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Computing Minimum-Power Dipole Solutions for
Interdipole Forces Using Nonlinear Constrained

Optimization With Application to Electromagnetic
Formation Flight

Jake J. Abbott, Joseph B. Brink, and Braxton Osting

Abstract—Electromagnetic formation flight (EMFF) denotes a
method of formation flight control in which a cluster of space-
craft are equipped with controllable magnetic dipoles for coor-
dination of their relative positions using interdipole forces. We
present a method for finding a minimum-power dipole solution for
a given set of desired interdipole forces. We approach this nonlin-
ear constrained optimization problem using sequential quadratic
programming, which requires a Jacobian relating changes in the
dipoles to changes in forces, as well as the gradient and Hessian
of a Lagrangian function. We derive compact analytic solutions
for all three of these quantities, using linear-algebraic representa-
tions and vector calculus, which can be implemented numerically
with a small set of simple functions. Our approach does not rely
on arbitrary parameterizations as have prior approaches, and the
structure enables further analysis of numerical conditioning and
convergence. We conduct numerical simulations, using a number
of configurations relevant to EMFF, to verify the method and char-
acterize its performance when numerical routines are randomly
initialized, which can serve as a benchmark against which future
improvements can be quantified. The method presented may have
other uses beyond EMFF, including being applied to new classes of
modular magnetic systems.

Index Terms—Cellular and modular robots, distributed robot
systems, optimization and optimal control, space robotics.

I. INTRODUCTION

E LECTROMAGNETIC formation flight (EMFF) denotes a
method in which spacecraft within a cluster are equipped

with controllable magnetic dipoles that are used to control their
relative positions by generating interdipole forces, typically in
conjunction with reaction wheels to control their orientations
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(which is typically considered a solved, decoupled, and more
energetically efficient problem) [1]. EMFF models typically as-
sume that each spacecraft has three orthogonal electromagnetic
coils to generate the controllable dipole. In contrast to the use
of traditional propellants, EMFF will not interfere with sensi-
tive optical instruments and can utilize renewable solar energy.
With EMFF alone it is not possible to affect the center-of-mass
of the cluster. However, this is not of concern for the primary
motivating application of EMFF: sparse-aperture interferome-
try telescopes. A number of configurations of such systems have
been proposed and investigated to date, including three space-
craft that maintain an equilateral triangle [1]–[5], and three or
five spacecraft that maintain a collinear arrangement [1], [4],
[6]–[8], while the interspacecraft separation distances and an-
gular velocity of the cluster are controlled. In addition, the com-
plete dynamic control problem has been solved for two space-
craft [9]–[11], which can be useful for inspection tasks [8]. The
motivation and feasibility of EMFF for the above applications
has been discussed in detail in many of the cited works. In ad-
dition, the techniques and technology of EMFF may have other
uses [8], including being applied more broadly to new classes
of modular and fractionated space systems [12]–[15].

Given a set of desired forces on each spacecraft (generated by
a higher-level motion planner to accomplish to dynamic trajec-
tory or closed-loop servoing task), multiple solutions often exist
for the set of dipoles that will achieve those forces. Schweighart
[16] found a solution given an arbitrary set of spacecraft po-
sitions and desired forces. He showed that any set of desired
forces can be achieved, up to saturation, provided the forces
sum to zero (since the center-of-mass of the ensemble cannot be
moved). His solution involves setting one of the dipoles to an
arbitrary (nonzero) value and solving for the remaining dipoles
by solving a set of polynomial equations, and then evolving the
arbitrarily set dipole using numerical optimization techniques to
minimize some cost function (he chose to minimize the magnetic
torque that was generated as a side effect of the magnetic force).
Although [16] makes a number of important contributions to the
topic of EMFF, the numerical algorithm itself is challenging to
implement and the inner workings can be difficult to follow.

In this paper, we provide an alternate method for comput-
ing the magnetic dipoles for a given set of interdipole forces.
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A significant challenge in EMFF is minimizing power consump-
tion, and although (possibly infinitely) many solutions exist,
computational studies suggest only a few exist that minimize
the power consumed by the electromagnetic coils. We find a
solution to minimize the weighted dipoles, which can repre-
sent a variety of minimum-power solutions by choosing the
weights appropriately. We approach this nonlinear constrained
optimization problem using sequential quadratic programming
(SQP), which is a second-order method that is known to con-
verge toward a local minimum in fewer iterations than first-order
gradient-descent methods [17]. The method requires the calcu-
lation of a Jacobian relating differential changes in the dipoles
to differential changes in the forces, as well as both the gradient
and Hessian of a Lagrangian function. We provide a compact
analytic solution for all three of these quantities, using linear-
algebraic representations and vector calculus, which can be im-
plemented numerically with a small set of simple functions; this
is the principal contribution of our work. For this nonconvex op-
timization problem, the SQP method only converges to a local
minimum, and we conduct an empirical study for several ex-
ample configurations relevant to EMFF to evaluate our method.
Our approach does not rely on arbitrary parameterizations, as
have prior approaches [16], and the structure enables further
analysis of numerical conditioning and convergence.

A few prior works that address the full flight-planning prob-
lem have suggested that sequential quadratic programming
could be applied to the EMFF problem [18], [19], but those
works have not provided the analytic results for the problem,
nor the numerical verification, that we provide in this paper.
Here, we do not concern ourselves with what forces should be
generated, which is a topic governed by dynamics and path-
planning concerns beyond the scope of this paper. We also do
not address magnetic torque, assuming that orientation is in-
dependently controlled with reaction wheels, as is assumed in
most prior work in EMFF.

A secondary intent of this paper is to introduce the Robotics
& Automation community, within which there has been signifi-
cant effort in the field of magnetic manipulation over more than
a decade, to the related literature from the Aeronautics & Astro-
nautics community. To date, research in these two communities
has evolved in parallel and without cross-pollination.

II. FORCES BETWEEN MAGNETIC DIPOLES

In this section we express the internal forces generated within
a set of controllable magnetic dipoles. We express the equations
using linear-algebraic techniques, which do not require arbi-
trary angular parameterizations. This representation forms the
foundation for the remainder of the paper.

A. Force Between Two Dipoles

We first review the force between two magnetic dipoles, us-
ing the notation and results from [20], which describes the
use of a single controllable dipole to manipulate a second
permanent-magnet dipole, but also applies to the case where
the second dipole is itself controllable.

A controllable magnetic dipolemi ∈ R3 at location i, in units
{A·m2}, is a linear function Mi of three controlled currents, in
units {A}, stacked in an array Ii ∈ R3 :

mi = MiIi (1)

where Mi , in units {m2}, is typically a diagonal matrix repre-
senting orthogonal electromagnets. A dipole generates a mag-
netic field bij ∈ R3 at location j, in units {T}, modeled by the
equation:

bij =
μ0

4π‖pij‖3

(
3p̂ij p̂T

ij − I
)
mi = Bijmi (2)

where μ0 = 4π × 10−7 T·m·A−1 is the permeability of free
space, I is the identity matrix, pij ∈ R3 is the position vector
from i to j, in units {m}, p̂ij is the normalized unit vector in
the direction of pij , and the matrix Bij , in units {m−3}, is a
function of pij . We note that the controllable dipole linearly
affects the magnetic field that it generates at each location.

The field generated by dipole mi imparts a force fij ∈ R3 ,
in units {N}, on a second magnetic dipole mj at location j:

fij = Fijmi (3)

where

Fij =
3μ0

4π‖pij‖4

(
mj p̂T

ij + p̂ijmT
j +

(
p̂T

ijmj

)(
I − 5p̂ij p̂T

ij

))
.

(4)
The matrix Fij , in units {N·A−1 ·m−2}, is a function of pij and
mj . We note that fij linearly depends on mi . If all vectors are
expressed with respect to a common coordinate frame, it is easy
to show that fij = −fj i (i.e., forces between dipoles are “equal
and opposite”, as expected).

B. Forces Between an Arbitrary Number of Dipoles

For a set of N magnetic dipoles, it is not possible to control
the forces applied to all of the dipoles independently. We will
structure the problem as generating a set of desired forces on
the first N − 1 of those dipoles, defined with respect to a com-
mon reference frame centered at the location of the N th dipole,
with the understanding that equal and opposite forces will be
generated on the N th dipole.

We will use the input M ∈ R3N , which is an array compris-
ing the N controllable dipole vectors, to generate the output
F ∈ R3(N −1) , which is an array comprising the force vectors
on the first N − 1 dipoles:

M =

⎡

⎢
⎣

m1
...

mN

⎤

⎥
⎦ , F =

⎡

⎢
⎣

F1
...

FN −1

⎤

⎥
⎦ (5)

where the total force Fj on dipole j is the sum of all of the
dipole-dipole interaction forces:

Fj =
N∑

i=1

fij (6)

with fij defined in (3), and where we define fjj = 0 (i.e., there
is no force of a dipole on itself).



1010 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 2, NO. 2, APRIL 2017

It is understood that the force on the N th dipole is constrained
by the forces on the first N − 1:

N∑

i=1

Fi = 0 −→ FN = −
N −1∑

i=1

Fi (7)

Utilizing the fact that fij = −fj i , the force array F can be
expressed in two equally valid forms:

F =

⎡

⎢
⎢
⎢
⎣

O F21 . . . F(N −1)1 FN 1
F12 O . . . F(N −1)2 FN 2

...
...

. . .
...

...
F1(N −1) F2(N −1) . . . O FN (N −1)

⎤

⎥
⎥
⎥
⎦

M

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
N∑

i=1
F1i O . . . O O

O −
N∑

i=1
F2i . . . O O

...
...

. . .
...

...

O O . . . −
N∑

i=1
F(N −1)i O

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

M

(8)

where O is a square zero matrix, and we define Fii = O.

III. SOLVING THE CONSTRAINED OPTIMIZATION

A. Problem Statement

Our goal is to find a weighted-dipole solution that minimizes
a weighted L2-norm for a given set of desired internal forces
between a set of N controllable magnetic dipoles. We assume
the desired forces are provided by some external planner or
closed-loop controller. We say “a” solution, rather than “the”
solution, because there are always at least two solutions that
achieve the minimum dipole. For a set of free-floating bodies, it
is not possible to change the momentum of the center-of-mass
of the bodies using only internal forces, so we will structure the
problem as generating a set of desired forces on the first N − 1
of those dipoles, defined with respect to a common reference
frame centered at the location of the N th dipole, with the un-
derstanding that equal and opposite forces will be generated on
the N th dipole.

We will use the input M to generate the output F, defined in
(5), with the goal of achieving some desired output Fd :

Fd =

⎡

⎢
⎣

Fd1
...

Fd(N −1)

⎤

⎥
⎦ . (9)

Given a desired force Fd , our goal is to solve the following
nonlinear constrained optimization problem:

min
M

1
2
MT W M

s.t. F(M) = Fd (10)

where W ∈ R3N ×3N is a diagonal weighting matrix with
positive entries, comprising N diagonal weighting subma-

trices associated with each of the individual dipoles: W =
diag{W1 , . . . , WN }.

B. Sequential Quadratic Programming

The Lagrangian function L : R3N × R3(N −1) → R is:

L =
1
2
MT W M + λT (F − Fd) (11)

where λ ∈ R3(N −1) is an array of Lagrange multipliers, which
we will maintain as N − 1 independent vectors of Lagrange
multipliers associated with the N − 1 force vectors:

λ =

⎡

⎢
⎣

λ1
...

λN −1

⎤

⎥
⎦ . (12)

SQP, applied to our problem, is as follows [17]. Given some
initial value of M[�] and λ[�] at iteration �, the update for M[� +
1] = M[�] + ΔM and λ[� + 1] can be found by solving the
system of equations

[
H[�] JT [�]

J [�] O

][
ΔM

λ[� + 1]

]

=

[
−∇M

( 1
2 M

T W M
)

− (F − Fd)

]

(13)

for example, using Gaussian elimination, where
∇M ( 1

2 M
T W M) is the gradient of the objective func-

tion with respect to M, J is the Jacobian of the constraint
F − Fd with respect to M, and H is the Hessian of the
Lagrangian with respect to M. Although numerical methods
exist to approximate each of the various quantities of interest
in (13), we explicitly solve for each quantity below, which
is an important contribution to the characterization and
efficient implementation of this method, but has not been done
previously.

First, we calculate the gradient of the objective function with
respect to the 3N independent variables in M as:

∇M

(
1
2
MT W M

)
= W M (14)

Next, we compute the Jacobian J ∈ R3(N −1)×3N . Because
Fd can be considered constant throughout the optimization, the
Jacobian of the constraint F − Fd with respect to M is equal to
the Jacobian of F with respect to M. We can find this Jacobian
J that relates differential changes in the dipole moments to
differential changes in the forces:

dF = JdM =
[

∂F
∂m 1

. . . ∂F
∂mN

]

⎡

⎢
⎣

dm1
...

dmN

⎤

⎥
⎦ (15)

The partial derivatives in J can be computed analytically by
utilizing the two forms of F given in (8), and noting that Fij is
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a function of mj but not mi . The resulting Jacobian is

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
N∑

i=1
F1i F21 . . . F(N −1)1 FN 1

F12 −
N∑

i=1
F2i . . . F(N −1)2 FN 2

...
...

. . .
...

...

F1(N −1) F2(N −1) . . . −
N∑

i=1
F(N −1)i FN (N −1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(16)
Note that once this Jacobian is computed and stored, neither
of the two matrices in (8) need to be explicitly computed nor
stored, since F can be computed efficiently using the main
diagonal blocks of J .

Finally, we compute the symmetric Hessian H ∈ R3N ×3N :

H = ∇2
MM (L) =

⎡

⎢
⎢
⎢
⎣

W1 H12 . . . H1N

H21 W2 . . . H2N

...
...

. . .
...

HN 1 HN 2 . . . WN

⎤

⎥
⎥
⎥
⎦

(17)

where the remaining 3 × 3 matrix blocks are of the form

Hij =
∂(FT

ij λj )
∂mj

− ∂(FT
ij λi)

∂mj
(18)

and the partial derivatives in (18) have the analytic form

∂(FT
ijλk )

∂mj
=

3μ0

4π‖pij‖4

(
p̂ijλ

T
k +

(
p̂T

ijλk

)
I

+
(
I − 5p̂ij p̂T

ij

)
λk p̂T

ij

)
(19)

where we define λN = 0. Note that only half of the remaining
blocks in (17) need to be explicitly computed using (18), due to
the known symmetry of the Hessian.

For SQP, we must initialize the 3N dipole moments (i.e.,
N dipole moment vectors) in M and the 3(N − 1) Lagrange
multipliers in λ to seed the update equation (13). If we have the
solution to the optimization problem from a previous time step,
and our Fd has not changed significantly, we use the solution
for M and λ from the previous time step as our initial guess
for the current time step. If we do not have a solution from a
previous time step, we must determine a method to initialize M
and λ, which could be as simple choosing random values.

C. Choosing the Weighting Matrix

Our objective function in (10) requires a weighting matrix
W . We established in (1) that the individual controllable dipoles
are linear with respect to the current, so the objective function
will be quadratic with respect to current. Let Ri ∈ R3×3 be a
diagonal matrix comprising the individual coil resistances in a
given spacecraft (including the series resistances of the power
electronics for the individual coils). By choosing the individual
weighting matrices in W as

Wi = 2M−T
i RiM

−1
i (20)

and defining R = diag{R1 , . . . , RN }, we find that our objective
function in (10) becomes

1
2
MT W M = IT RI (21)

which corresponds to the total power consumed across all
dipoles, for a minimum-power solution.

For application in EMFF, there is interest in using high-
temperature-superconducting (HTS) coils to enable very large
currents to be used without any associated Joule heating and
power loss [7], [8]. In the case of HTS coils, there is still a
limit on the maximum current that can be applied to a given
coil to remain in the superconducting regime, and care must
be taken to avoid rapid changes in the current to mitigate the
risk of quenching (rapid heating and destruction of the coils).
The methods of this paper naturally address those two goals. In
the scenario of interest here, in which the current flowing in a
given HTS coil is being controlled in real-time, there will still
be power electronics in the circuit to generate and control the
current, and although the coils themselves may be cooled such
that they have no electrical resistance (and thus no power loss),
the power electronics for a given coil will still have an effective
lumped resistance, which will result in power loss associated
with current flow. In the case of HTS coils, the R matrix will
comprise only those power-electronic resistances, without any
coil resistances, but (20) is still a viable way to choose the
weighting matrix.

In a distributed system in which each spacecraft carries its
own power source, minimizing the total power being consumed
may not be the best policy, since the failure (through depletion
of power) of a single spacecraft will compromise the control
of the entire system. For example, in certain scenarios a central
spacecraft may be asked to generate a relatively large dipole, so
that each of the surrounding spacecraft can react against it using
relatively small dipoles, which will rapidly deplete the central
spacecraft’s energy. Our framework allows the alternate solution
of weighting an individual dipole as a function of the energy
currently stored in that specific spacecraft, so that a spacecraft
with limited energy storage will be asked to contribute less to
the combined effort.

D. Discussion

Let us now discuss a few facts that will help inform our
search for an optimal solution. First, if the desired force array
is Fd = 0, it is self-evident that the optimal solution is M = 0.
Second, from inspection of (8) it is easy to verify that if M �= 0
is a valid solution, then so is −M, and both solutions will result
in the same ‖M‖, so there will never be a unique global optimal
solution. Consequently, it is desirable for the sake of continuity
to choose whichever solution is closest to the solution from the
previous time step. Third, it is easy to verify that (13) does not
have a solution if M = 0.

By combining the three facts above, it is clear that when tran-
sitioning from Fd = 0 to any other Fd , even continuously, there
will not be a unique optimal solution for how to continuously
transition M away from M = 0, and the update equation (13)
cannot be used in this case (at least not without modification).
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Fig. 1. Three potential dipole solutions (solid arrows) generating the same
purely attractive force (dashed arrow) on dipole 1; the force on dipole 2 is equal
and opposite. Solutions (a) and (b) represent optimal minimum-dipole solutions.
Solution (c) and all rotations of that solution about the force vector represent
suboptimal solutions that are

√
2 larger than optimal.

Fig. 2. EMFF scenarios considered in numerical simulations, with interdipole
spacing indicated. (a) N = 2. (b) N = 3, collinear. (c) N = 3, equilateral
triangle. (d) N = 5, collinear.

We must specifically address how to handle this special case.
In the numerical verification in Section IV, we will simply ran-
domly assign M[0] to seed our search, providing a benchmark
against which future methods can be compared.

The case of N = 2 with W = I is simple enough to con-
sider a closed-form solution to our problem, and it can provide
further insight into what we should expect from the general op-
timization. In Fig. 1, we consider the case in which the desired
force is purely attractive. Fig. 1(a) and 1(b) show the two op-
timal solutions, each with the same ‖M‖; these solutions are
intuitive, corresponding to the “north pole” of one dipole being
attracted to the “south pole” of the other. Fig. 1(c) shows a sub-
optimal solution, with the magnitudes of the dipoles shown to
scale relative to the optimal solutions; because this solution is
at unstable equilibrium, being equidistant from the two optimal
solutions, it could represent a solution in which our optimization
routine could get stuck if sufficient steps are not taken. As we
proceed forward with N > 2, we should be aware of these types
of issues.

IV. NUMERICAL CHARACTERIZATION

In this section we conduct Monte Carlo simulations to verify
and characterize our method. The four cases that we consider
are depicted in Fig. 2, representing the special cases of EMFF
that have been explored in prior work, as described in Section I.
We conduct simulations that are representative of a closed-loop
regulation problem in which the set of spacecraft is trying to
maintain a desired equilibrium position. Although the four equi-
librium configurations lie in either a line or plane, the forces that
we consider are in full 3-D.

A. Methods

We simply use W = I so that MT W M = ‖M‖2 . We first
generate a random desired force array Fd , where each of the
elements in the arrays is chosen from a uniform distribution in
the range (−1, 1). This gives us a set of target forces that are
nontrivial and span the space of the types of forces that might
be experienced in a closed-loop regulation problem. Next, we
generate a random moment array M[0] to seed the update equa-
tion (13), where each of the elements in the array is chosen from
a uniform distribution in the range (−107 , 107) to counter the
effect of μ0 in (4) in order to make the update equation (13) well
conditioned. This is done to mitigate the risk of converging on
a local minimum that is far from a global minimum. We simply
initialize the Lagrange multiplier array as λ[0] = 0. We then it-
erate (13) until the force has converged to within 1% error of the
desired force (‖F − Fd‖/‖Fd‖ < 0.01), and until the change
in the dipole vector is less than 1% (‖ΔM‖/‖M‖ < 0.01). We
use MATLAB’s “backslash” operation to solve (13), rather than
any specialized solver. We cap the number of SQP iterations
allowed to 50, based on pilot testing. After convergence (or lack
thereof) to a local minimum, we record the final value of ‖M‖
and the number of iterations required. Then we repeat the pro-
cess with a new random M[0] but the same Fd , for 50 trials.
We then find the minimum value of ‖M‖ from the ensemble,
which is obtained by M∗, and consider ‖M∗‖ to be the opti-
mal value for that given Fd . We then determine the percentage
of trials that converged to the optimal value by including any
‖M‖ within 1% of ‖M∗‖. We also characterize the number of
iterations it took to converge to an optimal solution (minimum,
mean, and maximum), in the cases that an optimal solution was
found. Finally, we repeat the entire process for new randomly
generated Fd , for 50 trials.

B. Results

The combined results are depicted in Fig. 3, ordered (from
top to bottom) corresponding with the four cases in Fig. 2.

Considering the left column of Fig. 3, across the 50 distinct
Fd trials in each case, the mean±standard deviation in the
percentage of M[0] that ultimately resulted in convergence to
the optimal solution was as follows: N = 2, 46 ± 19%; N = 3
collinear, 72 ± 18%; N = 3 equilateral triangle, 23 ± 12%;
N = 5 collinear, 13 ± 6%. We do not see a strong dependence
on N , and instead the results seem to be highly configuration-
dependent. We see that substantially higher percentages con-
verge to some suboptimal solution, and upon inspection of the
resulting normalized ||M|| values, we see that many of the solu-
tions are only slightly suboptimal, falling near ||M||/||M∗|| = 1
(see the right column of Fig. 3). The percentage of M[0] that
ultimately resulted in convergence to some solution does
appear to be dependent on N , with poorer convergence with
increasing N .

Considering the center column of Fig. 3, of the trials that con-
verged to the optimal value, the minimum number of iterations
ever observed to converge to the optimal was quite insensitive
to N : N = 2, 9; N = 3 collinear, 15; N = 3 equilateral trian-
gle, 15; N = 5, 15. However, the median number of trials to
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Fig. 3. Combined results of numerical simulations for the four EMFF scenarios shown in Fig. 2, which correspond to, from Top to Bottom: N = 2; N = 3,
collinear; N = 3, equilateral triangle; N = 5, collinear. Left: percentage of trials that converged to any value, and percentage converged to the optimal value.
Center: of the trials that converged to the optimal value (i.e., the black circles in the left column), the number of iterations required to converge. Right: magnitude
of the dipole array relative to the optimal, ||M||/||M∗||, for all trials that converged to any value (i.e., the red squares in the left column).

converge on the optimal is more informative and useful from an
engineering perspective, since half of all future M[0] will con-
verge at, or faster than, the median. We found that the median
number of trials to converge on the optimal is sensitive to N .
The median number of trials to converge to an optimal solution
is: N = 2, 16; N = 3 collinear, 18; N = 3 equilateral triangle,
20; N = 5 collinear, 22.

C. Discussion

As discussed earlier, in cases in which we have a solution for
M and λ from a prior time step, we will use those values to
seed M[0] and λ[0] for the current time step. However, since

we can only be assured that the prior solution corresponded to
a local optimum, it would be well advised to also consider a
number of random starting points, in the event that one finds a
superior solution. In this way, the method can proceed with the
real-time control task with a good solution (although possibly
suboptimal) while the method continues to search for a better
solution. The results of Fig. 3 suggest this is a viable strategy,
considering a relatively high percentage of M[0] converge on
some value, and those values are often not that suboptimal.

We have demonstrated satisfactory behavior with N ≤ 5
dipoles in configurations relevant to EMFF, but we have not
exhaustively explored other configurations, nor have we con-
sidered more dipoles. For more dipoles, or for more efficient
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computation, it might be beneficial to further use mathemati-
cal structure in the optimization problem, such as the quadratic
structure of the constraints and objective, to identify minimum-
power solutions. In this case, one might apply global optimiza-
tion methods such as convex-envelope approximations, branch
and bound methods, and stochastic methods such as simulated
annealing [17].

Determining the computational complexity of using SQP to
solve (10) is non-trivial. Because (10) has only equality con-
straints with no inequality constraints, SQP is equivalent to
solving a sequence of Newton-KKT systems as defined in (13).
SQP is known to be quadratically convergent, provided that the
starting point is sufficiently close to the optimum ([17], Ch.
18). However, the convergence rate will depend on N , and from
Fig. 3 we observe that empirically the number of iterations does
increase with increasing N . The computational cost to solve the
(6N − 3) × (6N − 3) linear problem (13) at each iteration is,
naively using a direct solver, O(N 3), though an iterative method
(e.g., conjugate gradients) with a warm start strategy will reduce
this further.

It may be possible to improve our initial guess M[0] over
choosing random numbers. For example, in the simple cases of
N = 2 depicted in Fig. 1, we can explicitly compute the optimal
and suboptimal values of ‖M‖ as a function of the desired forces
and the interdipole distance. It may be possible to use such a
computation to seed our guess for M[0] in the more general
case, at least in approximate magnitude, although it is currently
not clear to the authors how to proceed with such a method.

V. CONCLUSION

We presented a method for finding a minimum-power solu-
tion for a given set of interdipole forces. We approached the
optimization problem using sequential quadratic programming,
which requires a Jacobain relating changes in the dipoles to
changes in forces, as well as the gradient and Hessian of a
Lagrangian function. We provided a compact analytic solution
for all three of these quantities, which can be implemented nu-
merically with a small set of simple functions. We conducted
numerical simulations to verify the method and characterize its
performance when numerical routines are randomly initialized,
which can serve as a benchmark against which future improve-
ments can be quantified.
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