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Abstract

Microrobots have the potential to dramatically change many aspects
of medicine by navigating through bodily fluids to perform targeted
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diagnosis and therapy. Researchers have proposed numerous micro-
robotic swimming methods, with the vast majority utilizing magnetic
fields to wirelessly power and control the microrobot. In this paper,
we compare three promising methods of microrobot swimming (us-
ing magnetic fields to rotate helical propellers that mimic bacterial
flagella, using magnetic fields to oscillate a magnetic head with a
rigidly attached elastic tail, and pulling directly with magnetic field
gradients) considering practical hardware limitations in the genera-
tion of magnetic fields. We find that helical propellers and elastic tails
have very comparable performance, and they generally become more
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desirable than gradient pulling as size decreases and as distance from
the magnetic-field-generation source increases. We provide a discus-
sion of why helical propellers are likely the best overall choice for in
vivo applications.

KEY WORDS—microrobot, magnetic, wireless, untethered,
medical, in vivo

1. Introduction

Microrobots have the potential to dramatically change many
aspects of medicine by navigating through bodily fluids to
perform targeted diagnosis and therapy. Microrobots, like mi-
croorganisms, swim in a low-Reynolds-number regime, requir-
ing swimming methods that differ from macroscale swimmers.
Microrobots can also vary in size by orders of magnitude. Re-
searchers have proposed numerous microrobotic swimming
methods, many biomimetic, with the vast majority utilizing
magnetic fields to wirelessly power and control the microro-
bot. At ETH Zurich we have developed two different magnetic
microrobots that utilize very different propulsion schemes: one
is a submillimeter-sized device that is pulled with magnetic
field gradients (see Figure 1(a) and Yesin et al. (2006))� the
other has a helical propeller that mimics a bacterial flagellum
in both form and scale and is rotated with a magnetic field
(see Figure 1(b) and Zhang et al. (2009)). Another propul-
sion scheme proposed in the literature utilizes an elastic tail
that is wiggled behind a magnetic head (Sudo et al. 2006�
Guo et al. 2008). It remains unclear which propulsion method
is optimal, and a comparison that considers the microrobot’s
size coupled with the practical limitations in generating mag-
netic fields is needed. In this paper, we compare these three
propulsion methods, which are representative of the majority
of active research in wireless microrobots. We show that met-
rics of efficiency, which are often used to characterize low-
Reynolds-number swimming, can be quite misleading, and
that practical limitations in magnetic control have a major im-
pact on which method is best for a given application. We show
that helical propellers and elastic tails have very comparable
performance, and they generally become more desirable than
gradient pulling as size decreases and as distance from the
magnetic-field-generation source increases. We also find that
limitations in the hardware used to generate the magnetic fields
can influence which swimming method is best. In the end, we
provide a discussion of why helical propellers are likely the
best overall choice for in vivo applications.

2. Swimming at Low Reynolds Number

It has long been known that swimming at the microscale re-
quires techniques that are very different from those used by
macroscale swimmers such as fish and humans (Purcell 1977).

Fig. 1. Swimming microrobots with a 30:1 size differ-
ence. Magnetic fields are used to: (a) pull a 900-�m-
long assembled-MEMS microrobot (Yesin et al. 2006)� and
(b) rotate a 30-�m-long artificial-bacterial-flagella microrobot
(Zhang et al. 2009).

To understand this phenomenon, we turn to the Navier–Stokes
equations, which, when combined with boundary conditions,
completely define a fluid flow. For a fluid with constant den-
sity � and constant viscosity �, the Navier–Stokes equations
are given by a single vector equation, which can be non-
dimensionalized in space and time by the magnitude of some
characteristic velocity U and some characteristic length �:

�
�U�

�

�
d �V
dt

� �� �p ��2 �V �	 Re � �U�

�
� (1)

Here �V is the velocity vector field and �p is the hydro-
dynamic pressure scalar field, which have both been non-
dimensionalized as in White (1991). From this equation we
discover the Reynolds number, the dimensionless quantity that
embodies the interaction between a fluid’s inertia and viscos-
ity. At low Re, we are in a world that is very viscous, very
slow, or very small. Low-Re flow around a body is referred
to as creeping flow or Stokes flow. We no longer see a tran-
sition to turbulence, even behind bluff bodies. At low Re, the
role of time becomes negligible in (1)� the flow pattern does
not change appreciably whether it is slow or fast, and the flow
is effectively reversible. Consequently, reciprocal motion (i.e.
body motion that simply goes back and forth between two
configurations) results in negligible net movement.

Microorganisms are able to swim at low Re using a variety
of techniques (Brennen and Winet 1977� Vogel 2003� Lauga
and Powers 2009), none of which look like macroscale swim-
mers (Figure 2). Cilia are active organelles that are held per-
pendicular to the flow during the power stroke and parallel to
the flow during the recovery stroke. Many cilia are used simul-
taneously. Eukaryotic flagella are active organelles that deform
to create paddling motions, such as traveling waves or circular
translating movements. Bacterial (prokaryotic) flagella work
differently by using a molecular motor to turn the base of a
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Fig. 2. Locomotion of microorganisms. The cells are drawn
identically to highlight the differences in the propulsion meth-
ods, but there is a wide range of shapes and sizes of microor-
ganisms. (a) Cilia move across the flow during the power
stroke, and fold near the body during the recovery stroke.
(b) Eukaryotic flagella create patterns such as traveling waves.
(c) A molecular motor spins a passive bacterial flagella.

passive flagellum. Some bacteria have multiple flagella that
bundle during swimming. All of the swimming methods uti-
lized by microorganisms capitalize on the difference in drag
on a slender body normal and parallel to the slender direction
as it is pulled through fluid. All of the methods are fairly in-
efficient (efficiency is discussed in detail in Section 7).

A number of robotic swimming methods have been shown
to work at relatively small scales, but will have reduced effec-
tiveness as size decreases to the microscale because they make
use of reciprocating configurations. Other biomimetic swim-
ming methods utilize physics that scale well to the microscale,
but require mechatronic components that present challenges in
microfabrication and wireless power and control (Behkem and
Sitti 2006� Kósa et al. 2007, 2008). A number of microrobots
are inspired by nature and also utilize techniques that facilitate
microfabrication and wireless power and control. Nearly every
one utilizes magnetic fields (see Figure 3). No other actuation
principle offers the ability to transfer such large amounts of
power wirelessly. For example, a rotating magnetic field is an
obvious choice to rotate a helical propeller (Honda et al. 1996�
Zhang et al. 2009), eliminating the need to replicate a mole-
cular motor in a microrobot. However, even with all of their
positive attributes, magnetic fields impose strict limitations on
the design of wireless microrobots.

A controllable external pulling source is not available to
microorganisms, but engineers can utilize gradients in mag-
netic fields to apply forces and torques to untethered microro-
bots (Mathieu et al. 2006� Yesin et al. 2006). This greatly sim-
plifies fabrication since no microactuator or special structure
is needed for propulsion. Biomimetic methods will clearly be
effective, but it is also reasonable to wonder whether this form
of direct-pulling propulsion, which could not have evolved

Fig. 3. Magnetic swimming methods. In each case, the micro-
robot is swimming from right to left. In each case, the entire
microrobot body is depicted as a magnet, but it is also possible
for the magnet to be rigidly embedded in a larger body. (a) Gra-
dients in the magnetic field pull the microrobot directly. (b) A
rotating uniform magnetic field is transduced into forward mo-
tion using a helical propeller. (c) An oscillating uniform mag-
netic field is transduced into forward motion using an elastic
tail.

through natural selection, might outperform biomimetic meth-
ods.

3. Magnetic Power and Control

If we want to apply controlled forces and torques to a body
with average magnetization M using a controlled magnetic
field H (both quantities are vectors in amps per meter), the
governing control equations are as follows (Jiles 1991). The
magnetic torque tends to align the magnetization of the body
with the applied field:

T � �0�M
H� (2)

where � is the volume of the body in cubic meters and �0 �
4	 
 10�7 T�m A�1 is the permeability of free space (here the
non-bold T represents the unit Tesla). The magnetic force on
the body is

F � �0� 
M � ��H� (3)

We can also express the applied magnetic field as an applied
magnetic flux density B in Tesla. Here B is related to H simply
as B � �0H, since air and biological materials are effectively
non-magnetic. Both (2) and (3) are based on the assumption
that the magnetic body is small compared with spatial changes
in the applied field, such that the applied field is fairly uniform
across the body, and H is the value of the applied field at the
center of mass of the body. We have verified in prior work that
this assumption gives an accurate prediction of magnetic force
and torque (Abbott et al. 2007� Nagy et al. 2008).
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If the body of interest is a permanent magnet, the aver-
age magnetization M is effectively constant with respect to
the body with a magnitude governed by the remanent mag-
netization of the material. We can increase torque by increas-
ing the angle between H and M, up to 90�, or by increasing
the strength of H. We can increase force by increasing the
gradients in the applied field. If the body of interest is made
of a soft-magnetic material, the magnetization is a non-linear
function of the applied field, with a magnitude bounded from
above by the saturation magnetization value for the material,
and can rotate with respect to the body� the governing equa-
tions for control are significantly more complex (Abbott et al.
2007� Nagy et al. 2008). We sometimes refer to the “magnetic
moment” or “magnetic dipole moment”, which represent the
total strength of a magnet (permanent or soft). The magnetic
moment is simply the product of the volume � and the average
magnetization M.

Every magnetic body has geometric effects that make its
magnetic properties differ from those of the bulk material and
different along different directions within the body. This is
known as shape anisotropy. Demagnetizing fields are created
that tend to weaken magnetization, and demagnetizing fields
are largest along short directions of the body. A long direction
in a body is referred to as an easy axis, since it is a relatively
easy direction in which to magnetize the material. Other types
of anisotropy exist, such as crystalline anisotropy, but these
are typically negligible compared with shape effects, even at
the scale of microrobots.

Controlled magnetic fields can be generated by stationary
current-controlled electromagnets (Meeker et al. 1996� Zhang
et al. 2009), such as the system shown in Figure 1(b), by elec-
tromagnets that are position and current controlled (Grady et
al. 1990� Yesin et al. 2006), such as the system shown in Fig-
ure 1(a), by position-controlled permanent magnets, such as
with the Stereotaxis Niobe Magnetic Navigation System, or
even by a commercial magnetic resonance imaging (MRI) sys-
tem (Mathieu et al. 2006). In all cases, the rapid decay of mag-
netic field strength with distance from its source creates a ma-
jor challenge for magnetic control.

4. Pulling Through Fluid with Field Gradients

The first method of wireless magnetic swimming that we con-
sider is simply pulling a rigid object through fluid using mag-
netic field gradients, which is depicted in Figure 3(a). Al-
though this is a valid method to actively move through fluid
that we would like to consider, it is not technically “swim-
ming” since it does not use the fluid to assist in propulsion.
When pulling a magnetic object through Newtonian fluid at
low Re, the object nearly instantaneously reaches its terminal
velocity V where the viscous drag force, which is linearly re-
lated to velocity through a drag coefficient �
 , exactly bal-
ances the applied magnetic force F:

Fig. 4. Definition of parameters for a microrobot with a helical
propeller with right-handed chirality. The force f and torque
� represent the sum of all non-fluidic loads.

F � �
V� (4)

If we consider a spherical bead of diameter d, the translational
drag coefficient is described in Stokes flow (see White (1991))
as

�
 � 3	�d� (5)

It is clear that velocity is inversely proportional to fluid viscos-
ity with all other parameters held constant.

The magnetic force of (3) also simplifies in the case of a
soft-magnetic spherical bead to

F � �0�
M
 
�
H
� � (6)

This equation also applies to a permanent magnet under the
assumption that the magnetization M is always aligned with
the applied field H.

5. Swimming with a Helical Propeller

The next method of wireless magnetic swimming that we con-
sider is swimming with a helical propeller, which is depicted
in Figure 3(b). Consider the helical propeller with parameters
defined as shown in Figure 4. Swimming along the axis of a
helical propeller is described by a symmetric propulsion ma-
trix (Purcell 1977, 1997) relating the four principle (scalar)
quantities, forward velocity 
 , angular velocity �, non-fluidic
applied torque � , and non-fluidic applied force f , of the helical
propeller: �

� f

�

�
� �

�
�a b

b c

�
�
�
�

�

�
� � (7)

where the matrix parameters are computed as

a � 2	n�

�
� � cos2 � � �� sin2 �

sin �

	
� (8)

b � 2	n� 2


� � � ��

�
cos �� (9)

c � 2	n� 3

�
�� cos2 � � � � sin2 �

sin �

	
� (10)
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where n is the number of turns of the helix (such that the helix
length is n�), and the constants �� and � � are the viscous drag
coefficients for a thin cylindrical element of a helical propeller
for flow locally normal to the cylinder’s axis and along the
length of the cylinder’s axis, respectively, given by Lighthill
(1976) as

�� � 4	�

ln



0�36	�
r sin �

�� 0�5
(11)

� � � 2	�

ln



0�36	�
r sin �

� (12)

The effect of the rigidly attached head is to modify the propul-
sion matrix of the helical propeller of (7) to�

� f

�

�
� �

�
�a � �
 b

b c � ��

�
�
�
�

�

�
� � (13)

where �
 and �� are translational and rotational drag co-
efficients for the head, respectively. If we consider a spherical
head, the rotational drag coefficient is described in Stokes flow
(see White (1991)) as

�� � 	�d3 (14)

and the translational drag coefficient is given in (5).
In the case of magnetically applied torques, the rotational

frequency of the magnetic field is the fundamental control in-
put. The microrobot rotates synchronously with the applied
field, nearly instantaneously reaching an equilibrium phase
shift such that the magnetic torque perfectly counterbalances
the fluidic drag torque. It is more instructive in this case to re-
arrange the linear equations with the non-fluidic applied force
f and angular velocity � as the input variables:�

�

�

�
� �

�
� � �

�� �

�
�
�
� f

�

�
� � (15)

where (13) and (15) are related by

� � 1

a � �

� � � �b

a � �

�

� � c � �� �
b2

a � �

� (16)

Figure 5 shows the behavior observed with this type of swim-
ming. The forward velocity grows linearly with frequency un-
til a step-out frequency is reached. Beyond this step-out fre-
quency, the available magnetic torque is no longer sufficient
to keep the microrobot rotating in sync with the applied field,
and a drastic and non-deterministic decrease in the swimming
velocity is observed. This behavior has been demonstrated ex-
perimentally at a number of scales (Honda et al. 1996� Zhang

Fig. 5. Qualitative behavior of helical-propeller swimming,
with rotational frequency as the control variable, which is par-
ticularly useful when considering helical propellers driven by
applied magnetic fields. Parameters are defined in (15) and
Figure 4.

et al. 2009). The step-out frequency is a function of �max, the
maximum magnetic torque that can be generated as described
in (2), as depicted in Figure 5.

It is notable that the fluid viscosity � enters into (8)–(10)
linearly. Consequently, � enters into � linearly, but does not
enter into �. Taking this into consideration, from Figure 5 we
find that the effect of doubling viscosity with all other parame-
ters held constant would be to reduce the step-out frequency
by half and, consequently, to reduce the maximum velocity by
half. That is, the maximum velocity is inversely proportional
to fluid viscosity.

6. Swimming with an Elastic Tail

The final method of wireless magnetic swimming that we con-
sider is swimming with an elastic tail (sometimes referred to as
a “flexible oar”), which is depicted in Figure 3(c). A magnetic
field is oscillated in time, and a magnetic torque is applied
to the magnetic head as it attempts to align with the applied
field. There have been a few experimental demonstrations of
this type of microrobot swimming (Sudo et al. 2006� Guo et al.
2008), but the deformable nature of the elastic tail makes even
basic analysis of this type of swimming significantly more
complicated than that of the rigid helical propeller, and there
currently exists no analytical model for this method. The clos-
est is the free-swimming elastic tail being driven by a pure
torque at one end considered analytically for small deforma-
tions in Wiggins and Goldstein (1998) and numerically for
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large deformations in Cosentino Lagomarsino et al. (2003),
with the differences to the case of Figure 3(c) being that in
their case a constraint on a fixed angular deflection was con-
sidered, and that the application of the torque had no associ-
ated additional viscous effects (i.e. no increased drag due to
an increased magnetic bead size associated with an increase in
magnetic torque). The same authors also considered the case
where the end of an elastic filament is driven with an oscillat-
ing lateral movement of fixed amplitude (Wiggins and Gold-
stein 1998� Wiggins et al. 1998� Cosentino Lagomarsino et al.
2003).

Let us consider the case of the elastic tail driven by a pure
oscillating torque described by � � � 0 sin
�t�. The elastic
tail has a length l, a bending stiffness � , and a perpendicular
viscous drag coefficient of ��. We are interested in the net
swimming velocity 
 . From dimensional analysis, we find that
the dimensionless velocity

� � 


�l
(17)

is a function of two dimensionless parameters: one is com-
monly referred to as the Sperm number

Sp � l

� 
�
��
�

�1�4

� (18)

which encapsulates the waveform, or “floppiness”, of the tail,
and the other is the dimensionless torque magnitude

� � � 0l

�
� (19)

Figure 6(a) shows the results of numerical simulations us-
ing the same methods as presented in Cosentino Lagomarsino
et al. (2003). It shows how � varies with Sp for various values
of constant � . We find that � affects � linearly, which allows
us to plot a single dimensionless quantity ��� as a function
of Sp in Figure 6(b). The results indicate that a peak value in
dimensionless velocity occurs at Sp � 4�3, regardless of the
value of � .

For a simple model of bending stiffness, we can consider
that of a cylindrical beam of radius r and Young’s modulus E :

� � 	r4 E

4
� (20)

From Vogel (2003), an appropriate value for �� in this case is

�� � 4	�

ln



l
r

�� 0�193
� (21)

7. A Critical Comparison

In order to make a fair comparison between microrobots that
utilize magnetic fields in different ways, we must consider the

Fig. 6. Dimensionless results for numerical simulations of an
elastic tail being driven by a pure sinusoidal torque at one end.
(a) Dimensionless velocity versus the Sperm number for vari-
ous value of constant dimensionless torque. (b) Dimensionless
velocity normalized by dimensionless torque versus the Sperm
number, showing that dimensionless torque affects dimension-
less velocity linearly.

hardware that generates the magnetic field. In practice, there
will be limits to how close the field sources can be placed
to the microrobot. Let us compare the control of a microro-
bot with two current-carrying coils, as shown in Figure 7. Our
field sources are assumed to be located a distance L from our
microrobot. The limitations imposed by this two-coil system
are representative of other magnetic control systems, such as
those as described in Section 3.

7.1. Helical Propeller versus Gradient Pulling

We begin by comparing swimming with a helical propeller to
simply pulling with field gradients. We assume a simple mag-
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Fig. 7. Two electromagnetic coils as field-generation hardware
for microrobot propulsion. (a) Uniform magnetic fields in the
center of the workspace are generated by current flowing in
the same direction. The field is calculated accurately with a
current-loop model along the axis of the coils (Jiles 1991).
(b) Gradient fields can be generated by running the current
in opposite directions.

netic bead of diameter d for our microrobot. We have two op-
tions for control: we can attach a helical propeller to our bead
and then apply current in the same direction in the two loops,
creating a uniform field that is used to rotate and thus propel
the bead� or we can apply the current in opposite directions,
creating a field gradient that is used to pull on the bead directly.
From the equations that describe the magnetic field and field
gradient at the midpoint of the current loops, shown in Fig-
ure 7, we see that the field that we can generate changes with
the gap between the two loops as � L�3, while the gradient
that we can generate changes as � L�4, as expected. We also
find that there are optimal values for the coil radii for a given
coil gap to maximize the respective quantities: R � �

2L for
case (a) and R � �2�3L for case (b).

In Figure 8 we plot the maximum no-load ( f � 0) veloc-
ity and the maximum stall (
 � 0) force versus bead size.
For the helical parameters, we choose � � d�2, r � d�200,
and � � 45�. For the coil gap, we assume L � 0�2 m, which
is the approximate value that would be needed to control a mi-
crorobot somewhere inside a human head. To avoid biasing the
results, we use the optimal radii R for the respective cases. The
results for two helices are shown: one for n � 3 and one for
n � 10. The magnetization of the bead and the current through
the loops enter into the maximum velocity and force linearly,
so we can normalize our results to these quantities. The recip-
rocal of viscosity enters into the maximum velocity linearly,
so we can normalize to this quantity as well� the viscosity has
no bearing on the maximum force.

We find that the maximum velocity varies as � d for heli-
cal propulsion and as � d2 for pulling. We find that the max-

Fig. 8. Comparison of (a) normalized no-load ( f � 0) veloc-
ity and (b) normalized stall (
 � 0) force vs. bead radius for
helical propulsion and field-gradient pulling.

imum force varies as � d2 for helical propulsion and as � d3

for pulling. This indicates that there will always exist a micro-
robot size below which using helical propulsion is desirable
over pulling with field gradients. In addition, even though the
helical parameters used here were not optimized, Figure 8 in-
dicates that helical propulsion is desirable (by a large margin)
over pulling for any microrobot size that would reasonably be
considered as microscale. In addition, increasing the distance
between the magnetic field sources and the microrobot (i.e.
L), which will likely be necessary for in vivo applications, will
always tend to improve helical propulsion relative to pulling,
although the effectiveness of both will be reduced.

Although helical propulsion of a body is described as
being quite inefficient compared with simply pulling the
body through the fluid (Purcell 1977, 1997), this is mis-
leading in the context of magnetic control. Purcell uses a
definition of swimming efficiency that compares the power
used to propel a body at a given velocity and the power re-
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quired to simply pull the body through the fluid at the same
velocity:

� � power required to simply pull body

power consumed during propulsion
� (22)

Under this definition of efficiency, pulling with field gradi-
ents is 100% efficient (i.e. � � 1), and every other swimming
method will always perform less efficiently. The problem with
this definition in this context is that the amount of power that
can be harvested from the applied magnetic field is different in
each of our cases, so a comparison of the efficient use of that
power does not give meaningful results.

Theoretical models of microrobot swimming should be im-
proved, but the discrepancy between the models at the mi-
croscale observed in Figure 8 might be too large to be drasti-
cally affected by improved models. However, there is another
practical limitation in the magnetic control of helical swim-
mers that we must consider. Our actual control variable is
the rotation frequency � of the magnetic field. As described
in Section 5, the microrobot rotates in sync with the field,
with the field leading the magnetization such that the magnetic
torque from (2) balances the viscous torque. As � is increased,
the magnetic torque eventually reaches its step-out frequency,
above which the microrobot can no longer track the rotating
field. The maximum velocity and force curves of Figure 8 as-
sume that the microrobot is turning at its step-out frequency,
which also increases linearly with the quantity 
M
i��. For
any field-generation system, there are practical saturation lim-
its in generating high � due to, for example, induction, eddy
currents, motor speeds, or sampling rates. If this �-saturation
is reached, the values shown in Figure 8 will over-estimate
the capabilities of helical propulsion. We must also recall that
the propulsion model implicitly assumes low-Re flow, which
could be violated for very high �. Thus, although it is always
desirable to increase 
M
 and i for improved control using ei-
ther swimming method, it could reduce the performance of he-
lical propulsion relative to pulling. It should be noted, however,
that the step-out frequency is scale invariant (discussed more
in the next section), and published experimental results for he-
lical swimmers have typically had step-out frequencies below
60 Hz, indicating that this high-� problem is unlikely to sig-
nificantly impact on our conclusions.

7.2. Helical Propeller versus Elastic Tail

To compare helical-propeller swimming with elastic-tail
swimming in the context of wireless magnetic control, we
make use of the fact that both methods transduce mechani-
cal power from the applied magnetic field in the same way:
through magnetic torque. So, for a given magnetic bead driven
by either type of propeller, we can simply assume some maxi-
mum available torque �max available to the microrobot, which
is a function of the bead geometry and material as well as

the field-generation hardware, and is governed by (2). Neither
swimming method relies on field gradients, which means that
both methods will improve relative to gradient pulling as the
distance to the field-generation hardware is increased.

Let us consider an elastic tail driven by a pure sinusoidal
torque at one end, as detailed in Section 6. We assume that the
tail is being driven optimally, and that we are making use of
the available magnetic torque such that � 0 � �max. Although
the peak in dimensionless velocity in Figure 6 occurs at Sp �
4�3, this is not the location of peak velocity, due to the way
that � affects both � and Sp. We find that velocity is actually
optimized when Sp4� is maximized, which we find occurs at
Sp � 5�2, and which corresponds to


�

�� 0l2
� 1�4
 10�3� (23)

After some substitutions, we can express the maximum swim-
ming velocity as


max �
�

1�0

��l2

�
�max� (24)

With an understanding that the maximum magnetic torque will
scale with the volume of material, and with all other parame-
ters held constant, we find that 
max scales with microrobot
size as � l. We also find that 
max is inversely proportional to
fluid viscosity. We can also consider the case of a helical pro-
peller being driven by a pure torque. For the helical propeller
of (7), we compute


max �
�

b

b2 � ac

�
�max� (25)

We again find that 
max scales with microrobot size as� l, and
that 
max is inversely proportional to fluid viscosity.

The performance of both helical propellers and elastic tails
scale in the same way. However, we have not yet considered
how the driving frequency � changes with scale. To main-
tain the elastic tail swimmers running at peak performance,
we must achieve

� � �

��

�
5�2

l

�4

� (26)

Assuming that the stiffness � varies as � l4 (see (20)), we
find that the peak value for � does not change as we scale
the elastic-tail microrobot. If, however, the length of the tail
is changed without changing the cross section, we find that �
varies as � l�4, which would lead to a significant increase in
optimal driving frequency if we shorten the length of the tail.
For the helical-propeller swimmer, for optimal performance
we must run the swimmer at the step-out frequency, which is
the maximum frequency �max that can be achieved for a given
�max, and which is described in free swimming by

�max �
�

a

ac � b2

�
�max� (27)
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For the helical-propeller, we find that the driving frequency
does not change as we scale the microrobot size.

We have shown that the performance of these two methods
of microrobot swimming scale identically to one another, as-
suming the cross section of the elastic tail scales proportionally
to all other parameters. This means that if one type of propul-
sion outperforms the other, it will always outperform, regard-
less of scale. However, we would still like to know which, if
either, swimming method is superior. To do this, let us con-
sider an example. If we construct a 2-mm-long helical swim-
mer with a pitch of � � 45�, four turns, and a cross sec-
tion with r � 50 �m, we compute a maximum velocity of

max � 
7�7 
 104��max��, with a corresponding angular ve-
locity of �max � 
7�3 
 109��max��. Note that both �max and
the reciprocal of fluid viscosity enter into these terms linearly,
and can therefore be factored out. For an elastic-tail swimmer
with 2-mm length and a cross section with r � 50 �m, we
again calculate 
max � 
7�7 
 104��max��. It is a coincidence
that these two peak-velocity values are identical, and we find
that by varying parameters we can make either type of mi-
croswimmer outperform the other. However, this example does
give us an indication that we should expect similar peak per-
formance from these two types of microswimmers, assuming
the same length and the same maximum magnetic torque. We
have compared our numerical models with prior experimental
results (Sudo et al. 2006� Zhang et al. 2009) and find excellent
agreement. These prior experiments also indicate that optimal
driving frequencies are comparable between the two types of
microswimmers, and also feasible from a hardware standpoint
(e.g. 30–60 Hz).

It may be the case that comparing microswimmers of the
same length biases the comparison in favor of the helical pro-
peller. In some cases it may be acceptable to shorten the length
of the elastic tail to increase the forward velocity, as indicated
in (24). However, we know that this shortening may drastically
increase the driving frequency, as indicated in (26).

In our comparison of peak velocity, we found that �max

could be factored out for both microswimmers. However, we
find that the optimal � for helical propulsion is linearly af-
fected by the non-scale-related contribution of �max (i.e. the
field strength and the magnetization of the material), whereas
the optimal � for elastic tails is completely independent of
�max. This indicates that, as we reduce the strength of the ap-
plied magnetic field, the optimal driving frequency of the he-
lical swimmer will reduce relative to that of the elastic-tail
swimmer, which may be desirable from a hardware and control
standpoint.

8. Discussion

It appears that, under some reasonable simplifying assump-
tions, helical-propeller microrobots and elastic-tail microro-
bots have very comparable peak performance, and both will

outperform field-gradient-pulled microrobots once we con-
sider the practical limitations involved in generating magnetic
fields.

From a fabrication standpoint, constructing an elastic-tail
microswimmer seems feasible, considering the relatively sim-
ple design. However, this has not been done to date (prior
experiments have considered up-scaled models), and it is not
clear which materials would be the best choice for the tail. It
has already been shown that it is possible with currently avail-
able technology to microfabricate helical-propeller magnetic
microrobots (Zhang et al. 2009). This has been accomplished
with nanocoils, which are rolled-up pre-stressed multilayer
strips. This technique has better control over helical geome-
try than grown helical carbon nanotubes or ZnO nanobelts.
The radius of the coil is determined by the thicknesses of
the films, the Young’s moduli of the materials, and the lat-
tice mismatches of the layers. Figure 9(a) shows the process
sequence to fabricate nanocoil microrobots, which consist of
a 42-nm-thick ribbon that, upon wet etch release, self-forms
into a 3-�m-diameter coil with a length of 30–40 �m. A
4�5 �m
4�5 �m
0�2 �m Ni plate is formed on one end that
serves as a “head”. The geometrical relation of the nanocoil
parameters is shown in Figure 9(b). The width of the stripe is
given by its initial pattern design, and the depth is controlled
during fabrication. Figure 9(c) shows a scanning electron mi-
croscopy (SEM) image of an as-fabricated nanocoil with a
Ni plate on one end. For a first propulsion experiment, indi-
vidual magnetic nanocoils were immersed in water, actuated
with a rotating magnetic field (see hardware in Figure 1(b)),
and their motion was captured on video through a micro-
scope. One sequence for a 40-�m-long nanocoil is shown in
Figure 9(d).

Microrobots that swim using helical propellers have a num-
ber of additional potential benefits for use as in vivo medical
devices that we believe makes them the most promising as a
technology worth pursuing. They include the following.

1. Reversing direction is simple with a rigid helical pro-
peller. It simply entails reversing the rotation direction
of the magnetic field. This could be particularly useful
in retracing a path already taken. Microrobots that are
pulled with field gradients are also easily reversed. How-
ever, to reverse the swimming direction of an elastic-
tail microrobot, the microrobot must turn completely
around, which is less efficient and potentially more
difficult to accomplish.

2. A rigid helical propeller can be functionalized (e.g.
coated) without significantly changing its fluid-dynamic
properties. This is not likely true of an elastic tail, whose
bending properties will change due to functionalization.
Adding extra fluid drag will always reduce performance
with gradient-pulling methods. It has also been sug-
gested that the microrobot’s payload, such as a strip of
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Fig. 9. Nanocoils as artificial bacterial flagella (Zhang et al.
2009). (a) Microfabrication process sequence: an initially pla-
nar epitaxial trilayer with a plate on one end consisting largely
of soft-magnetic Ni, all patterned through conventional mi-
crofabrication techniques, self-forms into a three-dimensional
structure during wet etch release. (b) Schematic drawing show-
ing the relationship between the stripe and etching direction in
nanocoil parameters. (c) SEM image of an as-fabricated micro-
robot. (d) Optical microscope image sequence of a microrobot
swimming in water. Arrows indicate the forward direction and
corresponding rotation being commanded by the electromag-
netic system.

drug, can be twisted up into a helical propeller to actu-
ally contribute to propulsion (Li et al. 2006). An elastic
tail might also be made of drug, provided the elasticity
and stiffness of the drug can be fabricated correctly.

3. Microrobots that swim using helical propellers have the
potential to smoothly transition from lumen to open
environments. For example, consider a microrobot de-
signed for use in the urinary system. After insertion into

the urethra, the microrobot crawls toward the bladder
by pressing its helical propeller against the partially col-
lapsed walls of the urethra. The microrobot does not
swim in this case, but actually crawls forward, ideally
advancing by one pitch per rotation, but with the possi-
bility of some amount of slip. This type of helical lumen
crawling has been explored previously (Sendoh et al.
2003). Once the microrobot reaches the bladder, it tran-
sitions into the type of swimming discussed in this pa-
per. The microrobot could even swim toward the open-
ing of the ureter and transition back to crawling to ad-
vance toward the kidney. It is unclear whether an elas-
tic tail or gradient-pulling would be effective inside a
lumen whose size is comparable to that of the micro-
robot and potentially even collapsed. A driven elastic
tail makes lateral movements throughout its cycle (with
no net lateral movement) as it is propelled forward. A
wall constraint, such as a lumen environment, will affect
the swimming pattern and performance of an elastic-tail
swimmer compared with the model described in Sec-
tion 6.

4. Swimming with helical propulsion opens up the pos-
sibility of control in non-uniform magnetic fields. Al-
though the analysis presented in this paper assumes a
uniform (gradient-free) magnetic field, which in prac-
tice is developed in the center of two equally power-
ful electromagnets as depicted in Figure 7(a), it is also
possible to swim against magnetic field gradients pro-
vided that the propulsive force of the helical propeller is
large enough. We have already demonstrated this exper-
imentally with the microrobots of Figure 9 by using the
field of a single rotating permanent magnet. This possi-
bility of using non-uniform fields allows us to be more
creative in the design of field-generation hardware, and
may prove particularly useful in the control of in vivo
microrobots. Swimming against field gradients may also
be possible with an elastic tail, however, the inability
to reverse direction easily (discussed above) makes the
design of field-generation hardware more challenging.
Swimming against a field gradient is never possible with
gradient-pulling methods.

5. The same magnetic control system that is designed
to control helical swimmers can also be used to con-
trol screw-type microrobots, which are microrobots that
consist of a magnet rigidly embedded in a microrobot
shaped something like a wood screw (Ishiyama et al.
2003). These screw-type microrobots provide a promis-
ing method to move through soft tissues such as brain
and liver. With the ability to control two types of micro-
robots with the same hardware, the probability of both
of these two technologies taking hold in clinical prac-
tice increases, since costs, both in terms of finances and
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space, will be distributed over multiple potential proce-
dures.

There are a number of modeling assumptions used in this
paper that could be improved to increase the accuracy of the
models� the most salient are discussed below. However, it is
unlikely that these assumptions will significantly affect the
conclusions that we have reached.

1. The model in Section 5 assumes that the head and the
helical propeller do not affect each others’ flow fields,
which clearly cannot be true. The model in Section 6
does not account for any fluid drag on the magnetic
head.

2. The individual Stokes-flow models are all derived as-
suming an infinite extent of fluid. Figure 10 shows mag-
netic and hydrodynamic data for three steel beads, ob-
tained with a custom measurement system (Kummer et
al. 2007). We see that the magnetic models are quite ac-
curate, but the viscous drag coefficient �
 for Stokes
flow around a sphere is less accurate, due to the wall
effects of the container (i.e. fluid viscosity effectively
increases nearer to a solid boundary). Wall effects have
also been observed to affect helical propulsion (Behkem
and Sitti 2006), elastic-tail propulsion (Yu et al. 2006),
and are generally important in low-Re swimming (Vogel
2003� Lauga and Powers 2009). From Figure 10(b), the
speed of gradient-pulled beads is clearly reduced due to
wall effects. The cases of the other two swimmers that
we consider are more complicated. The efficiency of
both helical-propeller swimmers and elastic-tail swim-
mers are governed by the ratio of the fluid drag co-
efficients of the propeller: ���� �. That is, swimming be-
comes more efficient in cases when the fluid drag for
flow perpendicular to an element of the propeller in-
creases relative to fluid drag for flow along an element
of the propeller. It has been shown that wall effects tend
to increase this drag-coefficient ratio, and thereby in-
crease efficiency (Brennen and Winet 1977). However,
this is another use of “efficiency” that can be misleading
in the case of magnetic control. This use of “efficiency”
relates to how much forward velocity results from a
given propeller movement, but does not account for the
power that is required to generate said movement. In the
case of constant-power swimming, the presence of walls
typically tends to decrease swimming speed in microor-
ganisms (Lauga and Powers 2009). In our case of con-
stant magnetic torque input, we can expect power input
to decrease with increased fluid drag, since power in-
put is the product of torque and angular velocity, and
angular velocity will reduce with increased drag for a
given torque. In addition, the magnetic head will expe-
rience an increase in fluid drag similar to the gradient-
pulled bead. Consequently, we should expect a decrease

Fig. 10. Experimental results for three steel beads using the
custom measurement system of Kummer et al. (2007). Data
originally appeared in Ergeneman et al. (2008). (a) Mag-
netic forces are accurately predicted using a theoretical model.
(b) Hydrodynamic predictions of the beads being pulled
through silicon oil (� � 970 kg m�3, � � 0�98 Pa�s) are less
accurate, as Stokes-flow equations do not accurately account
for wall effects of the 26-mm-diameter container.

in swimming speed near solid boundaries for both the
helical-propeller and elastic-tail microrobots.

3. Our swimming models and critical comparison all con-
sider one-degree-of-freedom motion. In practice, it will
be necessary to steer the microrobots while creating
propulsion, and the coupled relationship between mag-
netic steering and propulsion is not always trivial. In ad-
dition, the helical swimmer and the elastic-tail swimmer
must use non-holonomic steering techniques, whereas
gradient pulling has the potential for control authority
in every direction. Walls also affect steering. As viscous
drag increases nearer to a wall, rotating bodies tend to
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Fig. 11. (a) Simple helical propulsion results in drift due to
gravity. (b) Swimming similar to helicopter flight can counter-
act gravity.

roll along walls, even when there is no direct contact. It
is known that some bacteria tend to swim in circles near
solid boundaries, which is due to the counter-rotation
of the bacterium and its flagellum, each tending to roll
along the wall in opposite directions, resulting in a net
torque (Lauga et al. 2006). We have observed an anal-
ogous behavior in the magnetic helical microswimmers
of Figure 9: they tend to drift sideways along a solid
boundary as they move forward, rather than swim in cir-
cles, because the magnetic head and the helical propeller
do not counter-rotate.

4. There is another factor that must be considered in micro-
robot swimming: gravity. It is often claimed that inertia
is negligible at low Re, but “inertia” is used differently
here than “mass”. A microrobot will reach its terminal
velocity in a fluid nearly instantaneously, and the termi-
nal velocity decreases with size. However, even at low
Re, a microrobot will still fall downward under its own
weight. The propulsion models developed in Sections 5
and 6 assume that flow is along the axis of the pro-
peller. However, this only provides for propulsion along
the axis, which will be insufficient to counteract gravity
when swimming horizontally, as shown in Figure 11(a).
It may be necessary to swim with an angle of attack,
as shown in Figure 11(b), and we have, in fact, experi-
mentally found this to be the case (Zhang et al. 2009).
Microorganisms that swim using flagella have a density
similar to water, and are thus nearly neutrally buoyant,
making this effect of gravity on propulsion unique to mi-
crorobots that are constructed of denser-than-water ma-
terials.

5. It is possible to combine the benefits of field gradients
with those of helical propulsion or elastic-tail propul-
sion. That is, we can pull as we rotate. This hybrid
method has the potential for improved performance, and
may be particularly useful in counteracting the effect of
gravity. However, it will require a more complicated ac-
tuation scheme than that considered in Figure 7(a).

6. Helical-propulsion models typically assume a perfectly
rigid helix. In Figure 12 we show experimental data for

Fig. 12. A nanocoil attached to the chip, similar to that shown
in Figure 9(c), is subjected to a magnetic torque and character-
ized as a spring in Bell et al. (2007).

a nanocoil still attached to the chip, like that seen in Fig-
ure 9(c), subjected to a magnetic field and behaving like
a spring� the nanocoil is clearly not rigid. The charac-
terization of the stiffness of the helical propellers (Bell
et al. 2006) can be used for improved helical-propulsion
models.

Finally, it would be interesting to compare another type
of magnetic propulsion scheme with the three methods pre-
sented in this paper. Dreyfus et al. (2005) assembled a chain
of paramagnetic beads, interconnected by DNA, which, when
attached to a body, can be used for propulsion. The microrobot
is propelled by an oscillating magnetic field, and the hardware
requirements for magnetic field generation are the same as that
for elastic-tail propulsion. The oscillating field induces some-
thing like a wave in the chain that travels from the distal end
toward the body, resulting in a propeller that pulls the body
behind it, as opposed to the elastic tail, which pushes the mag-
netic body. One desirable property of this type of propulsion
is that the attached body can be any payload, and does not it-
self need to be magnetic in any way (in Dreyfus et al. (2005)
they pull a red blood cell). An undesirable property of this type
of propulsion is that the chain of paramagnetic beads theoret-
ically requires an attached body for any propulsion to occur.
Subsequent work has shown that defects in the chain can cre-
ate the asymmetry needed to break the “scallop theorem” and
result in some net movement without an attached body (Roper
et al. 2006). However, it is not clear how such a defect would
affect the swimming efficiency with an attached body. It is also
not clear how well the fabrication of these microswimmers,
which was successfully performed at very small scales under
a microscope, scales up to the type of microrobot dimensions
that might be of more practical use for in vivo medical appli-
cations. A critical comparison of the Dreyfus microswimmer
with other common microswimming methods is an interesting
topic for future consideration, and a recent work (Roper et al.
2008) may form the basis for such a comparison.
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9. Conclusions

Magnetic fields provide an unequaled means of wireless power
and control for microrobots. However, the strength of magnetic
fields and field gradients decreases rapidly with distance from
the source, which has a profound impact on the best way to
make use of these fields for microrobot propulsion. Although
it has been previously observed that a swimming microrobot
with a helical propeller is far less efficient than simply pulling
the microrobot through the fluid, we find that a helical pro-
peller is far superior to pulling if we consider the limitations
of magnetic field sources. We find that optimal performance
of helical propellers and elastic tails are very comparable. We
find that both generally become preferable to pulling with field
gradients as microrobot size decreases or as the distance from
the magnetic field sources increases. Considering additional
practical considerations, we made the case that helical propul-
sion will likely be the best choice for in vivo applications.
However, the design of hardware that realizes the theoretical
possibilities of any of the propulsion methods remains a chal-
lenging problem.
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