

The magnitude of the uniform magnetic field (in units
A m−1), or more specifically in the center of the uniform-field
region, generated by a given Helmholtz coil with a current

FIG. 2. Geometric parameters defining circular Helmholtz coils with square
coil cross section. For current flowing through the cross section in the
direction indicated, a uniform field H is generated in the common center
of the coils in the direction indicated.

density J (in units A m−2) in the conducting portion of the
wire and a wire-packing efficiency ϵ can be found by utilizing
the Biot-Savart law integrated over the two individual coils,1

utilizing assumption (2) from Sec. II. The field magnitude is
given by

H =
1.43Jϵ(Xc − δo)2

Dc
, (7)

where ϵ(Xc − δo)2 is the effective conducting coil cross section
of a given coil discussed in Sec. III and Jϵ(Xc − δo)2 is the
total circulating current in a given coil. We must maintain this
value of H for all three coils sets. Note that we could also
express equations for the magnetic field in terms of the flux
density B = µ0H in units T, where µ0 = 4π × 10−7 T m A−1 is
the permeability of free space.

Given a desired value of H , we can rearrange (7) to
express Dc as a function of known parameters,

Dc =

(
1.43Jϵ

H

)
(Xc − δo)2 = ξ(Xc − δo)2, (8)

where ξ is constant across all three coil sets. Thus, for a given
value of X1, the nominal diameter D1 is computed above,
and the resulting inner coil diameter Di1, outer coil diameter
Do1, and gap size G1 can be calculated by (4), (5), and (6),
respectively.

With the complete geometry of the first coil set estab-
lished, we can solve for the geometry of the second coil set
based on the first and then the third based on the second. The
equation for Dc as a function of Xc provided in (8) applies to
all three coil sets, but in the case of the second and third set,
Xc is not known a priori. When circular Helmholtz coils with
square cross section are tightly nested, the innermost edge of
the second coil comes into contact with the outermost edge
of the first coil, with an analogous relationship between the
second and third coils (this can be visualized in Fig. 3). This

FIG. 3. Example tri-axial Helmholtz coil design with circular coils (S =T =
δo = 0, ξ = 500 m−1, and X1= 0.01 m).
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provides the constraint equation

D2
oc−1 − G2

c = D2
ic − (Gc−1 + 2Xc−1 + 4Tc−1)2 (9)

for c ∈ {2,3}. With the geometry of the first coil already estab-
lished, combining the constraints in (4), (6), and (9) results in
a quartic equation of Xc, for which we must solve for its single
positive real root (more detail is provided in Appendix B). With
the solution for Xc found, we can solve for the accompanying
nominal coil diameter Dc using (8). The resulting inner coil
diameter Dic, outer coil diameter Doc, and gap size Gc can then
be calculated by (4), (5), and (6), respectively. This process is
used to solve for all of the parameters for the middle Helmholtz
coil (c = 2) and then repeated for the outer Helmholtz coil
(c = 3).

The central workspace can be accessed from three different
views as shown in Fig. 3, where view c is coaxial with
Helmholtz coil c. The view-1 access window is the intersection
of a rectangle of dimension G2 × G3 with a circle of diameter
Di1. The view-2 access window is a rectangle with dimensions
G1 × G3 and the view-3 access window is a rectangle with
dimensions G1 × G2.

A final design consideration is the minimum radius-of-
curvature in the coils. For a given wire, the manufacturer will
provide a minimum radius-of-curvature that is allowable in the
wire without risk of damage to the wire or its insulation. We
must ensure that the minimum radius-of-curvature in our coils
is greater than that value. The minimum radius-of-curvature is
in the first wrap of any given coil, with a value of

rmin,c =
Dic

2
+ Sc. (10)

The inner coil (c = 1) will have the smallest minimum radius-
of-curvature.

In summary, given a choice of H , ϵ , J, S, and T , the
complete design of the geometry of the electromagnets them-
selves can be expressed as a function of a single variable:
X1. The choice for this parameter should be made as small
as possible (which will result in all Xc and Dc values being
as small as possible) while still providing some desired level
of access to the central workspace. It should be noted that
the wrapping-efficiency equations of Sec. III fundamentally

FIG. 4. Geometric parameters defining square Helmholtz coils with square
coil cross section. For current flowing through the cross section in the
direction indicated, a uniform field H is generated in the common center
of the coils in the direction indicated.

assume that the coil comprises at least one complete turn of
wire, so only values of X1 ≥ 2δo should be considered. In
addition, any value of X1 that results in a calculated Di1 < 0
is an invalid choice of X1 and will lead to nonsensical results.
Figure 3 depicts an example tri-axial Helmholtz coil designed
with equations above. A case study illustrating the complete
design process is provided in Sec. VII.

V. DESIGN OF SQUARE COILS

Let us now repeat the design process for square coils,
with a small amount of repetition from Sec. IV for clarity. The
geometry and parameters of the Helmholtz coil being consid-
ered are shown in Fig. 4. The nominal width of the coils is
Wc, measured from the center of the square cross section. The
square cross sections of the respective coils are described by
the length Xc. The coils are assumed to be wrapped on a spool
with an inner-wall thickness of Sc and a side-wall thickness of
Tc. For square Helmholtz coils, the two coils within a pair have
a nominal separation distance equal to 0.5445 of the nominal
width. These variable definitions lead directly to definitions for
the inner width

Wic = Wc − Xc − 2Sc, (11)

the outer width

Woc = Wc + Xc, (12)

and the gap between individual coils within a given Helmholtz
coil pair

Gc = 0.5445Wc − Xc − 2Tc. (13)

We can conduct the rest of the design as a function of
a single variable: X1. Once this cross section dimension of
the inner coil is established, the resulting geometry of the
remainder of the tri-axial Helmholtz coils follows directly. We
can then optimize our design over X1.

FIG. 5. Example tri-axial Helmholtz coil design with square coils (S =T =
δo = 0, ξ = 500 m−1, and X1= 0.01 m).
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The magnitude of the uniform magnetic field generated
by a given Helmholtz coil with a current density J in the
conductor and a wire-packing efficiency ϵ is given by

H =
1.30Jϵ(Xc − δo)2

Wc
, (14)

where ϵ(Xc − δo)2 is the effective conducting coil cross section
discussed in Sec. III and Jϵ(Xc − δo)2 is the total circulating
current.2 We must maintain this value of H for all three coil
sets.

Given a desired value of H , we can rearrange (14) to
express Wc as a function of known parameters,

Wc =

(
1.30Jϵ

H

)
(Xc − δo)2 = ξ(Xc − δo)2, (15)

where ξ is constant across all three coil sets. Thus, for a given
value of X1, the nominal width W1 is computed above, and the
resulting inner coil width Wi1, outer coil width Wo1, and gap
size G1 can be calculated by (11), (12), and (13), respectively.

With the complete geometry of the first coil set estab-
lished, we can solve for the geometry of the second coil based
on the first and then the third based on the second. The equation
for Wc as a function of Xc provided in (15) applies to all three
coil sets, but in the case of the second and third set, Xc is
not known a priori. The geometry of nested square Helmholtz
coils is simple relative to that of nested circular Helmholtz
coils: the inner width of the second coil should be equal to
the outer width of the first coil, with an analogous relationship
between the second and third coils (this can be visualized in
Fig. 5). This provides the constraint equation

Wic = Woc−1 (16)

for c ∈ {2,3}. Combining (11), (15), and (16), we arrive at an
equation for Xc based on known quantities,

Xc = δo +
1

2ξ

(
1 +

((1 + 2ξδo)2

−4ξ(ξδ2
o −Wic − 2Sc)

)
1/2

)
(17)

for c ∈ {2,3}. The nominal coil width Wc can then be computed
using (15) and the resulting outer coil width Woc and gap size
Gc can be calculated with (12) and (13), respectively. This
process is used to solve for all of the parameters for the middle
Helmholtz coil (c = 2) and then repeated for the outer coil
(c = 3).

The central workspace can be accessed from three different
views as shown in Fig. 5, where view c is coaxial with
Helmholtz coil c. The view-1 access window is the intersection
of a rectangle of dimension G2 × G3 with a square of side-
length Wi1. The view-2 access window is a rectangle with
dimensions G1 × G3 and the view-3 access window is a rect-
angle with dimensions G1 × G2.

A final design consideration is the minimum radius-of-
curvature in the coils. This is a more critical consideration
in the case of square coils than it is in the case of circular
coils. In practice, we will never construct a true square coil
because the wire cannot follow the perfect 90◦ bend at the
corner. Rather, we will need to round the corners. For a given

wire, the manufacturer will provide a minimum radius-of-
curvature that is allowable in the wire without risk of damage
to the wire or its insulation; we must ensure that the minimum
radius-of-curvature in our coils is greater than that value. The
simplest method for rounding the corners is a circular profile
with radius-of-curvature∆c. The circular corner profile results
in a minimum radius-of-curvature in the wire of

rmin,c = ∆c + Sc (18)

for c ∈ {1,2,3}. The values of ∆c should be chosen to round
the corners of the coils gently enough to ensure that no damage
is done to the wire during wrapping, yet not so large that
the access to the central workspace is significantly hindered.
Some mechanical constraint must also be put in place to avoid
bowing in the coils. In the case of the inner coil, the radius-of-
curvature is restricted to be, at most, half of the inner width,

∆1 = 0.5Wi1. (19)

However, choosing ∆1 this large would effectively turn the
inner Helmholtz coil into a circular Helmholtz coil. In the case
of the middle and outer coils, the maximum allowable radius-
of-curvature is more restricted so as to not conflict with the
next-smaller coil; this is described in detail in Appendix C.

Rounding the corners of a nominally square Helmholtz
coil will have a small effect on the uniform-field region. For
a given Helmholtz coil, if we were to continuously increase
the radius-of-curvature at the corners from zero up to the
maximum allowable value described in (19), we would observe
a continuous evolution of the uniform-field region from that
of a square Helmholtz coil to that of a circular Helmholtz
coil, both of which have been characterized in prior work (see
Sec. I).

VI. ELECTRICAL DESIGN CONSIDERATIONS

A. Power

To calculate the power requirements for circular and
square coils, we begin by finding the effective volume of wire
in a single coil, accounting for the wire-wrapping modification
in the axial direction discussed in Sec. III and accounting for
the integer number of wire layers in the radial direction. For
a circular coil, the effective volume can be calculated as the
volume of a large disk minus the volume of a small disk, each
with a width in the axial direction of (Xc − δo),

Ψc =
π

4
(Xc − δo)

(
Dic + 2Sc + 2δo

 Xc

δo

)2

− π

4
(Xc − δo) (Dic + 2Sc)2, (20)

where ⌊x⌋ is the floor function that returns the largest integer
that is less than or equal to x, which is used to calculate the
maximum integer number of wire wraps that can fit within a
given Xc in the radial direction of the coil. For a square coil,
the effective volume is

Ψc = (Xc − δo)
(
Wic + 2Sc + 2δo

 Xc

δo

)2

− (Xc − δo) (Wic + 2Sc)2. (21)
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Note that these volumes are each for a single coil within a
Helmholtz coil pair. Also note that (21) does not account
for any rounding of the coil’s square corners, making it a
conservative overestimate of the effective volume.

The remaining equations assume that the two coils within
a Helmholtz pair are connected in series and powered using
a single amplifier, as is typical. Using the cross section of the
bounding box of a single wire (see Fig. 1), we can estimate the
total length of wire, λc, in a Helmholtz coil as

λc =
2Ψc

δ2
o

. (22)

A resistance per unit length η (in units Ω m−1) is used to
estimate the resistance (in units Ω) of the Helmholtz coil,

Rc = ηλc. (23)

For a given desired current density J, we can calculate
the current required for a given wire choice (see Fig. 1 for
conductor cross-sectional area). For circular wire,

I =
πδ2

i

4
J (24)

and for square wire, utilizing Appendix A,

I =
�
δ2
i − 0.8584ρ2

i

�
J. (25)

The voltage (in units V) required to generate the desired
current is then calculated as

Vc = IRc (26)

and the power (in units W) delivered is calculated as

Pc = I2Rc = IVc. (27)

B. Current density J

The field magnitude is linearly proportional to the current
density J, so it is clear that we should choose a current density
as large as possible without causing any problems related
to heat generation, in order to keep the size of the coils to
a minimum. Mitigating problems related to heat generation
typically means ensuring that the wire’s insulation is not at risk
of breaking down, using limits provided by the wire manufac-
turer. However, it can also be further limited by the specific
application of the coils (e.g., in microbiology).

Heat generation/dissipation is a complex function of coil
geometry and coil cooling and cannot be summarized in a sim-
ple way. There are a number of rules-of-thumb values used for
electrical wiring and the design of electrical machines that can
be found in a variety of sources. Conservative rules-of-thumb
for current density that assume the wire is fully embedded typi-
cally use values of 2 A/mm2 or 2.5 A/mm2. Rules-of-thumb for
exposed wire with free-convection cooling typically use values
of 6 A/mm2, but the size of the wire (i.e., the ratio of surface
area to volume) will affect the heat dissipation. Even a small
amount of forced cooling can enable substantial increases in
allowable current density. The author’s lab has successfully
used 6 A/mm2 in tri-axial Helmholtz coils with a small desk
fan for cooling.14 Knowledge of the duty cycles of the coils can
also be used to increase the allowable instantaneous current
density.

C. Inductance and time response

The inductance Lc of a Helmholtz coil combined with
the resistance of the Helmholtz coil determines the coil’s time
response. We can compute a time constant as

τc =
Lc

Rc
, (28)

where Rc is the resistance of the pair connected in series. For
a sinusoidal input of frequency ω rad s−1, we can compute
the attenuation gain Mc(ω) and phase lag φc(ω) of the output
signal from that desired as

Mc(ω)∠φc(ω) = 1

1 + τcω
√
−1

. (29)

Note that when coils are driven using current-control ampli-
fiers, rather than voltage-control, the values in (28) and (29)
describe a conservative (i.e., worst-case) time response that
applies only to the largest current commands.

The inductance of the Helmholtz coil is calculated as a
function of the self-inductance and the mutual inductance of
the individual coils,

Lc = 2Lself,c + 2Lmut,c. (30)

Note that the inductance Lc of a given Helmholtz coil has no
mutual inductance with either of the other two Helmholtz coils
in the tri-axial nested system, due to the Helmholtz coils being
arranged orthogonally and symmetrically. Any flux passing
through one of the individual coils in a given Helmholtz pair
generated by any of the orthogonal coils will be accompanied
by an equal-but-opposite flux in the other individual coil in the
given Helmholtz pair (recall that the two individual coils are
connected in series).

1. Inductance of circular coils

To calculate the self-inductance of a circular coil (in units
H), we will make use of a simple empirical approximation
given by Wheeler,15

Lcirc(α, β,γ) = (7.9 × 10−6)α2n2

3α + 9β + 10γ
, (31)

where α is the nominal diameter of the coil, β is the length of
the coil cross section in the axial direction, γ is the length of the
coil cross section in the radial direction, and n is the number
of turns in the coil cross section, which we will calculate for a
given wire choice with outer dimension δo as

n(β,γ) =
(
β − δo
δo

) 
γ

δo


, (32)

where the leftmost quantity represents the real number of turns
in the axial direction and the rightmost quantity represents the
integer number of turns in the radial direction. We can then
calculate the self-inductance of one coil in our Helmholtz pair
as

Lself,c = Lcirc(Dc,Xc,Xc) (33)

which can then be applied to (30). To calculate the 2Lmut,c
term in (30), we will make use of an exact equivalence for two
identical coaxial coils provided by Grover,16 which utilizes
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self-inductance and superposition, and we will incorporate
knowledge of the Helmholtz separation distance,

2Lmut,c = Lcirc(Dc,0.5Dc + Xc,Xc)
+ Lcirc(Dc,0.5Dc − Xc,Xc)
− 2Lcirc(Dc,0.5Dc,Xc). (34)

We can now calculate the inductance of a Helmholtz pair,
connected in series, using (30).

In Appendix D, we compare the estimation method above
to experimentally determined values from prior work. We
conclude that this estimate of inductance will suffice for the
purpose of our design process, with the understanding that a
factor of safety should be included if coil time response is
critical.

2. Inductance of square coils

To approximate the self-inductance of a square coil (in
units H), we will simply modify the empirical approximation
in (31) by 4/π to account for the difference in flux area between
a square coil and a circular coil,

Lsquare(α, β,γ) = (1.0 × 10−5)α2n2

3α + 9β + 10γ
, (35)

where α is now the nominal width of the coil, β is the length of
the coil cross section in the axial direction, γ is the length of the
coil cross section in the width direction, and n is the number
of turns in the coil cross section, which we can calculate using
(32). We can then calculate the self-inductance of one coil in
our Helmholtz pair as

Lself,c = Lsquare(Wc,Xc,Xc) (36)

which can then be applied to (30). To calculate the 2Lmut,c
term in (30), we will again make use of the exact equiva-
lence provided by Grover,16 combined with knowledge of the
Helmholtz separation distance,

2Lmut,c = Lsquare(Wc,0.5445Wc + Xc,Xc)
+ Lsquare(Wc,0.5445Wc − Xc,Xc)
− 2Lsquare(Wc,0.5445Wc,Xc). (37)

We can now calculate the inductance of a Helmholtz pair, con-
nected in series, using (30). Again, this inductance calculation
should be viewed as an approximation that is suitable for coil
design but that should include a small factor of safety if time
response is critical. The inductance calculation above does
not account for any rounding of the corners and can thus be
considered a conservative estimate, since rounding the corners
will tend to reduce the inductance.

VII. THE DESIGN PROCESS: A CASE STUDY

Let us carry out a case study demonstrating how the
methods and equations presented in this paper can be used
to design a set of tri-axial Helmholtz coils. A given design
is highly dependent on the choice of wire. However, once a
wire is chosen, the equations in this paper, incorporated into a
numerical package such as MATLAB, can be used to quickly

generate the optimal design for that specific wire choice. This
process can be repeated for a small set of possible wire choices
(e.g., from a list of available wire from a given manufacturer),
and then, the best wire choice can be made given some other
design specification (e.g., cost, size, and power-amplification
requirements).

In this case study, which is intended for tutorial purposes,
all design specification used are arbitrary and only chosen to
illustrate the design process. We would like to create a set
of coils for an application under the guidance of an optical
microscope. We have a number of design specifications.

(1) We would like to generate a maximum field strength of
B = 10 mT, which we convert to H by dividing by the
permeability of free space µ0, giving H = 7958 A m−1.

(2) We are willing to pay a premium cost for square wire,
which will give us a packing efficiency that is better than
with circular wire. To constrain our design space, we
will choose our wire exclusively from the catalogue of
MWS Wire Industries.

(3) We will construct circular coils, due to their relative
simplicity in fabrication. We could also repeat the pro-
cess for square coils and compare the optimal square-
coil system to the optimal circular-coil system but that
will be omitted here for brevity.

(4) We will fabricate our own spools on which to wind the
coils, with Sc = 0.004 m and Tc = 0.003 m.

(5) We would not like the coils to be in any danger of over-
heating, so we will use a conservative current density of
J = 2.5 × 106 A m−2.

(6) We will connect our respective Helmholtz-coil pairs in
series as is typical, so that we only need three current-
controlled amplifiers (rather than six for independent
coil control).

(7) To constrain our design, we will choose our power
supply and current amplifiers exclusively from those
available from Advanced Motion Controls.

(8) The microscope lens, which views the workspace from
the top down, has a lens with a diameter of 3 cm. We
will arrange the tri-axial coils so that the top-down view
is view 1. This provides constraints for G2 ≥ 0.03 m,
G3 ≥ 0.03 m, and Di1 ≥ 0.03 m.

(9) We would like a workspace access window from the side
that is at least 2 cm tall and 4 cm wide, but we do not
care if the access is from view 2 or view 3. The 2-cm
specification provides the constraint G1 ≥ 0.02 m. The
4-cm specification requires that either G2 ≥ 0.04 m or
G3 ≥ 0.04 m.

(10) For good practice, all of the above access specifications
already include a small factor of safety, as does the
desired magnetic field strength.

For brevity, we will conduct a design and report values
for only a few wire gauges: 12 AWG, 14 AWG, and 16 AWG.
We will first go through the complete design process to find
the optimal coil geometry for the 12 AWG wire. Figure 6
shows the set of possible geometries, as a factor of the free
parameter X1, that will result in the desired field strength in
each direction, for 12 AWG wire. Our goal is to choose X1 as
small as possible while meeting all of our workspace-access

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to IP:

37.134.36.33 On: Mon, 04 May 2015 14:57:08



054701-8 Jake J. Abbott Rev. Sci. Instrum. 86, 054701 (2015)

FIG. 6. Tri-axial nested coil designs for a range of X1 that achieve the desired field strength with the desired current density in the case study, using 12 AWG
square wire. X1= 0.0171 m is the smallest value of X1 that achieves the design specifications of the case study.

specifications. We see that choosing X1 as small as possible
will ultimately result in the smallest coils that will satisfy our
needs and will result in a minimal material cost, as observed
in the total length of wire that will be required. We find that
the smallest possible X1 that will satisfy all of our geometric
specifications is X1 = 17.1 mm for 12 AWG wire.

The complete results of this optimal 12 AWG design are
shown in Table I, along with the results for the two other

wire gauges under consideration, obtained using the same
process just described. As we look at the results, a few rules-
of-thumb for coil design become clear. First, of the three
Helmholtz coils, the third (outer) Helmholtz coil dominates
the design, demanding the most voltage and power to generate
a field in its axial direction and resulting in the slowest time
response. Thus, we can use the values from the third coil exclu-
sively in our selection process. Second, the coil geometries,

TABLE I. Optimal design parameters for circular tri-axial Helmholtz coils, for three square wire gauges, for the design specifications in the case study. The
parameters δi, δo, ρi, and η are average values from the manufacturer’s data sheets (MWS Wire Industries). The parameters I , λc, Rc, Vc, Pc, Lc, and τc
are calculated for the given coil pair connected in series.

Gauge
(AWG)

δi

(mm)
δo

(mm)
ρi

(µm)
η

(mΩ/m) I (A)
Coil
pair

Xc

(mm)
Dic

(mm)
Dc

(mm)
Doc

(mm)
Gc

(mm)
λc

(m)
Rc

(Ω)
Vc

(V)
Pc

(W)
Lc

(mH)
τc

(ms)

12 2.05 2.15 508 4.32 9.95
1 17.1 61.1 86.2 103 20.0 25.7 0.111 1.11 11.0 0.614 5.53
2 21.3 113 142 164 43.8 70.8 0.306 3.04 30.3 3.02 9.88
3 25.4 175 209 234 73.0 155 0.668 6.65 66.2 10.4 15.5

14 1.63 1.73 406 6.87 6.29
1 16.8 60.8 85.6 102 20.0 41.5 0.285 1.79 11.3 1.57 5.50
2 21.1 112 141 162 43.5 119 0.815 5.13 32.2 8.29 10.2
3 25.1 174 207 232 72.3 245 1.68 10.6 66.6 25.9 15.4

16 1.29 1.39 254 11.4 4.02
1 16.5 60.5 85.0 101 20.0 62.8 0.716 2.88 11.6 3.58 5.01
2 20.7 111 140 160 43.1 169 1.93 7.76 31.2 17.2 8.91
3 24.8 172 205 229 71.5 366 4.17 16.8 67.4 58.2 14.0
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TABLE II. Options for “300 W” power supplies with 120 VAC input voltage
from Advanced Motion Controls.

Model DC output voltage (VDC) Output current (A)

PS4X3W24 24 12
PS4X3W48 48 6

power required, and time response are primarily dictated by the
desired field strength and the workspace-access specifications
and are largely independent of the wire gauge, with only small
differences that will not significantly affect our wire selection.
Third, the choice of wire gauge will largely come down to a
trade-off between voltage and current used to power the coils.

We choose a wire gauge based on available power sup-
plies. We will choose from the PS4X series of power supplies
from Advanced Motion Controls (Table II). These power sup-
plies can be used to power all three of our required current
drives from a single supply. We will only consider those drives
that use 120 VAC input, but higher-voltage/lower-current op-
tions are available if we are able to use 240 VAC input. The
288 W available from the power supply is much larger than the
66.2 W required. Assuming that we do not decide to search
for a smaller and potentially less expensive power supply,
this would be a good opportunity to reconsider the original
design specifications, in order to arrive at a better set of tri-
axial Helmholtz coils than what was originally specified. What
should we improve? Would we like to generate a stronger field?
Would we like easier access to the central workspace? Or, are
our original specifications good enough, and would we really
just like as fast a time response as possible? The answers to
these questions will enable us to iterate our design if desired.

Based on our design specifications, it appears that the best
choice is the PS4X3W24 power supply with the 12 AWG wire.
The 12 A of current is sufficient to generate the required 9.95 A
with a small factor of safety. The 24 V is nearly four times
larger than the required 6.65 V, which will positively affect
the time response of the coils (note that 6.65 V is the voltage
required to command a steady-state current of 9.95 A, but the
coil’s inductance will demand the maximum voltage during
the entire transient response when the amplifiers are driven
in a current-control mode). For brevity, we will stop with this
choice, but based on the values for current, voltage, and time
constant calculated for 14 AWG and 16 AWG wires, it would
be advisable to calculate the values for 15 AWG to be used
in conjunction with the PS4X3W48 supply. Since the total
length of wire is also calculated for each of the designs, a final
decision could be influenced by the cost of specific wire. When
hand-wrapping coils, choosing a larger wire gauge can make
the task easier.

VIII. CONCLUSIONS

This paper provided an optimal parametric design for tri-
axial nested Helmholtz coils. Circular and square coils were
considered, both with square cross section. Practical consider-
ations such as wire selection, wire-wrapping efficiency, wire
bending radius, choice of power supply, and inductance and
time response were included. Using the equations provided

in this paper, a designer can quickly design a set of tri-axial
Helmholtz coils to generate a specified magnetic-field magni-
tude in the uniform-field region while maintaining specified
accessibility to the central workspace.
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APPENDIX A: CONDUCTING AREA
OF A SQUARE WIRE

The area of the square conductor with rounded corners
shown in Fig. 1(b) can be solved as the superposition of the
areas of two squares and one circle, as shown in Fig. 7. The
area is calculated simply as

area = δ2
i − (2ρi)2 + πρ2

i = δ2
i − 0.8584ρ2

i . (A1)

This result is utilized in (2) and (25).

APPENDIX B: QUARTIC EQUATION OF Xc USED
IN THE DESIGN OF CIRCULAR COILS

As described in Sec. IV, for the design of circular coils,
solving for the parameter Xc for c ∈ {2,3} involves solving for
the roots of the quartic equation

a4X4
c + a3X3

c + a2X2
c + a1Xc + a0 = 0 (B1)

with coefficients

a4 = 1.25ξ2, (B2)

a3 = −5ξ2δo − 3ξ, (B3)

a2 = 7.5ξ2δ2
o + 6ξδo − 2Tcξ − 4Scξ + 2, (B4)

a1 = −5ξ2δ3
o − 3ξδ2

o + 4(Tc + 2Sc)(ξδo + 1), (B5)
a0 = 1.25ξ2δ4

o − 2(Tc + 2Sc)ξδ2
o + 4(S2

c + T2
c )

− (Gc−1 + 2Xc−1 + 4Tc−1)2 − D2
oc−1 (B6)

with all parameters defined in Sec. IV.
An analytical solution for quartic equations exists, but the

roots can also be found using numerical techniques. In our
case, we should always expect to find a single positive real root
among the four roots, which we return as our solution for Xc

for the purpose of coil design.

FIG. 7. The area of a square wire with inner (conductor) dimensions δi×δi

and with corner radius-of-curvature ρi can be expressed as the superposition
of the area of three simple geometries.
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FIG. 8. When rounding the corners of square coils, the maximum allowable
radius-of-curvature ∆c for c ∈ {2,3} is depicted.

APPENDIX C: UPPER LIMIT ON CORNER RADIUS
FOR SQUARE COILS

For rounding the square corners of the middle and outer
Helmholtz coils, the allowable radius-of-curvature ∆c of the
corner has an upper limit,

∆c = 0.5(Wic − (0.5445Wc−1 + Xc−1 + 2Tc−1)) (C1)

for c ∈ {2,3}, as depicted in Fig. 8. Choosing a radius-of-
curvature larger than this value would result in the coils
not nesting properly against each other; the nested para-
metric design described in Sec. V assumes that the portion of
Helmholtz coil c that is in contact with Helmholtz coil c − 1
is straight.

APPENDIX D: VALIDATION OF INDUCTANCE
ESTIMATION METHOD

In Table III, we compare the estimated inductance using
the method described in Sec. VI C 1 with experimentally
measured values for a tri-axial circular Helmholtz coil set
described by Mahoney et al.14 However, note that the coils in
that work were not designed using the methodology presented
in this paper, so we explicitly use their reported values. Also

TABLE III. Estimated inductance compared to measured values reported
by Mahoney et al.14 The number of wraps wide, deep, and the total wraps
is reported per individual coil, whereas the inductance is reported for the
pair connected in series. All coils are wrapped with round 14 AWG insulated
copper magnet wire (δo = 1.628 mm).

Coil
pair c

Dc

(mm)
Wraps
wide

Wraps
deep

Total
wraps

Measured
inductance

(mH)

Estimated
inductance

(mH)

1 88 9 7 63 0.944 0.937
2 138 9 11 99 3.78 4.03
3 196 13 11 143 12.2 12.8

note that the number of wraps wide reported was only accu-
rate to the nearest integer, which constitutes approximately
5% uncertainty in the reported values. We find reasonable
agreement between the reported values for inductance and our
estimate and conclude that the estimation will be sufficient for
the purposes of design.
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