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Digital Emulation of Pulse Frequency Modulation for
Neuroprosthetic Sensory Feedback

Jake J. Abbott, Member, IEEE, and Sanford G. Meek

Abstract—Pulse frequency modulation (PFM) is a method of en-
coding information where the instantaneous frequency of a pulse
train carries the signal’s information. PFM is of particular interest
to those working towards interfacing prosthetic devices directly
with the human nervous system. In this paper, we consider the ef-
fects of directly implementing PFM with a digital microprocessor.
We consider three digital PFM algorithms: two are deterministic,
and the third has a probabilistic nature that has desirable time-av-
eraged and ensemble behavior. For each algorithm, we analytically
bound the error between the desired pulse frequency and the actual
frequency output by the microprocessor. We aim to provide tools
for the design and analysis of closed-loop neuroprosthetic systems
containing PFM.

Index Terms—Peripheral nervous system, prosthesis, pulse fre-
quency modulation (PFM).

1. INTRODUCTION

ULSE FREQUENCY MODULATION (PFM) is a method
Pof encoding information where the instantaneous fre-
quency of a pulse train carries the signal’s information. PFM
is currently of particular interest to those researchers working
towards communicating directly with the human central ner-
vous system, since the nervous system uses PFM to transmit
information [1], [2]; the neural “spikes” arise from chemical
action potentials at the cellular level [3]. We are particularly
interested in PFM for the direct neural control of a prosthetic
arm and hand through the peripheral nervous system (PNS).

Direct cortical control of robot manipulators has been
achieved by utilizing large numbers of neural signals [4],
making use of the stochastic nature of neural spikes. Alterna-
tively, researchers have worked toward the design of prostheses
to be interfaced to the PNS [5]. A naturally functioning pros-
thesis controlled by the PNS will require both efferent and
afferent communication. Prior work has considered the ability
to control muscle forces by inputting pulses trains directly into
the PNS [6], as well as the detection of individual neural spikes
from noisy data [7]. An active area of research is the design
of devices for stimulating the PNS [8], [9]. Work has begun to
consider the input of PFM sensor data back into the nervous
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Fig. 1. University of Utah experimental neuroprosthetic hand.

system through afferent nerves [10], [11]. A thorough review
of prior work in neuroprosthetics is given in [2].

Recently, Dhillon and Horch [12] presented the first demon-
stration of direct neural control of an artificial arm with direct
sensory feedback into the PNS. They use longitudinal intrafa-
sicular electrodes [9], which excite a small number of neurons
in the local area of the electrode. Consequently, there is a need
for accurate individual neural stimulation since the spatial
averaging of multiple neurons is not available. The experi-
mental prosthetic hand being considered at the University of
Utah, which is equipped with position/velocity sensing and
three-degrees-of-freedom force sensing, is shown in Fig. 1; the
prototype was presented in [13].

PFM was first analyzed decades ago [14], [15], and was later
applied to electromechanical control systems [16]. The analysis
and design of systems containing PFM is difficult because of the
nonlinear and time-varying nature of PFM. The stability of PFM
control systems has been investigated, typically taking the form
of analysis and prediction of potential limit cycles [17]. Previous
work on PFM control systems has assumed an ideal (analog)
implementation of PFM, but the design of neuroprostheses will
likely involve digital microprocessors implementing high-level
control systems. Prosthetic design will also put size and power
consumption at a premium.

In this paper, we consider the direct implementation of PFM
with a digital microprocessor. We consider the error that is in-
curred when we attempt to output a pulse train of a desired fre-
quency from a microprocessor with its own constant sampling
frequency. This error has the effect of limiting the resolution of
afferent signals being fed into the PNS, with the error gener-
ally increasing with pulse frequency. We consider three digital
PFM algorithms: the first two are deterministic (i.e., there is a
single-valued mapping from the reference pulse frequency to
the actual pulse frequency), and the third has a probabilistic na-
ture that we demonstrate. For each algorithm, we analytically
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Fig. 2. V/F converter. The output pulse frequency is linearly proportional to
the input voltage V;.

quantify the error bounds. These errors impact on the resolution
of sensory feedback, and will likely impact on the stability of

closed-loop neuroprosthetic systems.
II. PULSE FREQUENCY MODULATION

An integral pulse frequency modulator is a device that emits
a pulse whenever the magnitude of the integral of the input
reaches a threshold value [14], [15]. For a system with input
u and output y, the device is described by

d
— =u—asg(x)s (2| — ) (1)
y =sgn(x)8 (2| — ) @)

where « is the threshold integral value to emit a pulse. This
device can be realized with an analog circuit (with the excep-
tion of the ideal ¢ of unit area, infinite height, and infinites-
imal duration). There is no single definition of this circuit, but
Fig. 2 shows an example capturing the salient details, synthe-
sized from two sources [18], [19]. This circuit is known as a
“voltage-to-frequency converter.”

Neuroprostheses will likely make use of digital micropro-
cessors to implement high-level control systems. Any sensory
feedback calculated by the control system must be converted to
a pulse train to be fed into the nervous system, and there are
two basic methods to accomplish this. In the first, the micropro-
cessor outputs a binary number, which is then converted to an
analog voltage by a digital-to-analog (D/A) converter, which is
then converted to a digital pulse train by a voltage-to-frequency
(V/F) converter. In the second method, we remove the D/A and
V/F converters, and output the digital pulse train directly from
the microprocessor. In both methods, the digital pulse train is
finally converted to an analog neural spike train and fed into an
afferent nerve. It may be desirable to implement many parallel
channels of feedback information, but, using the first method,
this would also require many D/A and V/F' converters, which
may be prohibitive under power and space restrictions. In com-
parison, a single m-bit binary number could be used to gen-
erate n digital pulse trains directly. The resolution of this second
method is ultimately limited by the sampling frequency of the
microprocessor, and is the focus of this paper.

In the idealized analog version of PFM, the integrand is reset
to zero at the occurrence of an output pulse. However, in a
discrete controller, this simple notion of resetting the system
becomes ambiguous, due to inherent limitations in numerical
integration with a constant sampling frequency. Different nu-
merical integration schemes can be used to emulate PFM, none
of which perfectly recreate the ideal circuit. An additional fun-
damental limitation of digital PFM is that no pulse frequency

begin loop begin loop begin loop
I=1+T, I=1+T, I=1+T,
if1>T, ifT,-1<05T,| ifI=T,
Output pulse Output pulse Output pulse
I=0 I=0 I=I-T,
end if end if end if
end loop end loop end loop
Algorithm 1 Algorithm 2 Algorithm 3

Fig. 3. Three digital PFM algorithms to output a pulse train with desired pulse
period 7. using a constant sampling period 7’s.

faster than the microprocessor sampling frequency can possibly
be realized. We will assume that the desired frequency is always
less than the sampling frequency.

Integral PFM is capable of outputting both positive and nega-
tive pulses. However, the human nervous system is only capable
of transmitting pulses of a single sign—;joint control is accom-
plished by antagonistic muscles, each only capable of pulling.
This led to the development of parallel-path single-signed inte-
gral PEM [14]. Consequently, in this paper, we only consider the
generation of single-signed pulses. In addition, for the purpose
of analysis, we only consider constant reference frequencies.
In general, there is a fundamental loss of information during
pulse frequency modulation of a time-varying signal that we will
not address. However, the insights gained here are applicable to
time-varying reference frequencies.

For the remainder of this paper, we use the following termi-
nology. The microprocessor has a constant sampling frequency
fs and sampling period T = 1/ fs. The desired pulse frequency
is given as a reference f;., and has an associated reference pe-
riod T, = 1/ f,.. The actual output pulse period T} is updated at
the occurrence of a pulse, and is measured as the time that has
passed since the occurrence of the previous pulse. The output
pulse frequency is defined as f5s = 1/T5.

III. DIGITAL PFM ALGORITHMS

The first digital PFM algorithm that we consider is given in
Fig. 3 as Algorithm 1. In this naive approach, the algorithm nu-
merically integrates time until the value of the integrand crosses
the threshold 7;.. At this sample, a pulse is output and the inte-
grand is reset to zero. Fig. 4 shows the output pulse frequency f;s
versus the reference pulse frequency f;., both normalized by the
sampling frequency f, for Algorithm 1. We observe that signif-
icant errors in pulse frequency occur for reference frequencies
as low as 10% of the sampling frequency. It is also clear that the
output frequency is always less than the reference frequency.
The magnitude of the bound on the error in fs is given by

|f 6 — f 'r| — f T
fr fs+ fr
For reference-frequency values that are very small relative to

the sampling frequency (f. < fs), the bound of (3) can be
approximated by the simple expression

3)

s =fol o 1o (4)

Jr fs

The second digital PFM algorithm that we consider is given
in Fig. 3 as Algorithm 2. This algorithm looks forward in time,
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Fig. 4. Input/output mapping for Algorithm 1. Error bounds, which also apply
to Algorithm 3, are also shown.

in an attempt to remove the bias (i.e., constant under-represen-
tation of fs) exhibited by Algorithm 1. The algorithm emits a
pulse, even if the integrand has not yet reached the threshold
value, if that pulse would tend to minimize the error in T’s. This
works under the assumption that the reference pulse frequency
will remain constant over the next sampling period. Fig. 5 shows
the output pulse frequency fs versus the reference pulse fre-
quency f,, both normalized by the sampling frequency fs, for
Algorithm 2. The nonlinear nature of the input/output mapping
remains, but the bias has been largely removed. The magnitude
of the bound on the error in f;s for over-representation of fs (i.e.,
the upper bound) is

|f§_fr| — fr
fr 2fs_fr'

The magnitude of the upper error bound is always slightly larger
than that of the lower error bound. Thus, the error bound (5) can
be used as an overall error bound for Algorithm 2. However, note
that this error bound becomes very conservative for f,./fs >
2/3. For reference-frequency values that are very small relative
to the sampling frequency (f. < fs), the bound of (5) can be
approximated by the simple expression

|f6_fr| ~ i

T 2f

Algorithms 1 and 2 are both deterministic, in the sense that
there is a single-valued mapping from the reference frequency
fr to the output pulse frequency fs. We now discuss a third dig-
ital PFM algorithm that outputs the correct reference frequency
in a probabilistic sense. The algorithm we consider is given in
Fig. 3 as Algorithm 3. Here, time is numerically integrated until
a threshold value is crossed, but unlike the two previous algo-
rithms, the integrand is not reset to zero. The result is an output
pulse train that toggles back and forth between two values of T5,
sometimes overrepresenting and sometimes under-representing
the reference value, at a ratio appropriate for the value of 7.
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Fig. 5. Input/output mapping for Algorithm 2. Error bounds are also shown.

To quantify this notion of outputting the correct pulse period
in a probabilistic sense, let us consider any value of 7;. that is
rational and greater than the positive rational sampling period
T. Let n be the smallest positive integer such that m = nT /T,
is an integer. Starting with any initial value of the integrand,
after n cycles of the microprocessor, the integrand returns to
the initial value, and a total of m pulses is emitted during that
time. Let p be the positive integer such that T,. = (p + &)T,
where £ € [0,1). Let ¢ be the integer number of pulses giving
Ts = (p + 1)T, within the n cycles; there are consequently
m — q pulses giving Ts = pTs within the n cycles. From the
definition of n, we may write the equation

q(p + I)Ts + (m - q)st =nTs. @)

We are concerned with the ratio ¢/m, which is the ratio of pulses
of duration Ts = (p + 1)T to the total number of pulses that
occur within the n cycles. It can easily be shown that the solution
to the above equations is ¢/m = ¢. During a sequence of n
cycles, the output pulse train may appear chaotic, but repeats
after the nth cycle. The above proof holds true for any value of
T’ that is rational, but the underlying system behavior holds true
for any value of 7.; however, an irrational 7). will never repeat
Let us solidify this concept with a numerical example. Con-
sider Ty, = 1 and T,. = 1.7. The digital PFM algorithm will
output two distinct pulse periods: Ts € {1,2}. We haven = 17,
m = 10, and ¢ = 0.7, which gives ¢ = 7. Thus, for every
ten pulses that are emitted, seven give 15 = 2, and three give
Ts = 1. The value of £ = 0.7 corresponds to the fact that
T, = 1.7 is 70% of the way between T,, = 1 and T, = 2, and
results in 70% of the pulses emitted corresponding to 7, = 2.
Next, we demonstrate that the underlying behavior is not de-
pendent on 7). or T being rational. Fig. 6 shows three runs
with f. = 0.43f, (T, =~ 2.331%), with the initial value of the
integrand randomly chosen between 0 and 7. We see in this
figure that the pulse period does take on two distinct values:
Ts € {2,3}. We cannot compute n or m for this value of f,,
but we know that ¢ =~ 0.33. From Fig. 6, we find that of the 63
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Fig. 6. Three runs of Algorithm 3 for f. = 0.43f,, with the initial value of
the integrand randomly chosen between 0 and Ts.

pulses emitted, 21 resulted in Ts = 3 (that is, one in three). This
is expected from our value of &.

It is possible to bound the instantaneous error resulting from
this algorithm, but unlike with Algorithms 1 and 2, with this
method it is possible to instantaneously over- and under-repre-
sent nearly every value of f,.. The instantaneous error bounds
are shown in Fig. 4. The lower bound from Algorithm 1, given
by (3), applies as the lower bound here as well. However, we
now have an addition upper bound

|f6_fr| — fr
fr .fs_fr.

The magnitude of this upper bound is always larger than the
magnitude of the lower bound, so it can be used as the overall
error bound for this algorithm. Note that this error bound be-
comes very conservative for f,./fs > 1/2. The simple bound
(4) can be used to approximate (8) when f, < f;.

For the two deterministic algorithms, it is simple to quantify
the output pulse frequency on average, since it is constant. How-
ever, for this third algorithm, it is not obvious how best to de-
scribe the “average” output pulse frequency. This is ultimately
a function of a chosen pulse frequency demodulation (PFD)
method; various PFD methods are discussed in [17]. A simple
PFD method is a windowing method, where one simply counts
the pulses that occur inside a fixed time window, and then di-
vides the window time by the number of pulses, resulting in an
“average” pulse period. If we again consider the set of rational
reference periods 7. discussed above, and make use of the def-
inition of m, we compute the time-average output pulse period
for the this algorithm as

(®)

T
Té,av = n_ =1T.. &)
m

In other words, for a rational 7., for each window of width nT’,
there occurs m pulses, which gives an average output pulse pe-
riod of 7)., and consequently, an output pulse frequency of f;..
As before, this underlying system behavior holds true even when
T’ is not rational (consider the limit as the PFD window expands
to infinity).

IV. DISCUSSION

A comparison of the error bounds obtained with the three dig-
ital PFM algorithms is given as Fig. 7. The data is shown at
two different scales. For f,./fs < 0.5, the error bound from
Algorithm 2 is smaller than that from Algorithm 1, and the
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Fig. 7. Comparison of error bounds obtained using three digital PFM algo-
rithms, shown at two scales.

error bound from Algorithm 3 is larger than that of the first. For
fr/fs < 0.1, the true error bounds are closely approximated
by the simple error bounds. For these relatively low reference
frequencies, the error bounds resulting from Algorithm 1 and
Algorithm 3 converge, and are roughly twice as large as those
from Algorithm 2. Each of the algorithms presented are essen-
tially equivalent in terms of computation cost. Algorithm 2 is
always desirable over Algorithm 1.

It is interesting to note that Algorithm 3 provides the correct
frequency when averaged over time, but simultaneously gener-
ates the largest instantaneous errors. The nervous system tends
to demodulate PFM signals using stochastic methods that tend
to average many spike trains, making information transfer ro-
bust to errors in any single spike train. A collection of spike
trains like those in Fig. 6, where each channel has a unique inte-
grator initialization, would have an ensemble average that has
the desired pulse frequency. Consequently, Algorithm 3 may
prove to have desirable properties for afferent sensory feedback.
Multiple digital PEM channels using Algorithm 2 would have
an ensemble average that retains the error seen in the individual
channels. Ultimately, only human experiments will reveal which
of Algorithms 2 and 3 is the most desirable for interacting with
the human nervous system. The number of available feedback
channels for a given sensation will likely factor in as well.

There are two other physiological aspects that indicate that
digital emulation of PFM may be particularly useful for afferent
sensory feedback. First, in recent experiments it was found that
human subjects can discriminate neural feedback pulse frequen-
cies up to 500 Hz [12]. This value roughly corresponds to the
absolute physiological upper bound on neural spike frequencies
imposed by the duration of individual spikes and the absolute
refractory period that follows each spike. Second, there is evi-
dence of a logarithmic relationship between afferent pulse fre-
quency and perceived sensation [10]. This indicates a decreasing
sensitivity to errors in pulse frequency as the pulse frequency in-
creases. Both of these properties tend to mitigate the impact of
errors incurred with digital PFM—mitigate, but not alleviate.
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The upper bounds on possible reference frequencies can be
used in conjunction with the analysis presented here in the de-
sign of prosthetic control systems. For example, if it was deter-
mined that a 5% error in output pulse frequency was acceptable,
a microprocessor implementing Algorithm 2 must be capable of
running at a minimum of approximately 5000 Hz (assuming a
500-Hz upper limit on f,.). Implementing this sampling rate in
a clinical arm is nontrivial, due to computation and A/D time.
Our current system runs at 2000 Hz—this rate has errors of up
to 14.3% using Algorithm 2.

This paper is not a presentation of what pulse frequencies
should be used to generate a given sensation. The analysis pre-
sented here applies regardless of how the desired pulse fre-
quency is obtained—whether the mapping from pulse frequency
to perceived sensation is linear or logarithmic, and whether an
absence of sensation corresponds to a zero or non-zero base-
line pulse frequency. Another aspect of digital PFM not ex-
plored in this paper is time-varying reference frequencies, which
may become important once digital PFM is included as part
of a closed-loop feedback system. These feedback systems are
known to demonstrate undesirable limit cycles [17]. For rela-
tively low-bandwidth systems, such as the human body, con-
sideration of resolution errors of digital PFM to constant ref-
erence frequencies should provide a good approximation for
closed-loop system behavior. The fact that the nervous system
naturally makes use of PFM indicates that it should also be suf-
ficient for neuroprostheses. Human trials with the neuropros-
thesis at the University of Utah are ongoing, and the sensitivity
of a closed-loop system to the errors discussed will be explored
experimentally in the future.

V. CONCLUSION

We have presented three simple algorithms for implementing
PFM directly with a microprocessor with its own constant sam-
pling frequency, reducing the complexity of the analog elec-
tronics necessary for afferent sensory feedback. Two methods
give a deterministic mapping from the desired pulse frequency
to actual pulse frequency. We quantified the errors incurred with
each algorithm, and showed that a smart choice of algorithm can
reduce errors incurred by a factor of two. A third algorithm pre-
sented results in a pulse frequency that is close to the desired
frequency in a probabilistic sense. That is, the actual pulse pe-
riod is overrepresented and underrepresented at a ratio that is
proportional to the desired pulse period, resulting in an optimal
time-average output frequency. Using knowledge of the errors
incurred with digitally implementing PFM directly, as well as
the maximum pulse frequency that can be discriminated by the
human nervous system and allowable system errors, it is pos-
sible to find a lower bound on the necessary microprocessor
sampling frequency such that PFM can be implemented directly
with a microprocessor.
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